Low Power Concepts

Principles For ULP Applications

4 MSP430 is inherently low-power, but your
design has a big impact on power efficiency

4 Even wall powered devices can become
“greener”

4 Use interrupts to control program flow
4 Maximize the time in LPM3

¢ Replace software with peripherals

4 Configure unused pins properly

4 Power manage external devices

¢ Efficient code makes a difference

Every unnecessary instruction
executed is a portion of the battery
that’s wasted and gone forever

Use Interrupts and Low-Power Modes

Use Interrupts & Maximize LPM3

0.4 pA

Leave On the Slow Clock

Low power clock and peripherals
interrupt CPU only for processing

On-Demand CPU Clock

DCO starts immediately

+ CPU processes data and quickly
returns to Low Power Mode

Replace Software with Peripherals

Replace Software With Peripherals

d
%4 ADC outl—Ulr| DMA

Timer A ¢ Automate where possible
- + Timer triggers analog conversion
+ ADC triggers DMA to move result to memory

¢ Saves power since CPU and high-speed clock
can be turned off

Higher precision and less latency for analog
sampling since timer directly triggers conversion

Faster results since peripherals are optimized to
perform operations more quickly than the CPU

Configure Unused Pins

Configure Unused Pins

4 Digital input pins subject to shoot-through current
+ Input voltages between V, and V,,, cause shoot-through
if input is allowed to “float” (left disconnected)
¢ Port 1/0O’s should either:
1. Bedriven to V. or ground by an external device
2. Set as an input using the pull-up/down resistor
3. Driven as an output

(Digital) CMOS Inverter

Vin
.."UIII:C r

Wi

gy e —) I

Vin ‘L— |
—r

Yout

Efficient Code Makes a Difference

ULP “Sweet Spot”

4 Power dissipation increases with...
+ CPU clock speed (MCLK)
+ Input voltage (Vcc)
+ Temperature

4 Slowing MCLK reduces instantaneous power, but often
increases active duty-cycle (how long the CPU stays on)

+ Look for ULP ‘sweet spot’ to maximize performance with
minimum current consumption per MIPS

== Usually 8 MHz MCLK is the best tradeoff of power/performance

4 Use lowest input voltage possible

+ ‘F5529 lets you lower core voltage if full-speed operation
is not required

+ ‘FR5969 operates at full speed down to 1.8V

+ On some MSP430 devices, you need to take into
consideration minimum Vcc for flash programming, etc.

Timer Counter Module

Challenge statement: - choose one
or many

e \Wake up after a time or

e Create timed events or

e Create events at regular intervals or

e Count events for a time or

e Count determined number of events or

e Capture time between events or

e Capture elapsed time or

e Start processes at determined times

e Use your imagination — loop back to start

Timer_A3 modules in MSP430FR2433

MAB
16-MHz CPU,
including
16 Registers :

d
|
EEM ‘
CRC16 2xTA IXTA 2xeUS
SYS 16-bit

Cyclic Timer A3 Timer_ A2
JTAG _ — Redundancy 3CC 2 CC EUAﬁ
Watchdog Check Registers Registers IrDA, *

L

SBW /4 /4

Each Timer_A3 has three capture/compare registers, but only CCR1 and CCR2 are externally
connected. CCRO registers can be used only for internal period timing and interrupt generation.

Each Timer_A2 has two capture/compare registers, but only CCR1 is a compare/capture functionality.
CCRO registers can be used only for internal period timing and interrupt generation.

As we will cover in great detail during this chapter, these timers contain one or more Capture and
Compare Registers (CCR); these are useful for creating sophisticated timings, interrupts and
waveforms. The more CCR registers a timer contains, the more independent waveforms that can
be generated. To this end, the documentation often includes the number of CCR registers when

listing the name of the timer. For example, if TIMER_A on a given device has 5 CCR registers,
they often name it:

Timer A5

But wait, that's not all. What happens when a device, such as the 'F5529 has more than one
instance of TIMER_A? Each of these instances needs to be enumerated as well. This is done by
appending the instance number after the word “Timer”, as in TimerO.

