SPI — Universal Serial Communication Interface SPI Mode

XIM XouT P1.x/P2x P3.x

‘ S

DvCC g LEXT ADC FRAM RAM MPY32 IEfg; 10 :;m
DV3S > Power “ 1 | upto &cn 28 10s 1%2 108
Mansgement Clock Ini=nnuapt
RST/NMI ¥ ome smem | | FEET] |k e 320t | [andWakeup
200 kaps Hardwarne A e
Multiplier 1=1610s 13108
MAE
16-MHz CPU,
amCiud ineg
18 Registers
N | — — - _I
EEM p | |
2uelISCI_A RTC
| | | | eve CRC1& 2xTA, 2uTA — elSCI_Bo | Couner BAKMEM
TCK L 16-hit |
TMS > Cydic Timer A3 Timer A2 || Eon 32-byte
JTAG — — | |redundancy 30C 20T {UART, Hecu-h‘ll;m Elmmp |
TOITCLK » Watchdog Check Registers Registers DA SEL] seure | =L
TDO + L — __ LPM3i5 Domain_ |
SEWTCK >
SEWTDIO o SEW

Copyright © 2017, Texas Instruments Incorporated

Serial Peripheral Interface (SPI) is not really a protocol, but more of a general idea. It's

the bare-minimum way to transfer a lot of data between two chips as quickly as

possible,

WHAT IS SPI?
The core idea of SPI is that each device has a

Master Shift Register

shift-register that it can use to send or 0

SN EN YR

receive a byte of data.

MISO

These two shift registers are connected
together in a ring, the output of one going to the

Shift Direction ——»

4+——— S5hift Direction

iInput of the other and vice-versa. 0

01]0]J]010]0710

QOut
One device, the master,controls the common

clock signal that makes sure that each register
shifts one bit in just exactly as the other is
shifting one bit out (and vice-versa). It's hard to
get simpler than that.

https://hackaday.com/2016/07/01/what-could-go-wrong-spi/

Slave Shift Register

Cut

ISOW

In

It's this simplicity that makes SPI fast. While asynchronous serial
communications can run in the hundred-of-thousands of bits per
second, SPI is usually good for ten megabits per second or more.

You often see asynchronous serial between man and machine,

because people are fairly slow. But between machine and

machine, it's going to be SPI or I2C.

Turning this pair of shift
registers into a full-
blown data bus involves
a couple more wires

Master

Memory

SCLK.

MOSI

Slave

Memory

MISO

2|3]4]s]s]7

SPIl is used to talk to a variety of peripherals, such as

» Sensors: temperature, pressure, ADC, touchscreens, video game controllers

« Control devices: audio codecs, digital potentiometers, DAC

« Camera lenses: Canon EF lens mount

» Communications: Ethernet, USB, USART, CAN, IEEE 802.15.4, |IEEE 802.11, handheld video games
« Memory: flash and EEPROM

« Real-time clocks

» LCD, sometimes even for managing image data

« Any MMC or SD card (including SDIO variant®])

For high-performance systems, FPGAs sometimes use SPI to interface as a slave to a host, as a master to sensors, or for flash
memory used to bootstrap if they are SRAM-based.

Master Slave

7k

Mermory (SCLK
\/

ol1lz2lzl4ls]6l> MOS|

4 |

A typical hardware setup using two shift registers to form an
inter-chip circular buffer

To begin communication, the master configures the clock, using a frequency supported by
the slave device, typically up to a few MHz. The master then selects the slave device with a
logic level 0 on the chip select line. If a waiting period is required, such as for an analog-to-

digital conversion, the master must wait for at least that period of time before issuing clock
cycles.

A=

During each SPI clock cycle, a full duplex data transmission occurs. The master sends a bit
on the MOSI line and the slave reads it, while the slave sends a bit on the MISO line and the

master reads it. This sequence is maintained even when only one-directional data transfer is
iIntended.

