
Technical Backgrounder

Pain Killers for the Fixed-Point
Design Flow

Author

Holger Keding, Ph.D.

Corporate

Application

Engineer,

Synopsys GmbH,

Herzogenrath,

Germany

Abstract
“How can something so trivial cause such a delay in your project?” This is one of the most frequently

asked questions from engineers and managers who never had to suffer from the pains of converting

a floating-point algorithm or system to a fixed-point representation. The latter becomes the golden

reference and basis for the implementation in hardware or software. Floating-point implementations are

rare because they consume more power, need more area, and cost more.

Most algorithms are developed using an abstract floating-point representation, making the quantization a

mandatory step from the algorithm development phase towards an implementation. If the ugly details of

algorithm quantization are understood then the dilemma that makes this phase so costly is known.

`` Floating-point variables can be converted to integral values and use native data types of a computer

(such as int, long, etc.) or customized data types based on those native types. Quantization

operations have to be coded as shift or bit-masking operations, resulting in code that is error prone to

write and hard to debug at the same time. A combination that can kill every schedule.

`` The obvious alternative is to use libraries that offer generic fixed-point data-types for modeling and

simulation. These fixed-point data types allow the user to explicitly define the word length and the

number of integer bits. They also include convenient functions, operators and modes for quantization

handling. Also, they allow for a smooth transition from a floating-point to a fixed-point system, as data

types can be mixed without the need for explicit scaling whenever doing a quantization, and are easy

to debug. This would be a perfect solution - except for the drastically decreased simulation speed. A

fixed-point system using those libraries can easily simulate 10-50 times slower compared to the original

floating-point design, which is not very well suited to produce results in time.

In addition, it is often not considered that every quantization is an application and implementation driven

specialization of a more generic floating-point system. A floating-point algorithm is a flexible piece of IP

that can be re-used in different systems. Creation or acquisition of floating-point IP can be considered as

non-recurring engineering costs. In contrast, quantizing this floating-point IP does not produce a generic

piece of fixed-point IP, since every application and implementation might impose different requirements

on accuracy, area, cost, etc. Hence, the quantization step in a project must be seen as recurring

engineering costs.

This article describes how advanced tools and methodologies can help with the challenges of fixed-point

design, keeping the recurring engineering costs of the quantization process at a minimum. One crucial

aspect is a simulation optimization technology that can in fact overcome the dilemma explained above.

March 2010

Pain Killers for the Fixed-Point Design Flow 2

Technical Introduction
There are many different approaches to transform an algorithm or system from a floating-point into a fixed-

point representation, though the basic recipe is often the same.

1.	 Specialization and simplification of the algorithm structure: Many systems are initially created

for algorithmic explorations, not taking any implementation aspects into account. They often contain

approximately ideal algorithms, for example a low-pass filter that is implemented using a transformation

into the frequency domain, a subsequent reset of all frequency components above the specified cutoff

frequency, and a back transformation into the time domain. With a long FFT/IFFT length for the time-

frequency transformations this becomes a good approximation of an ideal low-pass filter. Nevertheless,

when it comes to implementation those approximately ideal algorithms are often replaced by less

complex, easier to implement, and often easier to quantize algorithms such as an FIR or IIR filter. It is

important to take such simplification decisions before quantizing the system. Otherwise, all effort put into

this transformation will be lost. Also, quantizing an ideal frequency domain filter is much harder.

Another aspect of specialization and simplification: algorithmic functions and blocks of a generic

floating-point algorithm are often highly parameterizable. This renders the IP flexible and re-usable in

different contexts and systems. For example an FFT might have an fft_length parameter – dependant on

this parameter there is allocation of memory, calculations of scale factors, complex roots of unity, etc.

Keeping all this flexibility for an implementation where the fft_length is actually known makes both the

implementation costs and the quantization effort unnecessarily high. Costs and effort can be reduced by

removing unnecessary generic parts, replacing them by constants or tables.

Floating-point function calls are often found in the original algorithm, such as sin(x) or cos(x) function

calls to calculate the sine or cosine of the argument x. In many cases the source code of the floating-

point function is not available, since it is part of a standard C library. There are two options to quantize

algorithms using such floating-point functions:

yy Leave in the call to the floating-point function and make sure that the argument and the result are

quantized. For example the result of a sine function can be quantized with 8 bits and an integer word

length of 2 and using rounding as quantization mode as follows:

	y = sc_fix(sin(x),8,2,SC_RND,SC_TRN);

This is an easy way to get a bit-true specification of the result of the function. The big drawback of this

type of quantization is that the final implementation of the sin() function is likely to be different from the

floating-point algorithm on the simulation host. Many implementations will use a cordic algorithm, Taylor

row / approximation, or a look-up table for the sin() or cos() function. This implies that even if the result

of the operation has the same fixed-point format there may be slight differences in the numerical values.