To summarize, here’s the long (and short) names for each of the 'F5529 TIMER _A modules:

Instance | Long Name Short Name
0 Timer0_AS TAO
1 Timer1_A3 TA1

2 Timer2_A3 TAZ2

Timer/Counter Basics

15 TAR 0
Counter i Counter
. %j Overflow Action
Elacﬂl:l:nput Reglster ¥+ Interrupt (TAIFG)
+ GPIO Pin (TACLK)

wl
&

¥
I

== ¢ Interrupt occurs when

| : timer overflows back
i FFE |7 to zero
FFFD f
—
Each pulse 1 —
of clock input ! _
increments the =
counter register 02
| 01 01
Notes

+ Timers are often called “Timer/Counters” as a counter is the essential element
+ “Timing” is based on counting inputs from a known clock rate

+ Actions don’t occur when writing value to counter | . |
Can | ‘capture’ a count/time value?

Frequency, Time Period, Resolution
<

With what resolution can

we determine if an
event occurred here?

[

—timer interrupt Stimer interrupt :'—'Iimer interrupt

+«— Time Period ——

Definitions

+ Frequency: How many times per second
+« Time Period: Amount of time between successive events
+ Resolution: Granularity in determining system events

If a timer only consisted of a single counter, its resolution would be limited to the size of the
counter.

If some event were to happen in a system — say, a user pushed a button — we could only
ascertain if that event occurred within a time period. In other words, we can only determine if it
happened between two interrupts.

The bottom portion of the diagram differs from the previous diagrams. In this case, rather than
using the CCR register for capture, it's used as a compare reglster In this mode, whenever a
lggered, The compare
actlc}ns include generatlng an mterrupt mgnalmg another penpheral (e.g. triggering an ADC
conversion), or changing the state of an external pin.

15 TAR 0
Counter Counter
| . : Overflow Action
FEEE:“FUt | > REngtEI" « Interrupt (TAIFG)

+ GPIO Pin (TACLK) !

when Counter = Compare
Compare Actions can occur

Add another ;
Register —».| Capture/Compare "« Interrupt (CCIFGn)
: Register (CCRn) > + Signal peripheral

+ Modify pin (TAx.n)

““*+-..» Compare Actions

The “modify pin” action is a very powerful capability. Using the timer’'s compare feature, we can
create sophisticated PWM waveforms and/or trigger Analog/Digital Conversions

TAxCLK 00 - i
- Divide 16-bit Counter
ACLK 01 . Enable Interrupt
—3» by 5-bit — D
sve—— 0 o oen [(TAOR) (1A0E) | (TAOIFG)
INCLK ;’ -
= CCRO —
-
—> CCR1 —>
-
— CCR2 —
Remember:

* Timer0 means it’s the first instance of Timer_A on the device.

« A3 means that it's a Timer_A device and has 3 capture/compare registers (CCR’S)

» The clock input, in this example, can be driven by a TACLK signal/pin, ACLK, SMCLK
or another internal clock called INCLK.

» The clock input can be further divided down by a 5-bit scalar.

» The TAOIE interrupt enable can be used to allow (or prevent) an interrupt (TAOIFG)
from reaching the CPU whenever the counter (TAOR) rolls over.

MSP430 Timer_A 3

A 16-bit counter
4 modes of operation — Stop, Up, Continuous, Up/Down

3 capture/compare registers (CCRXx)
2 interrupt vectors — TACCRO and TAIV

| TASSEL ID IDEX Timer Clock MC
| 2 L Do [GO |
ACLK — toq [l/v2as—] .08 4—] Mode
| Clear RC |
SMCLK —— 110 l f |
| INCLK, —— 114 t p Set TAxCTL
| TACLR TAIFG |
-]

12.2.1 / 16-Bit Timer Counter

he 16-bit timer/counter register, TAxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.

12.2.1.1 Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally from TAxCLK or INCLK. The clock
source is selected with the TASSEL bits. The selected clock source may be passed directly to the timer or
divided by 2, 4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7,
or 8 using the TAIDEX bits. The timer clock divider logic is reset when TACLR is set.

