M2V1
Blink and Button

Learning through Code Examples

Energia LaunchPad with MSP430FR2433

Revision 1.0

Hardware

Fin number
FRAM 16 KB Other Pins
SRAM 4 KB

G

ADC 10 bits

Use ping numbers only!

Default I°C = (0)
Software 1°C (1) master only

analog Read()
digitalRead(and digitalWrite()
digitalRead(), digitalWrite()
and analogWrite()

GROUND
LED2

¥y
MSP430 RESET
FR2433 SDA (1) BRAEED
SCL (1) WLl
PUSH1
TEMP

EE88) Rei vilo, 2012-2017
embeddedcomputing, weebly.com
varsion 0.9 2007-11A7 BETA

XIN xOuUT P1.x/P2.x P3.x
! L+ F
pvee > LEXT ADC FRAM RAM MPY32 IO Ports 110 Ports
P1, P2 P3
Dvss - Power % =7 Up to B-ch 2x=8 108 1%3 10s
Managemant Clock Single-end Intermipt
RST/NMI — ™ Module — System TMT s Ak 32-bit and Wakeup|
200 ksps Hardware PA PB
Multiplier 1%16 10s 123 10s
A A A A A A A A A A A A AL
MAB
16-MHz CPU,
‘ including
16 Registers MDB
| 111 |_ T 1 I
I I I I CRC186 2=TA 25TA 2=alSCI_A iUS-cLBD BAIMEM |
TCK —> o 16-bu szope ||
S yelic Timer_A3 Timar_AZ
™S JTAG — — —| |Redundancy] | 3cc 2¢C (UART, Backup
TDITCLK —» watchgog | | Creck | | Registers | | Registers | [1A SPH| | (spi ke Memory 1}
TDO . __ _LPM35Domain __
SBWTCK > SBW
SEWTDIO -—F—»

Copyright © 2017, Texas Instruments Incorporated

MDE - Memory Data Bus

16

AN
19

16

15

Memory Address Bus = MAB

=]

£

s

RO/PC Program Counter a

|

R1/SP Pointer Stack a0

|

R2/5R Status Register

RICG2 Constant Generator

R4

General Purpose

RS

L1

S S

General Purpose

REG

General Purpose

R¥

General Purpose

R&

General Purpose

RS

General Purpose

R10

General Purpose

R11

General Purpose

R1Z

General Purpose

R13

General Purpose

R14

S

General Purpose

R15

General Purpose

BN

A0 0 0 0 A 0 N

20

T

16/20-bit AL

Figure 4-1. MSP430X CPU Block Diagram

4.2

Interrupts

The MSP430X has the following interrupt structure:

« Vectored interrupts with no polling necessary

+ Interrupt vectors are located downward from address OFFFEh.

The interrupt vectors contain 16-bit addresses that point into the lower 84KB memory. This means all
interrupt handlers must start in the lower 64KB memory.

During an interrupt, the program counter (PC) and the status register (SR) are pushed onto the stack as
shown in Figure 4-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by
appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction
is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range

possible.

SP,, —»

Item n=1

PC.15:0

SF —»{ PC.19:18

SR.11:0

Figure 4-2. PC Storage on the Stack for Interrupts

4.3 CPU Registers

The CPU incorporates 16 registers (RO through R15). Registers R0, R1, R2, and R3 have dedicated
functions. Registers B4 through H15 are working registers for general use.

4.3.1 Program Counter (PC)

The 20-bit Program Counter (PC, also called R0) points to the next instruction to be executed. Each
instruction uses an even number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly.
Instruction accesses are performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the PC.

19 16 15 1 0

Program Counter Bits 19 to 1 [

Figure 4-3. Program Counter

4.3.2 Stack Pointer (SP)

The 20-bit Stack Pointer (SP, also called R1) is used by the CPU to store the return addresses of
subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be
used by software with all instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

4.3.5 General-Purpose Registers (R4 to R15)

The 12 GPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register
clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction.
The SXT instruction extends the sign through the complete 20-bit register.

Figure 4-10 through Figure 4-14 show the handling of byte, word, and address-word data. Note the reset
of the leading most significant bits (MSBs) if a register is the destination of a byte or word instruction.

Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.

Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 4-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1MB memory range.

Table 4-3. Source and Destination Addressing

Az, Ad Addressing Mode Syntax Description

00,0 Register Rn Register contents are operand.

01,1 Indexed X{Rn) (An + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next waord.

01,1 Symbolic ADDR (PC + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word. Indexed mode X(PC) is used.

01,1 Absolute &ADDR The word following the instruction contains the absolute address. X is stored in the next

word, or stored in combination of the preceding extension word and the next word.
Indexed mode X(SR) is used.