These differences are or at least should be harmless for the overall functionality of the algorithm, but

they render the quantized algorithm with the floating-point functions useless as golden bit-true reference

for the implementation.

yy The floating-point function can be replaced with a directly implementable construct, such as a cordic

algorithm, a Taylor row, or a look-up table already in the floating-point description of the algorithm

before starting the quantization process. This way the quantized algorithm can be implemented with

the specified simplification in a bit-true way, and the quantized model can serve as a bit-true reference

model for the implementation.

Pain Killers for the Fixed-Point Design Flow 3

2.	 Identify key objects for a quantization of the algorithm: The fixed-point format chosen for these key

objects determines the quantization loss, i.e. the difference in algorithmic performance in comparison

with the floating-point representation. Typical key objects are state variables or arrays, (filter) coefficients,

accumulators, and the input and output ports.

3.	 Collect statistics for key objects: For the key objects the statistical characteristics need to be

determined, such as the value range, histograms, or similar data. The value range of a floating-point

variable will indicate the integer word length (iwl), i.e. the number of bits on the left side of the binary point

of the final fixed-point format for this variable. It is important to run simulations with sufficient and relevant

stimuli. To gain the required data needed to instrument the algorithm code. This instrumentation will record

and collect the required data during simulation runs. Once this data is collected the required iwls can be

calculated for the instrumented variables. This step often requires a manual instrumentation of the code

and a well organized system to store the collected data and associate it with the corresponding variable or

code location.

4.	 Determine required precision for key objects: After the iwls for all key objects are known, find the

required precision, or word length (wl) for each key object. The required precision can only be defined

using a quality criterion for the overall algorithm performance, such as a bit error rate (BER) or similar.

The reference is always the behavior of the floating-point algorithm, and the constraints, such as allowed

BER, is in most cases set by a standard document or company internal field studies. The only reliable way

to find out about the required word length wl for an object is to use a fixed-point casting statement or a

fixed-point data type for this object, where the known iwl is hard-coded and the overall wl is a parameter

and can be varied. This way the user can run several simulations with different word lengths and create

a Quality criterion vs. wl diagram. The latter enables a dependable decision to be made on what word

length is needed for this key object. In most design flows this represents the most painful step due to

the dilemma explained in the previous section. A decision between hard-to-write-and-debug, but fast

simulating integral data types, or easy-to-use but slow simulating fixed-point data types needs to be

made. The recommended order of quantizing key objects is from global to local, i.e. starting with the top-

level signals/ports. This provides fixed interfaces for the connected blocks which also enables multiple

engineers to work on the quantization of the connected blocks in parallel.

5.	 Determine fixed-point formats for remaining objects: Once all the key variables are quantized there

will be a few other objects, e.g. local or temporary variables, in the code that are still in floating-point

format. Their required fixed-point format is determined by the key objects and thus can be calculated in

most cases. If it can’t be calculated, additional simulations may be needed to determine iwl and wl as

explained in step 3 and 4.

Details of this recipe may vary, depending on the implementation target – for example software

implementations sometimes get away with using the available register/memory width of the processor as wl

for all key objects – but even that only saves a bit of effort in step 4, while the other steps are still mandatory.

Especially the manual, error prone and time consuming steps 3 and 4 make the quantization process a rather

painful experience.

System Studio Solution
System Studio comes with a bundle of pain killers for the quantization process, consisting of unique

simulation optimization techniques and a set of well organized utilities to ensure an efficient design flow. Many

of those utilities are specific to the quantization process, while others are of more general nature, but very

useful for this design flow, too.

Pain Killers for the Fixed-Point Design Flow 4

Data Type Support
System Studio supports the SystemC fixed-point data-types as specified in the IEEE 1666 standard.

The sc_fix and sc_fixed<> data-types can be parameterized with a word length (wl), an integer word

length (iwl), a quantization mode (such as rounding, truncation, etc.), and an overflow mode (such as wrap-

around, truncation, etc.). Compared to native integral data types, the SystemC data types enable the following

`` The word lengths can be as large as required.

`` The word length wl can be different from the integer word length iwl, so they do not require any up scaling

when converting floating-point values to fixed-point types, or other adaptation code when mixing floating-

point values and fixed-point values. This is a tremendous advantage not only when writing the code, but also

when analyzing/debugging the algorithm, as all value ranges are preserved. The value of π in the debugger

will still be in the range of 3.14 and not 12868 because it happens to be represented by an integer with 12 bits.

`` Casting, such as overflow handling (wrapping, clipping, etc.) and quantization (truncation, rounding,

symmetrical rounding, etc.) does not need to be modeled using bit-masking, shifts, or other basic

operations, but selection is to be made from a large set of convenient overflow handling and quantization

modes for a type or operation.