Timer Counting Modes Summary
Stop/Halt Continuous

Timeris halied Timer continuously counts up

OFFFFh

Timer counts betwaen 0 and CCR0 Timer counts betwaen 0 and CCRO and 0
OFFFFh OF FFFh LB DO M e

Using Compare mode (Up and Up/Down)

Continuous Mode Example: TAO
22 // msp430fr243x_tal 01.c

23 J,l"lll,l" e T C I C 0 M 0 0 e C S T ST S C 0 M 20 0 T 0 S0 T ST I T C C 0 0 S e o 4 S T 0 0 C 0 40 0 0 o S I 0 40 0 40 0 0 0 0 e e S0 0 S0 0 40 0 0 0 0 0 o o T4 S 2 40 M M M o e

24 #include <=msp430.h=

25

26 int main(void)

27 B

28 WDTCTL = WDTPW | WDTHOLD; // Stop WDT

29

30 // Configure GPIO

31 PIDIR |= BITO; // P1.0 output

32 P10UT |= BITO; // PL.B high

33

34 // Disable the GPIO power-on default high-impedance mode to activate
35 // previously configured port settings

36 PM5CTLE &= ~LOCKLPMS;

37

38 TAOCCTLO |= CCIE; // TACCRO interrupt enabled
39 TABCCRO = 50000;

40 TAOCTL |= TASSEL 2 | MC_2; // SMCLK, continuous mode

41

42 __bis SR register(LPMO bits | GIE); // Enter LPM3 w/ interrupts
43 __no_operation(); // For debug

4

45

46 S/ Timer A@ interrupt service routine for CCRO
47 #pragma vector = TIMERG@ A® VECTOR

48 __interrupt void Timer A (void)

49

50 @

51 P1OUT == BITO;

52 TABCCRO += 50000; // Add Offset to TACCRO
53 |}

54

| TASSEL ID IDEX Timer Clock Mc
| e L Do [>k |
ACLK — loq [1/v2ars] .08 €—| Mode
| Clear RC |
SMCLK —— 10 l f |
| INCLK ———1 11 t p Set TAXCTL
| TACLR TAIFG |
e]

12.2.3 Timer Mode Control

The timer has four modes of operation: stop, up, continuous, and up/down (see Table 12-1). The
operating mode is selected with the MC bits.

Table 12-1. Timer Modes

MC Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of TAXCCRO

10 Continuous The timer repeatedly counts from zero to OFFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of TAXCCRO and back down to zero.

To move from one mode to another, first stop the timer by writing zero to the MC bits (MC = 0), then set
the MC bits to the desired mode (see Table 12-1 for details).

Table 12-4. TAxCTL Register Description

Field

Type

Reset

Description

2ry

RW

Oh

Reserved

TASSEL

RW

Oh

Timer A clock source select
00b = TAxCLK

01b = ACLK

10b = SMCLK

11b = INCLK

7-6

RW

Oh

Input divider. These bits along with the TAIDEX bits select the divider for the
input clock.

00b =11
b =/2
10b = /4
11b =/8

MC

RW

Oh

Mode control. Setting MC = 0 when Timer_A is not in use conserves power.
00b = Stop mode: Timer is halted

01b = Up mode: Timer counts up to TAXCCRO

10b = Continuous mode: Timer counts up to OFFFFh

11b = Up/Down mode: Timer counts up to TAxCCRO then down to 0000h

Reserved

RW

Oh

Reserved

TACLR

RW

Oh

Timer_A clear. Setting this bit resets TAxR, the timer clock divider logic (the
divider setting remains unchanged), and the count direction. The TACLR bit is
automatically reset and always reads as zero.

TAIE

RW

Oh

Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
Ob = Interrupt disabled
1b = Interrupt enabled

TAIFG

RW

Oh

Timer_A interrupt flag
Ob = No interrupt pending
1b = Interrupt pending

12.2.3.2 Continuous Mode

In the Continuous mode, the timer repeatedly counts up to OFFFFh and restarts from zero as shown in
Figure 12-4. The capture/compare register TAXCCRO works the same way as the other capture/compare
registers.

