

SPI – Universal Serial Communication Interface SPI Mode

https://hackaday.com/2016/07/01/what-could-go-wrong-spi/

Serial Peripheral Interface (SPI) is not really a protocol, but more of a general idea. It’s
the bare-minimum way to transfer a lot of data between two chips as quickly as
possible,

WHAT IS SPI?
The core idea of SPI is that each device has a
shift-register that it can use to send or
receive a byte of data.

These two shift registers are connected
together in a ring, the output of one going to the
input of the other and vice-versa.

One device, the master,controls the common
clock signal that makes sure that each register
shifts one bit in just exactly as the other is
shifting one bit out (and vice-versa). It’s hard to
get simpler than that.

It’s this simplicity that makes SPI fast. While asynchronous serial
communications can run in the hundred-of-thousands of bits per
second, SPI is usually good for ten megabits per second or more.

You often see asynchronous serial between man and machine,
because people are fairly slow. But between machine and
machine, it’s going to be SPI or I2C.

Turning this pair of shift
registers into a full-
blown data bus involves
a couple more wires

To begin communication, the master configures the clock, using a frequency supported by
the slave device, typically up to a few MHz. The master then selects the slave device with a
logic level 0 on the chip select line. If a waiting period is required, such as for an analog-to-
digital conversion, the master must wait for at least that period of time before issuing clock
cycles.

During each SPI clock cycle, a full duplex data transmission occurs. The master sends a bit
on the MOSI line and the slave reads it, while the slave sends a bit on the MISO line and the
master reads it. This sequence is maintained even when only one-directional data transfer is
intended.

The master controls the clock (CLK or SCK) line, that’s shared among all of the devices on
the bus. Instead of a simple ring as drawn above, the master’s shift register is effectively
in a ring with each of the slave devices, and the lines making up this ring are labelled
MISO (“master-in, slave-out”) and MOSI (“master-out, slave-in”) depending on the
direction of data flow.

Since all of the rings are shared, each slave
has an additional dedicated line that tells it
when to attach and detach from the bus.

Each slave has a slave-select (SS or
sometimes called chip-select CS) line, and
when it’s high, the slave disconnects its
MISO line, and ignores what comes in over
MOSI.

When the individual SS line is pulled low, the
slave engages. Note that the master is
responsible for keeping one and only one SS
lineactive low at any given time.

Typical SPI Communication:
1. The master pulls the slave’s personal slave-select line low, at which
point the slave wakes up, starts listening, and connects to the MISO
line. Depending on the phase both chips may also set up their first bit
of output

2. The master sends the first clock pulse and the first bit of data moves from
master to slave (along MOSI) and from slave to master (along MISO).

3. The master keeps cycling the clock, bits are traded, and after eight bits,
both sides read in the received data and queue up the next byte for
transmission.

Address Command Data

3. The master keeps cycling the clock, bits are traded, and after eight
bits, both sides read in the received data and queue up the next byte for
transmission.
4. After a number of bytes are traded this way, the master again drives
the SS line high and the slave disengages.

SPEED
Because SPI is clocked, and the slave-select line delimits a conversation, there’s not
much that can go wrong in syncronize the two devices.

Not much, except when the master talks too fast for the slave to follow. The good
news? This is easy to debug.

For debugging purposes, there’s nothing to lose by going slow. Nearly every chip that
can handle SPI data at 10 MHz can handle it at 100 kHz as well.

On the other hand, due to all sorts of real-world issues with voltages propagating from
one side of a wire to another and the chip’s ability to push current into the wire to
overcome its parasitic capacitance, the maximum speed at which your system can run
is variable.

For really high SPI speeds (say, 10 MHz and above?) your system design may be the
limiting factor.

Find Arduino code:

Convert Loop to Timer functions

Replace calls to library which is not interrupt able or locally coded

Use RT_ADC3 as work horse – 10 interrupts per second – replace Loop:

Analyze library functions used

Original Arduino Code – library functions used

SPI functions used:
begin()
setDataMode()

GPIO pin used for Chip Select
pinMode(CS, OUTPUT)
digitalWrite(CS, HIGH/LOW)

SetUp

Replace loop: with TimerA0_A3 CCR0 interrupts (10/second)

Serial.print is replaced with sprintf() and UARTPrint() functions

digitalWrite changes CS output pin HIGH/LOW

SPI.transfer(value) both input/output the SPI transfers

SAME THING:
digitalWrite changes CS output pin HIGH/LOW

SPI.transfer(value) both input/output the SPI transfers

SPI is always two directions.

When you send, you also receive, and to receive, you have to send.

In your code, when you send the command, you’ll receive a dummy answer while you’re
sending the command. While the bits of the commands are sent (and the slave hasn’t
received the command), the SPI hardware is already ‘receiving’ bits simultaneously.

So once the command byte has been sent, a byte has been received too,
which you’ll need to discard.

THEN you send one or two dummy bytes and while they’re sent, you’re receiving the 8 or
16 bit answer.

My code does not use TXISR to interrupt, because this two-way transfer is for 6 bytes
only. Code in the next Module can show way to start one byte and enter low power mode
 to wait for that byte to be sent.

So the MSP430 routines here just poll until the TX is complete and then sends/receives
the next ‘transfer’ byte

sketch_SPI_ADXL345.ino

SetUp

SPI SetUp

Timer setup - 10/second

Timer ISR – This is where Loop Tasks go

UART Print the string

UART SetUp and UARTPutString

SPI_Transfer – Polled method

Chip Select and writeRegister for ADXL345 SPI

Chip Select and readRegister for ADXL345 SPI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