`` In addition, all fixed-point parameters, (integer) word length and casting modes can be changed in the

simulation, so it is easy to evaluate the effects of different (integer) word lengths or casting modes on the

quality of the algorithm.

`` Operators on the IEEE 1666 fixed-point data types are also defined and make the types very efficient for

modeling – e.g. there is no need for manually adjusting the location of binary point / scaling before an

addition, since this is done automatically.

`` System Studio also supplies special support for debugging code with SystemC data types – anybody who

ever had to deal with a debugger spitting out all the guts of a SystemC class instead of simply printing the

value of a variable will highly appreciate this feature.

Fast Fixed-Point Simulation
Using the fixed-point types of the SystemC library for simulation comes at a very high price in terms of

simulation speed. The reason is the inherently generic nature of a data type library. Internal operations such as

alignment of binary points or allocation of containers for intermediate results have to be executed at runtime.

This is where the optimizations in System Studio benefit the user. These optimizations allow the use of the

SystemC fixed-point data types for modeling. System Studio parses the entire algorithm and translates the

SystemC data types back to native data types of the host machine, determines the location of the binary point

in advance, and optimizes the number of shift and cast operations, etc.

1x

1x

20x

30x
Native
data
types

Fixed-point
libraries

System
Studio

wl

iwl fwl

s

Modeling efficiency

S
im

ul
at

io
n

ef
fic

ie
nc

y

Figure 1: System Studio allows for both, efficient modeling and fast simulation

Pain Killers for the Fixed-Point Design Flow 5

This leads to a significant speedup of the simulation, the same simulation speed is realized as if the algorithm

was coded manually using integral data types plus shift and bit-mask operations for fixed-point modeling.

This means that System Studio overcomes the dilemma mentioned in the beginning: High modeling efficiency

is achieved by using the SystemC fixed-point data types, and at the same time achieves the speed of a native

data type based simulation, as illustrated in Figure 1. Instead of 30 times slower simulations on average,

compared to floating-point, simulations are back in the range of 1-3 times overhead only (depending on the

type and number of quantization/overflow operations, the size of the data types, etc.).

Code Instrumentation and Statistics Data Collection
As outlined in item 3 in the Technical Introduction section one of the first steps of the quantization process is

to collect statistical data such as the value range of a variable, or a histogram. In System Studio there is no

need to manually instrument the code to achieve this –simply pick the ports, variables, or arrays in the design

that need to be monitored and the appropriate data will be collected and processed automatically. Examples

for the automatically calculated data by System Studio are the required iwl of a variable, the mean value, the

variance, or a histogram.

Data Type Switching
Many experienced teams try to keep the maintenance effort for their IP as low as possible by avoiding

unnecessary duplication. Keeping both the floating-point and the fixed-point representation of an algorithm

in one model is one way to achieve this. System Studio supports this with conditional type parameters. For

example, a type parameter can be set to a fixed-point type in case a top-level Boolean parameter FxSim is set

to true, and otherwise set to floating-point types – see Table 3 for an example. This allows using the same

source code for both the floating-point and fixed-point simulation.

Helpful Features
There are numerous other helpful features in System Studio that enable an efficient design flow for a

quantization. To name a few:

`` Using System Studio’s Tcl based scripting interface easily launches and controls different simulations with

different word length parameters to explore the fixed-point design space of the algorithm or post-process

simulation results.

`` Using System Studio’s support for parallel simulation can fan out different iterations, i.e. simulation with

different parameter sets, to different machines. The results are synchronized and collected automatically in a

central location. This also helps the user to get to results much faster.

Tutorial Example
As a demo and tutorial for a System Studio based fixed-point design flow the carrier synchronization / QPSK

receiver example that is also shipped with the training material in the System Studio releases is used. Starting

with version 2009.12-SP1 of System Studio the single steps explained in this tutorial are also available in the

library lab_advanced_fixed_point in the training material. Read through this tutorial section and look up the

details in this training library, or try out the steps explained here to get some hands-on experience.

The library lab_advanced_fixed_point itself contains the original floating-point version of the design and the

sub-libraries step1 through step5 contain intermediate states of the quantization process. The README files

in these sub libraries contain additional information on modifications or simulation results.

Pain Killers for the Fixed-Point Design Flow 6

The Algorithm
The core part of the QPSK receiver frontend is a root raised cosine filter. In the floating-point version of the

example, the model RRCosine was used from the models/filter library in System Studio. It basically consists

of an FFT, a filtering stage in the frequency domain, and a re-transformation to the time domain using an

IFFT. After the RRC filter comes a phase error correction, consisting of a phase error detection, a loop filter

(NCO) providing the angle for a Rotation block that actually compensates the phase error. Finally, a QPSK

demodulation block is followed by decoding blocks (gray, differential). The latter decoding blocks are not of

interest here, since they operate on integral values already and do not need to be quantized.