OFFFFh b — — — — — — —f — — — — — — o — — — ———-

Oh

Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from OFFFFh to zero. Figure 12-5 shows the flag set

cycle.
mmercock [\ /_ [\ /[\

‘

Timer X FFFEh X FFFFh * oh X 1h)Cz: X FFFEh X' FFFFh * oh

4

LY '
1}

Set TAxCTL TAIFG '

Continuous Mode: Timerl_ A3 - using TAl

65 // msp430fr243x_tal 05.c

EE‘. lII.I'III.I"-1':-+:-1':-1-:-1-:-1':-+:-1':-+:-1':-1-:-1-:-1':.1-:.1':.1-:.l':.1-:.l-:.1':.1-:.11:.1-:.ln:.1-:.1-:.1n:.1-:.1::.1-:.1::.1-:.1-:.1::.1-:.1::.1-:.1n:.+:.1-:.1::.1-:,+:.+:.1n:.+:.1-:,1-:.1-:.1::.1-:.1n:.+:.1-:.1-:.1-:.1n:.1-:.1n:.+:.1-:.1-:.1-:4::.1-:.1::.1-:.1n:,1-:.1-:.1::.1-:4:.1-:.1::.1-

67 #include =msp430.h=

68

69 int main(void)

70 B

71 WDTCTL = WDTPW | WDTHOLD; // Stop WDT

712

73 // Configure GPIOD

74 P1DIR |= BITO; [/ Set Pin as output

75 P10OUT |= BITO;

76

17 // Disable the GPIO power-on default high-impedance mode to activate
78 // previously configured port settings

79 PM5CTLE &= ~LOCKLPMS;

a0

81 // Timerl A3 setup

82 TAICCTL® = CCIE; // TACCRO interrupt enabled
83 TALICCRO = 50000;

84 TALCTL = TASSEL 1 | MC 2; // ACLK, continuous mode
85

86 __bis 5R register(LPM3 bits | GIE); // Enter LPM3 w/ interrupt
87 L}

88

89 // Timer Al interrupt service routine

90 #pragma vector = TIMER1 A® VECTOR

91 interrupt void Timerl A® ISR(void)

92 ol

93 P1OUT == BITO;

94 TA1CCRED += 50000; // Add 0Offset to TALCCRO I
95 }

96

12.2.3.3 Use of Continuous Mode

The Continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn
register in the interrupt service routine. Figure 12-6 shows two separate time intervals, t, and t,, being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or
output frequencies can be generated using capture/compare registers.

L

TAXCCR1b TAXCCR1c
TAXCCROb : TAXCCROC :
OFFFFh |— — — — — — — _L_|_————L|—
|
TAXCCR1a |
| |
TAXCCROa___y : | .:4
= TIMERO_AL,ISR
| |
5000 | FOPO 9090
|| I
|t t
odoo | | %P9 “ |
!
|

16 bit arithmetic
Figure 12-6. Continuous Mode Time Intervals
FOOO

+ AOQO : :
19000 <@ More than 16 bit result, so answer just ‘wraps around’

9000 Final answer is 9000

Compare

A key feature for timers is the ability to create a consistent, periodic interrupts.

As we know, TIMER_A can do this, but the timer's frequency (i.

e. time period) is limited to

dividing the input clock by 2'®. So, while the timer may be consistent, but not very flexible.
Thankfully, the Compare feature of TIMER_A (TIMER_B & TIMER_D) solves this problem.

CS

Counter

, Overflow Action
! + Interrupt (TAIFG)

Compare Basi
|15 TAR 0
Counter
Clock Input : i
ok P4 — s Register
+ GPIO Pin (TACLK) !

L]
-
L]

: when Counter = Compare
Compare Actions can occur

+I-
.,

Capture/Compare
Register (CCR,)

gt A Cnmpare Actions
| Interrupt (CCIFGn)
: > + Signal peripheral

+ Modify pin (TAx.n)

| TASSEL 1D IDEX Timer Clock e

| e L Do [, >k |

| TAXCLK 00 | | Divider| | Divider - 16__?::;:” e - | Count EQUO |

ACLK 01 Miziaa— | M../8 4—]| Mode o

| Clear RC |
SMCLK 10 l |

| INCLE 11 t p Set TAXCTL

| TACLR TAIFG |

]

> CCRO

The Up mode is used if the timer period must be different from OFFFFh counts. The timer repeatedly
counts up to the value of compare register TAXCCRO, which defines the period (see Figure 12-2). The
number of timer counts in the period is TAXCCRO + 1. When the timer value equals TAXCCRO, the timer

restarts counting from zero. If Up mode is selected when the timer value is greater than TAxCCRO, the
timer immediately restarts counting from zero.