The master controls the clock (CLK or SCK) line, that’s shared among all of the devices on
the bus. Instead of a simple ring as drawn above, the master’s shift register is effectively
in a ring with each of the slave devices, and the lines making up this ring are labelled
MISO (“master-in, slave-out”) and MOSI (“master-out, slave-in”) depending on the

direction of data flow.

Since all of the rings are shared, each slave
has an additional dedicated line that tells it
when to attach and detach from the bus.

Each slave has a slave-select (SS or
sometimes called chip-select CS) line, and
when it’s high, the slave disconnects its
MISO line, and ignores what comes in over
MOSI.

When the individual SS line is pulled low, the
slave engages. Note that the master is
responsible for keeping one and only one SS
lineactive low at any given time.

SCK
MISO

%

MOsI
1 p s
L

L e
% I
l T \L i l T
b 4 R e

Master EEPROM DAC ADC
Slave Slave Slawve
\. ‘
L%
Slave Select

Typical SPI Communication:

1. The master pulls the slave’s personal slave-select line low, at which
point the slave wakes up, starts listening, and connects to the MISO

line. Depending on the phase both chips may also set up their first bit
of output

2. The master sends the first clock pulse and the first bit of data moves from
master to slave (along MOSI) and from slave to master (along MISO).

3. The master keeps cycling the clock, bits are traded, and after eight bits,
both sides read in the received data and queue up the next byte for
transmission.

Address Command Data

3. The master keeps cycling the clock, bits are traded, and after eight
bits, both sides read in the received data and queue up the next byte for

transmission.
4. After a number of bytes are traded this way, the master again drives

the SS line high and the slave disengages.

SPEED
Because SPI is clocked, and the slave-select line delimits a conversation, there’s not
much that can go wrong in syncronize the two devices.

Not much, except when the master talks too fast for the slave to follow. The good
news? This is easy to debug.

For debugging purposes, there’s nothing to lose by going slow. Nearly every chip that
can handle SPI data at 10 MHz can handle it at 100 kHz as well.

On the other hand, due to all sorts of real-world issues with voltages propagating from
one side of a wire to another and the chip’s ability to push current into the wire to
overcome its parasitic capacitance, the maximum speed at which your system can run
is variable.

For really high SPI speeds (say, 10 MHz and above?) your system desigh may be the
limiting factor.

Find Arduino code:

Convert Loop to Timer functions

Replace calls to library which is not interrupt able or locally coded

Use RT_ADC3 as work horse — 10 interrupts per second — replace Loop:

Analyze library functions used

W00 =] O LA W R

Original Arduino Code - library functions used

//add the SPI library so we can communicate with the ADXL345 sensor
/f Step 1

// 0riginal Code for Arduino - will compile in Arduino or Energia IDE
// works and tested on Arduinoc UNO R3 HwW

#include =spI.h- 4

//https://www.sparkfun.com/tutorials /240
//http://forum.arduino.cc/index.php/topic,159313.0.html

//Assign the Chip Select signal to pin 8.
int C5=8; <g—
//This 15 a list of some of the registers available on the ADXL345.

//To learn more about these and the rest of the registers on the ADXL345, read the datasheet!

char POWER_CTL = 0x2D; //Power Control Register
char DATA FORMAT = 0Ox31;

char DATAXO Bx32; //X-Ax1is Data
char DATAX1 Bx33; //X-Ax1s Data
char DATAY® = ©x34; //Y-Ax1s Data
char DATAY1 Bx35; //Y-Ax1s Data
char DATAZO Ox36; //Z-Ax1s Data
char DATAZ1 Bx37; //Z-Ax1s Data

= O D @

//This buffer will hold values read from the ADXL345 registers.
unsigned char values[108];

//These variables will be used to hold the x,y and z axis accelerometer values.

int x,y,z;

A

31
32
33
34
35
36
37
38
39
40
41
42
43
44
43
46
47
48

A

SetUp

Evoid setup(){

//Initiate an SPI communication instance.