Specialization and Simplification of the Algorithm Structure
By using the example system, the different types of specialization and simplications will be described:

yy Implementation alternatives, i.e. the change of subsystem from an ideal algorithm into a more

implementation friendly alternative.

yy Implementation refinements, i.e. removing generic parts of algorithms.

Implementation Alternative: the Root Raised Cosine Filter as FIR Filter
In this step the root raised cosine filter will be changed from an ideal frequency domain filter into a much less

complex FIR implementation. With an overall error criterion (BER<5*10-6) this simplifies the algorithm and

implementation significantly and delivers good results at the same time. In a first step, the filter design tool

QED in System Studio is used to find a set of suited filter coefficients – the parameterization of the RRCosine

block can be used directly to obtain the parameters used to calculate the filter coefficients:

`` FIR filter, Filter Type: RootRaisedCosine

`` Frequency Mode: Hertz

`` Symbol Rate: 1

`` Rolloff Factor: 0.25

`` Sampling Rate: 4

`` Passband Ripple: 0.1dB

`` Stopband Ripple: 30dB

`` Type/Windowing: Rectangular

`` Number of Coefficients: 17

This results in floating-point coefficients stored in the file step1/float_coeffs.dat. The FIR filter model

from the library filter can be used as a starting point to implement this filter. Using the System Studio profiler

(or any other) it becomes visible that the computational complexity of the receiver filter (rx_filter) is reduced

significantly (a quarter of the RRCosine block), while the results in terms of overall BER are still the same. The

modifications described above can be reviewed in library lab_advanced_fixed_point/step1.

Implementation Refinement: simplify the Root Raised Cosine FIR block
Next, the FIR filter model from the library filter can be copied into a local library and simplified as permitted by

this specific application. The major changes to the FIR filter model in the library lab_advanced_fixed_point/

step2 are:

`` Removal of the different alternatives for coefficient storage

`` Inlining of the coefficients as local array instead of reading them from a file

`` Introduction of additional data type parameters, such as Taccu, to be able to use different fixed-point types

for specific key variables such as the accumulator that typically uses a larger number of bits

Pain Killers for the Fixed-Point Design Flow 7

Implementation Alternative: look-up tables instead of trigonometric floating-point functions
Another example for implementation alternatives is the mapping of floating-point functions such as
sin(x), cos(x), arctan2(x,y) to look-up table implementations, that are cheaper to implement and that

can be quantized in a bit-true way.

The original phase error compensation uses the Rotation block of the channel library, implementing the

following operation:

OutData = InData*polar(1.0,-InPhase);

This can be re-written as

OutData = InData * complex(cos(-InPhase),sin(-InPhase));

The cos() and sin() functions can be replaced by look-up tables, e.g. using the models CosTable and

SinTable from the basemath library. These models have a parameter TableSize that can be used to

determine the required size of the look-up table, e.g by running different iterations of the simulation with

different table sizes and recording the effect on the BER.

Tip:
Especially in fixed-point designs care needs to be taken with the size of look-up tables. The look-up table as such already
represents a quantization of the output values. If in addition the output data type has different quantization steps, i.e. the
value of the least significant bit (MSB), is not aligned with the look-up table values, and the input data to the look-up table
is quantized the look-up table can introduce significant errors. In case of doubt, first select a rather large value for the table
size, and try to reduce it later on when the exact word lengths of the input and output signals are known.

The arctan2(x,y) (or arg(c) with a complex valued c) function can also be coded as a look-up table,

though the implementation is not as straightforward as in the cos() case: the arctan2() function takes

two arguments and uses the sign of x and y to determine the quadrant of the resulting angle, while using

arctan(x/y) to determine the angle itself. Since r=x/y is not bounded a non-linear look-up table for r is

needed, that maps the input values r=x/y to the angle values. The model ArcTan2Table from the basemath

library can be used to implement this lookup table. Like the CosTable model it also has a TableSize

parameter to explore what table size is needed to obtain acceptable algorithmic performance. After these

transformations all elements of the receiver can be implemented in a bit-true way, in other words the actual

quantization of the algorithm can be started.

Identify Key Objects for a Quantization of the Algorithm
The key objects for a quantization are relatively easy to find:

`` The interface elements, i.e. input/output ports and floating-point parameters.