OFFFFh
TAXCCRO}\—mo — —

Oh

Interrupt Figure 12-2. Up Mode

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Count Up Mode - Interrupt & Zero when TAO == CCRO

// msp430fr243x_tab 02.c
// Modified for Energia - H Watson 20180710

lll.l"lll.l"+:1-:+:+:+:+:+:+:+:+:+:+:+:+;+;+;q.;+;1.;+;1.;+;1.;+;+;1.;+;1.;+;1.;+:+:+:+:+:+:+:+:+:+:+:+:+:
#include <=msp430.h

int main(void)

B{
WDTCTL = WDTPW | WDTHOLD; // Stop WDT
// Configure GPIO
PIDIR |= BITO; // P1.0 output
P10OUT |= BITO; // P1.0 high
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings
PM5CTLO &= ~LOCKLPMS;
TAGCCTLE |= CCIE; // TACCR® interrupt enabled
TAGCCRO = 50000;
TABCTL = TASSEL 2 | MC 1; // SMCLK, UP mode
__bis SR register(LPM@ bits | GIE); // Enter LPMO w/ interrupt
__no_operation(); // For debug
-}

// Timer AB interrupt service routine
#pragma vector = TIMERG® A® VECTOR
__interrupt void Timer A (void)

{
P10UT ~= BITO;

; I

Same: Count Up Mode - Interrupt when TA1 == CCR1

ff mspd30fr243x_tal 86.c

JllrJllrJ-:J-:J-:J-:J-::-::-::-::-:J-:J-:J-:J-::-:J-::-::-:J-:J-:J-:J-:J-:J-::-:J-::-:J-:J-:J-:J-:J-:J-:J-::-:J-::-:J-:J-:J-:J-:J-:J-::-::-:J-::-:J-:J-:J-:J-::-:J-::-::-:J-:J-:J-:J-:J-:J-::-:J-::-:J-:J-:J-:J-:J-:J-::-::-:J-::-:J-:J-:J-:J-::-:

#1nclude =msp430

int maini{void)

i

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

// Configure GPIO

P1DIR |= BITH: // Set Pin as output

P1OUT |= BITO;

// Disable the GPIO power-on default high-impedance mode to activate

// previously configured port settings

PM5CTLE &= ~LOCKLPMS;

f/ Timerl A3 setup

TALCCTLO = CCIE: // TACCRO interrupt enabled

TALCCRE = 50000;

TALCTL = TASSEL 1 | MC_1; /f ACLK, up mode

__bis SR _register(LPM3_bits | GIE); // Enter LPM3 w/ interrupt
I
// Timer Al interrupt service routine
#pragma vector = TIMER1_AO_VECTOR Note the designation of TA1 instead
I_1nterrupt vold Timerl A8 ISR(void) of TAO

P1OUT ~= BITO;
}

| TASSEL 1D IDEX Timer Clock e
| e L Do [, >k |
| TAXCLK ————— 00 | | Divider| | Divider - 16__?::;:” e - | Count EQUO |
ACLK — 101 M2l 1 /M1../8 44— Mode o

| Clear RC |

SMCLK ———— 10 l |
| INCLK, —— 114 t p Set TAXCTL
| TACLR TAIFG |
]

> CCRO

The Up/Down mode is used if the timer period must be different from OFFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCRO
and back down to zero (see Figure 12-7). The period is twice the value in TAXCCRO.

OFFFFh
TAXCCRO |- — — — — — o

Oh

Figure 12-7. Up/Down Mode

Mainly with PWM

Using the second register with the Capture feature allows the contents of
the Counter to be captured (the Counter value is copied into the Capture
register with no latency and very low power)

When a Capture Input signal occurs, the value from the Counter Register
(TAR) is copied into the capture register (i.e. CCR)

15 TAR 0
i Counter ~__ Counter
|) ——> Overflow Action
Elagléljnput N Register « Interrupt (TAIFG)

« GPIO Pin (TACLK)

Capture Input signal triggers
transfer:
Counter — Capture

Capture Actions

Ca::?:tlu;le Input Capture/Compare 5 « Interrupt (CCIFGn)
. n H :) + Signal peripheral
« CCInB Register (CCRH) i « Modify pin (TAx.n)
+ Software

Notes

+ Capture time (i.e. count value) when Capture Input signal occurs
+ When capture is triggered, count value is placed in CCR and an interrupt is generated
+ Capture Overflow (COV): indicates 2" capture to CCR before 1% was read

TAxCLK
ACLK
SMCLK —
INCLK

Summary Example: Timer0_A3 Summary

01
10
1

Remember:

15

0

Divide
by 5-bits
(up to + 64)

>

16-bit Counter
(TAOR)

Enable Interrupt
(TAOIE) (TAOIFG)

!