SPI.begin();

//Configure the SPI connection for the ADXL345.
SPI.setDataMode(SPI_MODE3);

//Create a serial connection to display the data on the terminal.
Serial.begin(9680);

//Set up the Chip Select pin to be an output from the Arduino.
pinMode(C5, OUTPUT);

//Before communication starts, the Chip Select pin needs to be set hagh.
digitalWrite(CS, HIGH);

//Put the ADXL345 into +/- 4G range by writing the value 0x81 to the DATA_FORMAT register.
writeRegister (DATA FORMAT, 0x081);

//Put the ADXL345 into Measurement Mode by writing 0x08 to the POWER CTL register.
writeRegister (POWER_CTL, 0x08); //Measurement mode

SPI functions used: GPIO pin used for Chip Select
begin() pinMode(CS, OUTPUT)
setDataMode() digitalWrite(CS, HIGH/LOW)

49
50
51
52
53
54
35
56
=¥
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12

Replace loop: with TimerAO_A3 CCRO interrupts (10/second)

Evoid Lloop(){

//Reading 6 bytes of data starting at register DATAXE will retrieve the

/i %,y and z acceleration values from the ADXL345.

//The results of the read operation will get stored to the values[] buffer.
readRegister(DATAX®, 6, values);

//The ADXL345 gives 10-bit acceleration values, but they are stored

//| as bytes (8-bits). To get the full value, two bytes must be combined for each axis.
//The ¥ value 1s stored in values[0] and values[1].

¥ = ((int)values[1]=<8)|(1int)values[o]:

//The ¥ value 15 stored in values[2] and values[3].

y = ({int)values[3]==2)|(int)values[2];

//The Z value 1s stored in values[4] and values[5].

z = {((int)values[5]<<8)|(int)values[4]:

//Print the results to the terminal.
Serial.print(x, DEC);

Serial.print(', ');
Serial.print(y, DEC);
Serial.print(',');
Serial.println(z, DEC);
delay(10);

Serial.print is replaced with sprintf() and UARTPrint() functions

73
74 //This function will write a value to a register on the ADXL345.
75 JS/Parameters:

76 // char registerAddress - The register to write a value to

77 /f char value - The value to be written to the specified register.
78 HBvoid writeRegister(char registerAddress, char value){

79 //5et Chip Select pin low to signal the beginning of an SPI packet.
80 digitalWrite(C5, LOW);

281 //Transfer the register address over SPI.

82 SPI.transfer(registerAddress);

23 //Transfer the desired register value over SPI.

84 SPI.transfer(value];

85 //5et the Chip Select pin high to signal the end of an SPI packet.
86 digitalWrite(C5, HIGH);

87 L}

o

digitalwrite changes CS output pin HIGH/LOW

SPl.transfer(value) both input/output the SPI transfers

1
89
9e
91
92
93
94
95
96
97
98
99
1o
181
182
103
104
1685
1086
107
108
189
110
111
112

-

=

//This function will read a certain number of registers starting from
// a specified address and store their values in a buffer.
JS/Parameters:
// char registerAddress - The register addresse to start the read sequence from.
/7 int numBytes - The number of registers that should be read.
// char * values - A pointer to a buffer where the results of the operation should be stored.
void readRegister(char registeraAddress, int numBytes, unsigned char * values){
//S1ince a read operation, the most significant bit of the register address should be set.
char address = 0x280 | registerAddress;
f/IT we're doing a multi-byte read, bit 6 needs to be set as well.
if(numBytes = 1)address = address | ox40;

//5et the Chip select pin low to start an SPI packet.
digitalwrite(C5, LOW);
//Transfer the starting register address that needs to be read.
SPI.transfer(address);
//Continue to read registers until the number specified,
//storing the results to the input buffer.
for(int 1=0; 1<numBytes; 1++){

values[1] = SPI.transfer(oxga);
5
//5et the Chips Select pin high to end the SPI packet.
digitalwrite(CS, HIGH);

} SAME THING:
digitalWrite changes CS output pin HIGH/LOW

SPl.transfer(value) both input/output the SPI transfers

SPI is always two directions.
When you send, you also receive, and to receive, you have to send.

In your code, when you send the command, you'll receive a dummy answer while you're
sending the command. While the bits of the commands are sent (and the slave hasn't
received the command), the SPI hardware is already ‘receiving’ bits simultaneously.