`` The key variables – including arrays of the leaf-level PRIM models: Key variables are central elements of

an algorithm. Their accuracy, i.e. fixed-point format significantly impacts algorithmic performance of the

model. Their fixed-point format cannot be derived from other formats or elements – in contrast to temporary

variables and intermediate results. Examples for such key elements would be the accumulator or the

coefficients of the FIR model for the matched filter of the receiver.

Tip:
To ease the quantization process key elements should be visible during the simulation, i.e. they should be state variables
declared in the header section of the PRIM model in System Studio, so you can query their state and collect statistics. In
case you have key variables that are declared locally in the main_action() – such as an accumulator of a filter - you
should modify the model and promote these key variables to states.

Pain Killers for the Fixed-Point Design Flow 8

Collect Statistics for Key Objects
To collect statistics and have System Studio calculate the required integer word length (iwl) for each key

element from the collected data is straightforward. Select the instances containing the key objects in the

design and pick Highlight Instance in Hierarchy Tree from the context menu. This will open the design’s

Hierarchy Tree window, with the selected element highlighted, as shown in Figure 2.

Figure 2: Selecting an instance in System Studio's design hierarchy tree

Clicking on the Show Configuration properties line at the bottom of the Hierarchy Tree window will open

the properties page for the hierarchy elements, and enter true in the collect_stat field for all key elements

identified above. During the next simulation run System Studio will generate an object configuration database

(.ocd) file in the simulation directory that can be merged into the hierarchy tree as follows:

yy In the Hierarchy Tree window, select Configuration Properties>Merge… from the context menu (right

mouse button), and browse for the design_properties.ocd file in the activation/iteration directory of

the simulation, and click OK.

yy The fields of the Configuration Properties dialog will now be filled in with the collected data, as shown

in Figure 3. The most important data for the quantization are the minimum and maximum values, as well

as the proposed fixed-point format derived from this. Note that the calculated fixed-point parameters

are conservative, i.e. provide a fixed-point format that can hold the same information as the floating-

point representation. If, for example, the proposed fixed-point format for the PhaseError input port of

the loop_filter is sc_fixed<26,1> typically only the integer word length (iwl=1) and the signedness from

the proposed format is kept. The overall word length (wl=26) can usually be reduced significantly without

introducing too many quantization errors, so in a later optimization step a compromise between costs of

implementation and algorithmic performance can be found. In addition to the statistics and formats, for

every selected element System Studio generates a histogram that can be viewed using System Studio’s

data visualization tool DAVIS.

yy If there are different sets of test vectors for the application, it is important to run a significant number

of these sets and merge all collected data into the System Studio data base, which can be done by

repeating the merging described in item 1 for all iterations with different input test vectors. Only this way

will make sure the collected data reflects the requirements of the application.

Pain Killers for the Fixed-Point Design Flow 9

Figure 3: Configuration Properties dialog after merging back simulation results

Tip:
Before introducing fixed-point formats into the design it is a good idea to modify its structure to be suited for a fixed-point
implementation. In a floating-point design the number of data types used is naturally small since most ports/signals and
variables are of type float or double. In a fixed-point design this changes, so it makes sense to introduce additional
type parameters. As an example, in a FIR filter use a type parameter Taccu for the accumulator, Tsample for the
input/output data, and a Tcoeff for the coefficients. This way the quantization process and the subsequent mapping of the
quantized algorithm to hardware or software becomes easier.

While some of these additional type parameters will only affect the internal computations in a model, others will have more
global effects, such as the data types for the input and output ports. Model ports that are connected via signals need to be
of the same data type. Instead of setting the type parameter values for the connected models in a DFG individually, it is
more convenient and avoids inconsistencies to use hierarchical type parameters. Examples are the type parameters
Tsample, Tphase, etc. in the design step2/CarrierRecoveryTop – as also illustrated by the screenshot in Figure 4.

Figure 4: Using hierarchical type parameters to ensure type consistency in a DFG

Pain Killers for the Fixed-Point Design Flow 10

Tip:

SystemC data types come in 2 flavors: sc_fix[ed] and sc_fixe[ed]_fast. The former can be used for arbitrary word
lengths, while the latter uses a member of type double to store the values, i.e. is restricted to 52 bits. If this limitation is
acceptable to you, then you should use the sc_fix[ed]_fast types. They are roughly a factor of 2 times faster than the
unlimited precision type sc_fix[ed]. The suffix_fast is a bit misleading, though, as you can clearly see from the
benchmark results in section Benchmarking Results.

Determine Required Precision for Key Objects
The next step is to change the data type of the key objects from a floating-point type to a fixed-point data type

with a parameterizable word length wl so multiple simulations with different word lengths can be done. The

effects of different precisions of a specific variable on the overall quality criterion can be explored, resulting in

a BER vs. word length similar to the graph shown in Figure 5.