CCRO

!

!

CCR1

|

!

CCR2

!

* TimerO means it’s the first instance of Timer_A on the device.

A3 means that it's a Timer_A device and has 3 capture/compare registers (CCR’s)

» The clock input, in this example, can be driven by a TACLK signal/pin, ACLK, SMCLK
or another internal clock called INCLK.

* The clock input can be further divided down by a 5-bit scalar.

* The TAOIE interrupt enable can be used to allow (or prevent) an interrupt (TAOIFG)

from reaching the CPU whenever the counter (TAOR) rolls over.

Timer_A3 Summary

ITAXCLK ——] 00 15 [
ACLK 01 Divide 16-bit Counter Enable Interrupt
—> by 5-bits > —> > TAIEG)
SMCLK — 10 | iup to + 64) (TAR) (TAIE) lealesd
INCLK — 11 . —> CCOIE —» CCOIFC
L CAP=0 —> CCRO
CCI2A —j 00 — ﬂ
CCI2B —{ o1 ¢ LAP=1 —>» CC2IE—>CC2IFG

« CM
GND —] 10 + SCS h CCR2

- > TAO.
voo —] 1 | I ,., A0.2

Timer0_A3:

Is the first instance (TimerO or TAO) of Timer_A3 on the device
e A3 means it has 3 Capture/Compare Registers (CCR’S)
CCR registers can be configured for:
e Compare (set when CAP=0) generates interrupt (CCnlFG) and modifies
OUT signal when TAR = CCRn

e Capture (when CAP=1) grabs the TAR value and sets an interrupt
(CcnlFG) when triggered by the selected CCIxX input

Timer_A3 Compare Mode Summary

TAXCLK ———| 00 15 b
ACLK 01 Divide 16-bit Counter Enable Interrupt
—> by 5-bits |=>P» > > A lEC)
SMCLK ——{ 10 (up to = 64) (TAR) (TAIE) (TAIFG)
INCLK 11 . —» CCOIE —>» CCOIFG
L~ CAP=0—> CCRO
— / S » [A0.0
B S A
cc2B — o1 //E&P 1 B —> CC2IE—CC2IFG
GND —] 10 « SCS _’P

+ COV > TAO.2
vee — / 4

CAP=0 (Capture off)
e Compare mode on
e If CCR =TAR (named EQUO):
Interrupt occurs (if enabled)
OUT is set/reset/toggled
e OUT can be:
Connected to pin (TAO.0)
Routed to peripherals
OUT bit can be polled
e Many OUT signal options
(up to 7 options)

Timer_A3 Capture Mode Summary

TAXCLK ——] 00 15
ACLK 01 Divice 16-bit Counter Enable interrupt
—> by 5-bits |=>P» > TAEG)
SMCLK 10 (up to + 64) (TAR) (TAIE) (TAIFG)
e B . —» CCOIE —» CCOIFG
L~ CAP=0 —> CCRO
= S » TAO0.0
CCI2A —{ 00 — 5o ﬂ
ccieB —or | |2 & s — CC2IE—CC2IFG
14 + SCS —’P
?22 | :? » COV ' > TAO.2

/

+ Capture or Com
CAP=1 for capture

¢ Which Edge (CM)
Rising, Falling, or Both

4+ Sync’'d to Clock (5CS)
Is capture sync or async?

¢ Capture Overflow (COV)
Did you miss a capture?

A

re (CAP)

Measure ‘split’ times

I.e. Capture the value of the TAR
when Input signal occurs

There are two interrupt flags (CCIFG and TAIFG) and its corresponding two interrupt vectors (TACCRO and TAIV)
available for Timers in MSP430 as shown in the figure 1.3.