So once the command byte has been sent, a byte has been received too,
which you’'ll need to discard.

THEN you send one or two dummy bytes and while they’re sent, you're receiving the 8 or
16 bit answer.

My code does not use TXISR to interrupt, because this two-way transfer is for 6 bytes
only. Code in the next Module can show way to start one byte and enter low power mode
to wait for that byte to be sent.

So the MSP430 routines here just poll until the TX is complete and then sends/receives
the next ‘transfer’ byte

i
LY
-

3
. i
-

OcnoT
OQucc ' »
Ocs—2"%

-

-y
-
-
-
-
-

W00 = O LA Ju LD PRI

sketch _SPI_ADXL345.ino

* Thls 1s mnrph nf RT_AD3 to SPI ADXL345 1nput and prlnt

replaces Arduino Loop: with 10 clock interrupts per second
to process 'loop’ tasks.

20181002 H. Watson

Arduino Pin ADXL 345 MSP430FRZ2433
pin 13 SCK -= SCL P2.4
pin 12 MISO -= SDO P2.5
pin 11 MOSI -= SDA P2.6
pin 8 CS -= 05 L. P2.1

* s/https://www.sparkfun.com/tutorials /240

//http://forum.arduino.cc/index.php/topic,159313.8.html
robo_maniac

create 10 Hz timer interrupt

Get values from ADXL345 for x,y,z axes

add TxISR to print out string with axis wvalues

add sprintf value to generate ouput string from axis wvalues

R STV

H. Watson 28181029

.

)

29
30
31
32
33
34
35
36
37
38
39

41

!
!
!

!
!
!
!
!
!
!
!
!

ACLEK

REFOCLK

= 32kHz, MCLK = SMCLK = default DCODIV = 1MHz.

MSP430FR2433

P2
P2

P1.

.4|--=5CL / SCK
.5|--=5D0 / MISO
P2.
P2.

6|--=SDA / MOSI
1| --=C5

I
@|--=RED LED

el
47
43
49
50
al
52
53
54
55
56
=i
58
59
G0
61
62
63
G
65
66
67
63
69
70
71
72
73
74
I5
76
77

e S S S S T S S P S R S S S R S S R S S S S S S S I

#include =msp430

int putchar(int TxByte); // output char

void UARTPutStringlconst char* strptr); // begin output of string

void UARTSetup (wvoid);

unsigned char SPI_Transfer (unsigned char tempB];

void readRegister(char registerAddress, int numBytes, unsigned char * values);
vold writeRegister(char registerAddress, char value);

const char® TxPtr ; _
char outstr[se]; // buffer to hold output string
unsigned char Count;

/* SPI SETUP Control walues #/

//This 1s a list of some of the registers available on the ADXL345.

//To learn more about these and the rest of the registers on the ADXL345, read the datasheet!
char POWER_CTL = 0x2D; //Power Control Register

char DATA FOEMAT = 0x31;

char DATAX® = 0x32:; //X-Ax1is Data
char DATAX1 = 0x33; //X-Ax1s Data
char DATAY® = 0x34: //Y-Ax1s Data
char DATAY1 = 0x35; //Y-Ax1s Data
char DATAZD = 0x36; //Z-Ax1s Data
char DATAZ1 = 0x37; //Z-Ax1s Data
//This buffer will hold values read from the ADXL345 registers.

unsigned char values[10];

//These variables will be used to hold the x,y and z axis accelerometer values.
int x,y,z;

H oo @

SetUp

o

21 int main(void)

g2 B

83 WDTCTL = WDTPW | WDTHOLD: // Stop watchdog timer
24

85 // Disable the GPID power-on default high-impedance mode to activate
86 // previously configured port settings

a7 PMSCTLO &= ~LOCKLPMS;

238

29 // Configure GPID Setup

90 // RED LED

91 P1DIR |= BITO; // Set P1.0 as output
92 P1OUT |= BITE; // P1.0 high

93

94 //Configure the SPI connection for the ADXL345.
95 EISPI.SEtDataMGdeﬁﬁpI_MDDEEj;
96 // set the port pins