10, = Indirect Register {&ERn Rn is used as a pointer to the oparand.

11, — Indirect @FAn+ Anis used as a pointer to the operand. Bn is incremented afterwards by 1 for .B
Autoincrament instructions, by 2 for W instructions, and by 4 for A instructions.

11, = Immediate #M M is stored in the next word, or stored in combination of the preceding extension word

and the next word. Indirect autcincrement mode @PC+ is used.

4.6

Instruction Set Description
Table 4-20 shows all available instructions:

Table 4-20. Instruction Map of MSP430X

oon 040 080 0CO 100 140 180 1C0O 200 240 280 2C0 300 340 3BO 3C0
Oxxx MOWA, CMPA, ADDA, SUBA, RRCM, RRAM. RLAM, RRUM
1oxx | ARG | TRC- | STEP RRa | IEA | sxT gvadl R [T ReT | “OH
1dxx PUSHM.A, POPM.A, PUSHM. W, POPM.W
Eii Extension word for Format | and Format |1 instructions
20x JME, INZ
24y JEQ, JZ
28xx JMHEC
20xx JC
300 JM
34 JGE
38 JL
3Cux JMP
4xxx MOV, MOV.B
Sxx ADD, ADD.B
BRxK ADDC, ADDC.B
THxx SUBC, SUBC.B
Buxx SUB, SUB.B
Sxxx CMP, CMP.B
Aox DADD, DADD.B
Bxxx BIT, BIT.B
Cxxx BIC, BICB
Drszex BIS, BIS.B
Exxx XO0R, XOR.B
Faxx AND, AND.B

ED TO
YTHING.,.
D TO KNOW

, | 1’
X Ul Ibert Einstein - .
- x Y/ ‘

MOSQUOTES.COM

sketch-ArduinoBlink | Energia 1.6.10E18

File Edit Sketch Tools Help

sketch-ArduinoBlink

10

11

12

13 /4 most launchpads have a red LED
14 #define LED RED _LED

15

16 //see pins_energla.h for more LED definitions

17 //#define LED GREEM LED ‘
18

19 /7 the setup routine runs once when you press reset:
20 wold setun() {

sketch-ArduinoBlink.ino &

[I e I < R R o I Y < R L S

o
=

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3z

|_:_|II,I"3|':

Blink - Arduino Default Uerﬁiud

The basic Energia example.

Turns on an LED on for one second, then off for one second, repeatedly.
Change the LED define to blink other LEDs.

Hardware Required:
* LaunchPad with an LED

This example code 15 1n the public domain.

_ﬂn:‘li'

// most launchpads have a red LED
#define LED RED_LED

//see pins_energia.h for more LED definitions
//#define LED GREEN_LED

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode (LED, OUTPUT);
Y

// the loop routine runs over and over again forever:
Evoid loop() {

digitalWrite(LED, HIGH); // turn the LED on (HIGH 1s the voltage level)
delay(1o00); // wait for a second
digitalWrite(LED, LOW); // turn the LED off by making the voltage LOW
delay(1000); J// wait for a second

b

sketch_CodeBlink | Energia 1.6.10E18

File Edit Sketch Tools Help

sketch _CodeBlink

oL P

11

VoL

int
{
Fisetu

FILuup

atlle unsigned 1InT 1 = W;

/4 Initlalize variables. This will keep count of how many
/4 cycles between LED toggles

main{vold)

p

/4 This line of code turns off the watchdog timer,

/4 which can reset the device after a certain period of time.
WOTCTL = WOTPW + WOTHOLD;

S/ P1DIR 1s a register that configures the direction (DIR)
/¢ of a port pin as an output or an input.

/¢ After Power up all pins are input by default

/f Set LSB P1.0 (RED LED) as output

PIDIR |= Ox01;

sketch_CodeBlink.ino @

1 #include <=msp430.h=

2 // Delay Loop Counter

3 volatile unsigned int 1 = 0;

4 #define outLED 0x01; // P1.8 (RED LED)

]

6 int main(void)

7 O {

] J/5etup

g // This line of code turns off the watchdog timer,
18 // which can reset the device after a certain period of time.
11 WDOTCTL = WDTPW + WDTHOLD;

12

13 // P1DIR 1s a register that configures the direction (DIR)
14 // of a port pin as an output or am 1input.