Figure 5: Example of a word length vs. BER graph in DAVIS

A very efficient way to explore the effect of different word lengths on the BER is to run scripted parameter

iterations in System Studio, using a top-level parameter wl that is used in a hierarchical type parameter of the

QPSKReceiver:

Parameter Name Data Type Value

Tsample type_param sc_fix_fast(wl,3,SC_RND, SC_WRAP)

Table 1: Using a word length parameter wl to explore the effect of different word lengths on the BER

This parameter can be set from a simulation control file, i.e. a script that launches and controls different

iterations of the same simulation executable with different parameter values set. The following example of a

simulation control file launches a row of iterations with the word length parameter wl set from 4 to 16, but a

relatively small number of samples to be simulated:

set_value NumSamples 1e6

for {set wl 4} {$wl <= 16} {incr wl 1} {

 set_value wl $wl

 run_iteration

}

Pain Killers for the Fixed-Point Design Flow 11

Due to the relatively small number of samples - definitely not enough to get sufficient statistics for an expected

BER in the range of 10-6 – the simulations are relatively short and quick feedback will be provided for which

word lengths it makes sense to start longer simulations. From the following simulation output it can be seen

that for word lengths below 6 the BER is definitely too high, so it would make sense to try longer simulations

for word lengths between 6 and 10, for example:

netbatch: job 6 has been submitted to grd system with id 4638550

netbatch: job 7 has been submitted to grd system with id 4638551

netbatch: job 8 has been submitted to grd system with id 4638552

netbatch: job 9 has been submitted to grd system with id 4638553

netbatch: job 10 has been submitted to grd system with id 4638554

wl = 6 : BER: 4.4e-07

wl = 7 : BER: 0.0

For a number of longer simulations with 108 samples it is advisable to use System Studio’s Netbatch utility to

submit different iterations for parallel execution on a compute farm, using load job scheduling systems such

as SunGrid Engine (aka Gridware) from Sun Microsystems or LSF from Platform Computing. To use parallel

iterations select the load sharing system – in this example Gridware was used – in the StartOptions dialog, and

adapt the SCF file to submit the simulations in parallel in a first loop iterating over the word lengths and then

wait for the results of the parallel iterations to return in a second loop. Examples for such SCF files

using Gridware are the files CarrierRevoveryTopNB.scf in the libraries step3 and step4 of the

lab_advanced_fixed_point library. The following shows the main sections:

set_value NumSamples 1e8

set simname $env(SIM_NAME)

…

set wl_min 6

set wl_max 10

for {set wl $wl_min} {$wl <= $wl_max} {incr wl 1} {

 set_value wl $wl

 nb_submit_iteration $wl

}

for {set wl $wl_min} {$wl <= $wl_max} {incr wl 1} {

 puts -nonewline "wl = $wl : "

 nb_catch_iteration $wl

 set biterrors($wl) [show_value /$simname/ber/biterrors]

 set counter($wl) [show_value /$simname/ber/counter]

 puts "BER: [expr $biterrors($wl) / double($counter($wl))]"

}

In the shell all the jobs can be seen to be submitted immediately, and as the jobs complete, the results will be

printed:

Pain Killers for the Fixed-Point Design Flow 12

netbatch: job 6 has been submitted to grd system with id 4638550

netbatch: job 7 has been submitted to grd system with id 4638551

netbatch: job 8 has been submitted to grd system with id 4638552

netbatch: job 9 has been submitted to grd system with id 4638553

netbatch: job 10 has been submitted to grd system with id 4638554

wl = 6 : BER: 4.4e-07

wl = 7 : BER: 0.0

From the results above it is seen that for the fixed-point format of the type Tsample a word length larger than

7 does not improve the BER any further. Note that the other data types are still floating-point. Hence, choosing

the least word length – in this case 7 – is not recommended, since the number of remaining elements to be

quantized is still large. With every bit that is cut-off additional errors can be introduced that will accumulate

as the number of quantized elements increases. This typically leads to a scenario where the first quantized

elements have a short word length, while those that are quantized later have a significantly larger word length

to cope with the large quantization errors introduced earlier. It is more advisable to spend at least one or two

extra bits for the word length. This usually keeps the overall word lengths smaller. After the word length is

chosen the parameter wl can be replaced in the type parameter with the hard coded value:

Parameter Name Data Type Value

Tsample type_param sc_fix_fast(8,3,SC_RND, SC_WRAP)

Table 2: Swap the word length parameter wl for the hard coded word length 8

Continue with this process for the other ports/variables of the design: first run short exploration runs to find

a suited word length interval and then send off longer simulations to get precise results. Once more than 2-5

fixed-point variables are used in the design it is highly recommended to use System Studio’s fast fixed-point

optimization that can speed up the simulation significantly. Simply check the Fast fixed-point box in the

Code Generation tab as shown in Figure 6. This optimization maps the SystemC fixed-point data types to

native integral data types of the host machine and thus reduces the number of run-time tasks and storage

management. The more fixed-point types are used in the design and the less mixed fixed/floating-point code

is used, the higher the impact of code optimizations -see also the benchmarking results presented in the

Benchmarking Results section.