Timer Block INTERRUPT VECTORS
TAR

TAIFG

CCRO

CCRO —’. TACCRO

CCIFG

CCRI
CCIFG

CCR2

CCR2
CCIFG

b

Figure 1.3 shows Timer interrupts and its corresponding interrupt vectors in MSP430

Timer_A Interrupt Vectors * :

e TACCRO interrupt vector for CCIFG of CCRO
e TAIV interrupt vector for TAIFG and CCIFGs of CCR1,CCR2

CCRO

CCIFGO

CCR1

GEIFG‘I

CCR2

(TAR Overflow)

CCIEE
CCIFG2

— CCIED ‘
-5 >

TACCRO

Interrupt Vector

—~ TAI
TAIFG

.-"-F--
-

TAIV

TACCRO

Interrupt Vector

Fdn
26
27
28
29
30
31
32
33
34
35
36
37
38
39
408
41
42
43
44
45
46
47
48
49
=1
al
52
33
24
a3
56
57
28
29
60
61
62
63
64
63
66
67

rf

B4

-}

MSP43UTrZ43X_Tau_U4A.C MOG1T1ed DYy H WaTsSon TOr Energla - ZUlsu/lu
fllllr:-::ﬂ::-::-::-::-::-::-::-::-::-::-::I::-::-::-::-::-::-::-::-::-::-::-::-::I::-::-::-::-::-::-::-::-::-::-::I::-::-::-::-::-::-::-::-::-::-::-::-::I::-::I::-::-::-:h:
#include =mspd38.h=
int main{void)

WDTCTL = WDTPW | WDTHOLD:

J/ Stop WDT

// Configure clock use default frequencies

// Configure GPID
P1DIR |= BITO;
PLOUT |= BITO;

// Disable the GPIO power-on default high-impedance mode to activate

PM5CTLE &= ~LOCKLPMS;

// Configure Timer_ A

TABCTL = TASSEL 1 | MC_2 | TACLR | TAIE; // ACLK, continuous mode, clear TAR, enable interrupt

J/ ACLK = 32768 - P1.0 (RED LED) =

__bis_SR _register(LPM3_bits | GIE);
__no_operation();

32768/(2~16) = 0.5Hz toggle = 2 seconds on, then 2 seconds off

// Enter LPM3, enable interrupts
// For debugger

// Timer® A3 Interrupt Vector (TAIV) handler
#pragma vector = TIMERG_Al VECTOR
__interrupt void TIMER® Al ISR{void)

B4

=

switch(TABIV)

{
case TABIV_ NONE:
break:
case TAOIV TACCRL1:
break:
case TABIV_TACCRZ:
break;
case TABIV TAIFG:
P1OUT ~= BITO;
break:
default:
break;
¥

// Mo interrupt
J/ CCR1 not used
Jf CCR2 not used

J 7 overflow

Timer_Ax Interrupt Vector Register

Figure 12-20. TAxIV Register

15 14 13 12 11 10 g 8
TAIV

r0 rQ rQ 0 r0 r0 rQ r0

7 6 5 4 3 2 1 0
TAI

r0 rQ rQ 0 r-(0) r-(0) r-(0) r0

Table 12-8. TAxIV Register Description

Bit Field Type Reset Description

15-0 TAIV R Oh Timer_A interrupt vector value

00h = No interrupt pending

02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TAXCCR1 CCIFG;
Interrupt Priority: Highest

04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TAXCCR2 CCIFG
06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TAxCCR3 CCIFG
08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TAxCCR4 CCIFG
0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TAxCCRS CCIFG
0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TAXCCRE CCIFG

0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TAxCTL TAIFG; Interrupt
Priority: Lowest

Timer0 AS Interrupts Review

INT Source IFG IV Register Vector Address Loc’'n
Timer A (CCIFGO) TAOCCRO.CCIFG hone TIMERO A0 VECTOR 23
Timer A TAOCCR1.IFG1...TAOCCR4.IFG TAOIV TIMERO_A1 VECTOR 52
TIMERO A5 .CCIFG .CCIE S