15 // After Power up all pins are input by default
16 // Set LSB P1.0 (RED LED) as output ;

17 P1DIR |= outLED;

18

19

20

21 J/fLoop

22 while(1)

23 © {

24 // turn the bit (RED_LED) on

25 P10UT |= outLED;

26

27 // software delay loop

28 for(i=0; 1<64000; 1++);

29

30 // turn the bit (RED_LED) off

31 P1OUT &= -~outLED;

32

33 // software delay loop

34 for({1=0: 1<64008; 1++);

35 }

36

37 L b

38

tch_ArduinoButton | Energia 1.6.10E18

File Edit Sketch Tools Help

sketch_ArduinoButton

30/ set pin numbers: -~
31 const int buttonPin = PUSHZ; /4 the number of the pushbutton pin

32 const int ledPin = GREEN_LED; /¢ the number of the LED pin

34 // varlables will change:

35 int buttonState = 0; A/ varilable for reading the pushbutton status

37 void setup() {

38 // initialize the LED pin as an output:

39 pinMode (ledPin, OUTPUT);

40 /7 initialize the pushbutton pin as an input:
41 pinMode (buttonPin, INPUT_PULLUF);

42 1

43

44 void Toop(){

45 /7 read the state of the pushbutton value:
45 buttonState = digitalRead(buttonPin);

47
48/ check if the pushbutton is pressed.
49 47 1f 1t is, the buttonState is HIGH: e

- 4 L] T Ciw ek F

sketch_ArduinoButton.ino @

R T A Sy i
O R I Ty Ny i T . - IO S, B S U N

24
By
26
27
28
]
30
31
32
33
34
a5
36
37
338
39

BH/*
Button

Turns on and off a light emitting diode(LED) connected to digital
pin 13, when pressing a pushbutton attached to pin 2.

L Jﬁ:llll"

// constants won't change. They're used here to

// set pin numbers:

const int buttonPin = PUSHZ; // the number of the pushbutton pain
const int ledPin = GREEN_LED; // the number of the LED pin

J/ variables will change:
int buttonstate = 0; // wvariable for reading the pushbutton status

void setup() {
// initialize the LED pin as an output:
pinMode(ledPin, OQUTPUT);
// 1nitialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT PULLUP);

1

Elvoid loop(){
// read the state of the pushbutton value:
buttonState = digitalRead(buttonPin];

// check 1f the pushbutton 1s pressed.
/f 1f 1t 1s, the buttonState 1s HIGH:
B if (buttonState == HIGH) {
S/ turnm LED on:
digitalwrite(ledPin, HIGH);
-1
B else {
// turn LED off:
digitalWrite(ledPin, LOW);
-}

sketch CodeButton | Energia 1.6.10E18

File Edit Sketch Tools Help

sketch_CodeButton

25 A set up pull up resistor for pushbutton pin

26 P20UT |= buttonPin; /7 pull-up

27 P2REM |= buttonPin; // enable resistor

28 //loop

29 while (1)

30 {

el /¢ read the state of the pushbutton value:

32 buttonState = P2IN & buttonPin;

34 A/ the buttonState is TRUE if pushbutton is pressed
35 if (buttonState) {

36 A4 turn GREEN LED bit on:
37 P1OUT |=ledPin:

I8 }

39 else {

40 /4 turn GREEN LED bit pff:

41 P1OUT &= ~ledPin;

42 I

43 T

44} W

L i - v

sketch_CodeButton.ino @

i
(o= T = I+ < T = B ¥ [S Ty %

i

12
13
14
15
16
17
18
19
20
21
22
]
24
25
26
27
28
29
30
a1
32
EiER
34
35
36
a7
38
39
40

/*

Button Code for MSP438FR2433

Copyrigh
Creative
*/

#include

// set pin
const byte
const byte

volatile unsigned char buttonState

int main(v
=L
J/setup
F1D
P2
P2
//loop
= {
fit
= if
- 1
= el
- }
- }
}

t Herman Watson
Commons License

<mspd30.nh=

numbers for MSP430FR2433:

buttonPin = 0x80
ledPin = B8x02;

oid)

IR |= ledPin;

OUT |= buttonPin;
REN |= buttonPin;

while (1)

he buttonState 1s
(buttonstate) {

// turn GREEN LED

P10UT |=ledPin;

se {
S/ turm GREEMN LED
P1OUT &= ~ledPin;

HE A

7 (Button 2)
J/ P1.1 (Green LED)
= 8; // variable for reading the pushbutton status

WDTCTL = WDTPW + WDTHOLD; // stop the watchdog
// initialize the LED pin as an output:

J// pushbutton pin already input by default after Power Up
J/ set up pull up resistor for pushbutton pin

/4 pull-up
// enable resistor

// read the state of the pushbutton value:
buttonstate = P2IN & buttonPin;

TRUE 1if pushbutton 1is pressed

bit on:

bit off:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