Figure 6: Fast fixed-point optimization option

Pain Killers for the Fixed-Point Design Flow 13

Tip:

When quantizing data types you have the choice of using different quantization modes, i.e. different ways of removing the
least significant bits (LSBs). The most common are rounding (SC_RND) and truncation (SC_TRN), where SC_TRN is the
default quantization mode for the SystemC fixed-point types. The disadvantage of truncation is that you always introduce a
negative quantization error, since LSBs are cut off, which in both are cut off, unsigned and two’s complement signed
representation, carry positive values. This means that an originally bias free signal becomes biased. Using rounding
removes this bias, but rounding is considered more expensive, since it involves an extra addition. Instead of always picking
truncation due to the costs, it is recommended though to closely analyze the costs of rounding. In many cases the
rounding is actually not done at runtime, such as the quantization of the constant coefficients of the FIR filter. If rounding
(SC_RND) is picked here, the results will improve, but there is no additional cost associated with this. Even a final hardware
or software implementation will only contain the already quantized coefficients without any rounding operation required.

Tip:

The quantization of a complex system is an iterative approach, introducing many non-linear effects that often have puzzling
effects. In many situations it is very helpful to:

1. Document intermediate results and decisions on which (integer) word length to pick for the elements in the design.

2. Have the opportunity to revert changes or return to a prior status known to be correct.

3. Have an easy way to compare the algorithmic performance of the (partially) quantized algorithm against a
 floating-point representation of the same system.

To achieve these goals the following practices have proven to be very helpful:

1. When running long simulations exploring the effect of the word length of a certain element on a quality criterion,
 use a simulation name that you can recognize when generating the simulation from the Code Generation panel.
 For example pick the simulation name CarrierRecovery_RecFirCoeffWl for iterations over the word length
 parameter for the coefficients of the FIR filter in the Receiver – the generated simulation directory will have the
 same name. After the simulation, the simulation directory should not be removed as it contains most valuable
 information such as the simulation results, the used simulation control file reflecting the used parameter values,
 etc. In case of doubt it is useful to be able to document and/or review the results and settings.

2. Use a revision control system such as CVS or ClearCase to check relevant intermediate results, e.g. after the
 quantization of all signals/ports of the receiver, use recognizable tags or labels for these check-ins, and provide
 meaningful check-in comments. This way you will be able to revert unwanted changes or test against
 known-to-work prior states of the design in case something goes wrong. You can achieve the same by
 copying the design after each relevant intermediate step, but this is typically less convenient.

3. You can keep your models ‘convertible’ in System Studio, i.e. have them switch from a fixed-point implementation
 to a floating-point implementation. This way one source for both the fixed-point and floating-point implementation
 is needed, thus avoiding inconsistencies as you refine a model in the quantization process. The easiest way is
 to use conditional type parameters, by defining a top-level Boolean parameter (e.g. FxSim) and using this
 parameter in the Configure Object dialog to set the actual type parameter values for an instance, e.g.:

Parameter Name Data Type Value

Tsample type_param FxSim?sc_fix_fast(8,3,SC_RND, SC_WRAP):float

Table 3: conditional type parameters for switching from fixed-point to floating-point simulation

Quantization of Intermediate Results
After all key objects have been quantized the application is almost bit-true. Remaining non-quantized

intermediate results are e.g. division operators. There are also intermediate results, that are already bit-

true, but using a larger word length than required, thus increasing the cost of an implementation. For most

operations - apart from division - the word length (wl), integer word length (iwl), and fractional word length (fwl,

with wl =iwl+fwl) can be derived that can hold every bit of the result (for signed a and b):

`` a ± b = c: iwl(c) = max(iwl(a),iwl(b)) +1; fwl(c) = max(fwl(a),fwl(b))

`` a * b = c: iwl(c) = iwl(a)+iwl(b); fwl(c) = fwl(a) + fwl(b)

For a division a / b = c the integer word length of c can be huge, if the values of b are very small, so it is hard

to calculate the fixed-point format, even if the value ranges of a and b are known. The safest and most general

way would be to split up an example expression from the LoopFilter like:

TmpPhase = TmpPhase – MaxValue* floor(TmpPhase/MaxValue + 0.5);

Pain Killers for the Fixed-Point Design Flow 14

into two lines with an explicit intermediate result, using its own state variable (let’s name it phase_by_2pi)

that can be traced in System Studio simulations, so find out the range and integer word length (iwl) of the

expression:

phase_by_2pi = TmpPhase/MaxValue;