97 H/* ADXL 245 MSP430FR433

98 ->» S5CL P2.4

99 -= 500 ..., P2.5

100 -=5DA Lol P2.6

181 -= 05 Lo pP2.1

102 - *f

163 P2DIR |= BIT4 | BITS | BIT6 | BITL;

104 P2SEL® |= BIT4 | BITS | BITH:

1nE

SPI SetUp

120 /f SPI setup eUSCI Al used 1in SPI.h

121 UCALCTLWE |= UCSWRST: // ¥¥Put state machine i1n reset**

122 UCAICTLWE |= UCMST|UCSYNC|UCCKPL|UCMSE| UCMODE_0; // 3-pin, 8-bit SPI master
123 // Clock polarity high, MSB

124 UCALCTLWO |= UCSSEL_ SMCLK: // SMCLE

125 UCAIBRE = 0x01; /f f2,fBitClock = fBRCLK/(UCBRx+1).

126 UCAIBR1 = 0O; Iy

127 UCAIMCTLW = 0; // No modulation

128 UCALICTLWE &= ~UCSWRST; // *Initialize USCI state machine**

129

130 P20UT |= BIT1; J/C5 HIGH

131 //Put the ADXL345 into +/- 4G range by writing the value 0x01 to the DATA FORMAT register.
132 writeRegister (DATA_FORMAT, 0x01);

133 //Put the ADXL345 1into Measurement Mode by writing ©0x88 to the POWER CTL register.
134 writeRegister(POWER_CTL, 0x03); //Measurement mode

136
137
138
139
140
141
142
143
144
143
146
147
148

- mam

Timer setup - 10/second

-}

UARTSetup(); /{ set BAUD rate
// Timer@_ A3 Setup ISR 18/second:
TAQCCTLA |= CCIE;

TAREXO |= TAIDEX 3;

TABCCRE = 3125;

TABCTL = TASSEL_Z | MC_1 | ID 3,

// go to standby
__bis SR register(LPMB_bits | GIE);

// TACCRG interrupt enabled

£/ SMCLK/8/4 = 31250 Hz

// 18 per second
S OSMCLE /8

125K

P

UP mode

AP E

153
154
155
156
157
1538
159
160
161
162
163
164
165
166
167
163
169
170
171
172
173
174
175
176
177
178
179
180
181

LT

// Timer A® interrupt service routine Timer ISR — This is where Loop Tasks go
#pragma vector = TIMERD_AQ _VECTOR

__interrupt void Timer A (void)
B{
P1OUT ~= BITO;
// print ASCII alphabet 10 char/second
if(!(UCABIE & UCTXIE))
| { /7 1f flag 1s clear, means last string output 1s done
S/ GET SPI WALUES
//Reading 6 bytes of data starting at register DATAXO will retrieve the
/%,y and z acceleration values from the ADXL345.
//The results of the read operation will get stored to the values[] buffer.
readRegister (DATAXEO, 6, values);

//The ADX¥L345 gives 10-bit acceleration values,
//but they are stored as bytes (8-bits).
//To get the full value, two bytes must be combined for each axas.
//The X value 1s stored in values[®] and values[1].
= ({int)values[1]<=<8)|(int)values[a];
//The ¥ value 1s stored in values[2] and values[3].
= ((1nt)values[3]=<8)|(1nt)values[2];
//The Z value 1s stored in values[4] and values[5].
= ((int)values[5]=<8) | (int)values[4];

J/sprintf(0utStr,"The value of Count 1s %d “\n",Count++);
sprintf(OutsStr, "=d, %d, sd\n" ,x, y, 2);
UARTPutString(OutStr); // begin output of string

- }

-}

S]

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

#pragma vector=USCI_A8 VECTOR
__interrupt void USCI_A® ISR(void)
B{
switch(UCABIV)
B o
case USCI_NONE: break;
case USCI_UART _UCRXIFG:
while(! (UCABIFGEUCTXIFG)) ;
UCABTXBUF = UCAQRXEBUF;
__no_operation(];
break:
case USCI_UART UCTXIFG:
// load char value
// unsigned char testVal=*TxPtr++;
if((*TxPtr)) // 1f zero, then stop
=) {