TAOCCRO 1 1 > — 23

TAOCCR1 o S -

TAOCCR2 - - - -

TAOCCR? [= S :D— SR GIE i [

TAOCCR4 hd < TAOIV
TAOIFG i =

+ In the interrupts chapter, we learned that most MPS430 interrupts are grouped together
and share an interrupt vector, although a few have their own dedicated vector

4+ Timers A and B have two vectors: one for CCR0 and the other shared
When the CPU responds to TIMERO A0 VECTOR, the CCROIFG is auto cleared

+ In the TIMERO_A1_VECTOR ISR, reading TAOIV register returns the associated highest
prionty pending interrupt and clears it's IFG bit

*

TIMERO_AO_VECTOR is exclusively used for the CCRO capture/compare event. Since CCRO has the capability to
reset the timer in up or up/down mode and therefore define the timer cycle, it has been given an own, higher priority
interrupt. The CCIFG bit in CCTLO is also automatically reset when entering this ISR, as there is only one possible reason
for this interrupt.

On Al _VECTOR, you'll have to check what was causing the interrupt and manually clear the IFG bits (or any
access, read or write, of the TAIV register automatically resets the highest pending interrupt flag). If another interrupt flag
is set, another interrupt is immediately generated after servicing the initial interrupt.

The separate AO_VECTOR allows extremely short reaction times to the CCRO event, which is necessary for
controlling a PWM duty-cycle change or other situations.

4 Steps to Program Timer_A

Timer Setup Code

1. Configure Timer/Counter (TACTL)
¢ Clocking
¢ Which Count Mode

¢ Interrupt on TAR rollover?

2. Setup Capture and/or Compare Registers
¢ Capture (TACCTL):
+ Input
+ Interrupt on Capture?
¢ Compare (TACCTL, TACCR):
+ Compare-to Value

+ Output mode (How output signal
changes at compare (EQU) events)

+ Interrupt on Compare?

3. Clear interrupt Flags & Start Timer

Timer Interrupt Service Routine(s)
4. Write 1-2 ISR’s (CCRO, others)

J\

" Timer_A Ctrl Reg (TACTL)
16-bit Counter (TAR)

CCRO Ctrl Reg (TACCTLO)
CCRO (TACCRO)

CCR6 Ctrl Reg (TACCTLS6)

CCR6 (TACCRS6)

A 4

Offset Acronym Register Name Type Access Reset Section

00h TAxCTL Timer_Ax Control Read/write Word 0000h Section 12.3.1
02h TAxCCTLO Timer_Ax Capture/Compare Control 0 Read/write ~ Word 0000h Section 12.3.3
04h TAxCCTL1 Timer_Ax Capture/Compare Control 1 Read/write Word 0000h Section 12.3.3
06h TAxCCTL2 Timer_Ax Capture/Compare Control 2 Read/write ~ Word 0000h Section 12.3.3
10h TAxR Timer_Ax Counter Read/write Word 0000h Section 12.3.2
12h TAxCCRO Timer_Ax Capture/Compare 0 Read/write ~ Word 0000h Section 12.3.4
14h TAxCCR1 Timer_Ax Capture/Compare 1 Read/write ~ Word 0000h Section 12.3.4
16h TAxCCR2 Timer_Ax Capture/Compare 2 Read/write ~ Word 0000h Section 12.3.4
2Eh TAxIV Timer_Ax Interrupt Vector Read only Word 0000h Section 12.3.5
20h TAXEXO Timer_Ax Expansion 0 Read/write ~ Word 0000h Section 12.3.6

+ TAxCTL register
— Clock source select (TASSEL) TAR

Input divider (ID)
Mode control (MC) (Note: Switching to Stop mode can be performed at any time)
Timer_A clear (TACLR)

TAxCCTLn registers

Capture mode (CM) (Note: Switching to no capture mode can be performed any time)

Capture/compare input select (CCIS) (Note: Switching between GND an VCC can be performed at
any time)

Synchronize capture source (SCS) CCR
Capture mode (CAP)
Qutput mode (OUTMOD)

TAXEXO register

Input divider expansion (TAIDEX)

m
= |

Hantek RN/ [#)

2.05400KHz ALY 5

_— FAST WAVEFORM CAPTURE
WWVGA (B00x480) TFT LCD

View Timer0_A3 Example: msp430fr243x_ta0 08A.c
M6V2 video

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