- }
else
= {

- ¥

break:
case USCI_UART UCSTTIFG: break;
case USCI_UART UCTXCPTIFG: break;
default: break;

UCABTXBUF = *TxPtr++ ;

- T

UART Print the string

UCABIE &= ~UCTXIE; // turn off interrupt

UART SetUp and UARTPutString

[Ay

213 void UARTSetup (void)

214 H{

215 // Configure UART pins

216 P1SELG® |= BIT4 | BITS; // set 2-UART pin as second function
217 // Configure UART

218 UCABCTLWE |= UCSWRST; S reset UART

2189 UCABCTLWE |= UCSSEL__ SMCLK; S use SMCLE iﬂput

228 UCABEBRG = 1l04; SO 1IMHz SMCLEK/S66060 BAUD
221 UCAOMCTLW = 8x11@e8; // // remainder of Baud Rate
222 UCAQCTLWE &= ~UCSWRST;

223

224 L}

225

226 void UARTPutString(const char®* strptr) // begin output of string
227 {

228 /4 load TxBuf with first char then enable interrupt

229 T#Ptr = strptr;

230 UCABTXBUF = *TxPtr++; //load first, assume at least one char in buffer

231 UCABIE |= UCTXIE: // interrupt when transmitted - ISR turns off when done

232 }

233
234
2335
236
237
238
239
240
241
242

-

SPI_Transfer — Polled method

/f NO SPI ISR, this 1s polled output/input function
/{ output data with polled SPI communication
unsigned char SPI Transfer [unsigned char tempB)

1

UCALITXBUF = tempB;

/4 Send BxAA over SPI to Slave

while (UCA1STATW & UCBUSY); //wait until done (receiving whole bytel

return (UCA1RXBUF) ;

//send back input value

Chip Select and writeRegister for ADXL345 SPI

242

243 // SPI Communication functions _

244 //This function will write a value to a register on the ADXL345.
245 S /Parameters:

246 /f char registeraAddress - The register to write a value to

247 /f char value - The value to be written to the specified register.
248 Hvoid writeRegister(char registerAddress, char value){

249 //Set Chip Select pin low to signal the beginning of an SPI packet.
250 // digitalwrite(Cs, LOW);

251 P20UT &= ~BIT1; /0S5 LOW

252 //Transfer the register address over SPI.

253 SPI_Transfer(registerAddress]);

254 //Transfer the desired register value over SPI.

255 SPI_Transfer(value);

256 //Set the Chip Select pin high to signal the end of an SPI packet.
257 /f digitalwrite(CS, HIGH);

258 P20UT |= BIT1; J/CS5 HIGH

250 -1

L0

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

=

Chip Select and readRegister for ADXL345 SPI

//This function will read a certain number of registers starting from a specified
/faddress and store their values i1n a buffer.
JS/Farameters:
// char registerAddress - The register addresse to start the read sequence from.
// 1nt numBytes - The number of registers that should be read.
// char * values - A pointer to a buffer where the results of the operation should be stored.
void readRegister(char registerAddress, int numBytes, unsigned char * values){
//Since read operation, the most significant bit of the register address should be set.
char address = 0x20 | registerAddress;
/71T we're doing a multi-byte read, bit 6 needs to be set as well.
if(numBytes = 1l)address = address | ox40;

//Set the Chip select pin low to start an SPI packet.
/fdigitalWrite(CS, LOW);
P20UT &= ~BIT1; SACS5 LOW
//Transfer the starting register address that needs to be read.
SPI Transfer(address);
//Continue to read registers until the number specified,
//storing the results to the input buffer.
for(int 1=0; 1<numBytes; 1++){

values[1] = SPI_Transfer(ox00);
¥
//Set the Chips Select pin high to end the SPI packet.
/fdigitalwWrite(CS, HIGH);
P20UT |= BITI; //CS HIGH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