TmpPhase = TmpPhase - MaxValue * floor(phase_by_2pi + 0.5);

After the iwl is known insert an explicit cast statement to limit the result of the division to a word length

parameter wl and run simulations with different values for wl:

phase_by_2pi = sc_fix(TmpPhase/MaxValue ,wl,2);

TmpPhase = TmpPhase - MaxValue * floor(phase_by_2pi + 0.5);

In most cases this additional effort is not required though. In this example MaxValue is a constant (2π),

just turn it into a multiplication with MaxValue-1, and in addition the overall expression must have a similar

word length and integer word length as the variable TmpPhase of type Tphase. Tphase has been already

quantized, so it is assumed that using the same fixed-point type for the result of the division yields

reasonable results:

Tphase phase_by_2pi = TmpPhase/MaxValue;

TmpPhase = TmpPhase - MaxValue * floor(phase_by_2pi + 0.5);

Such assumptions have to be verified with an additional simulation run, and in this example it turns out

that in fact the BER does not change if the intermediate result uses the same fixed-point representation

as the final result.

Similar refinements of intermediate results can also be done for additions, subtractions, and multiplications.

The results of SystemC fixed-point operations are always carried by the container data type sc_fxval that

can hold every bit of the operation. How many bits are really used can be calculated and then it can be tried to

reduce the number of bits to reduce costs or reflect the available hardware resources. Taking the expression:

TmpPhase = TmpPhase - MaxValue * floor(phase_by_2pi + 0.5);

With Tphase = sc_fix(8,4) and T2pi = sc_ufix(6,3) can be rewritten to an equivalent statement using

explicit fixed-point formats as:

TmpPhase -= sc_fix(MaxValue*sc_fix(4,0,phase_by_2pi,SC_RND,SC_WRAP),9,3);

Leave this explicit bit-true notation as the golden reference for the implementation or try to reduce the used

word lengths even further. In additions/subtractions the same format for both operands can usually be picked,

i.e. in this case try to reduce the word length of the second operand:

Tphase tmp_prod = MaxValue * sc_fix(4,0,phase_by_2pi,SC_RND,SC_WRAP);

TmpPhase = TmpPhase – tmp_prod;

Again, it has to be verified that reductions of the word length do not have any (significant) impact on the quality

criterion such as the BER.

Benchmarking Results
In case the fast fixed-point optimization was not enabled as shown in Figure 6 for one of the fixed-point

simulations a drastic difference in simulation speed will be noted between the floating-point simulation and the

non-optimized SystemC implementation using the IEEE 1666 fixed-point types.

System Studio offers the fast fixed-point code optimization to overcome this difference. To quantify the

advantage obtained from this optimization in System Studio, a benchmark suite was created comparing

the complete carrier recovery simulation with 108 samples as floating-point version, including floating-point

versions of the transmitter, channel, and receiver with the same simulation, but with a fixed-point version of

the receiver.

Synopsys, Inc.  700 East Middlefield Road  Mountain View, CA 94043  www.synopsys.com

©2010 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at http://www.synopsys.com/copyright.html. All other names mentioned herein are trademarks or registered trademarks of their respective owners.

03/10.RD.10-18425.

For the benchmark a RedHat Enterprise Linux 5.3 machine with 64-bit Intel Xeon processors running at 2666

MHz was used.

Floating-Point
[sec (min:sec)]

Fast Fixed-Point
[sec (min:sec)]

Fixed-point
[sec (h:min:sec)]

64-bit
mode

88 (1:28) 107 (1:47) using sc_fix_fast types 3328 (0:55:28)

using sc_fix types 5901 (1:38:21)

32-bit
mode

107 (1:47) 184 (3:04) using sc_fix_fast types 12664 (3:31:04)

using sc_fix types 24691 (6:51:31)

Table 4: Benchmark comparing floating-point, System Studio's fast fixed-point,
and non-optimized fixed-point code

The results show that on a 64-bit machine System Studio’s optimized fixed-point simulation runs by a factor of

31 faster than the same simulation using the original SystemC fixed-point types. It also runs only 22% slower

than the floating-point reference, which is mainly due to the additional cast, shift, or rounding operations

contained in the fixed-point code. In 32-bit mode the differences are even larger, i.e. the fast fixed-point code

runs 69 times faster as the non-optimized fixed-point code, and 72% slower as the floating-point reference.

For completeness the unlimited-precision sc_fix types that can also be used for word lengths above 52 bits

was also benchmarked. Though in this case, long words were not utilized, i.e. using the limited-precision

sc_fix_fast types would be sufficient, this additional data point gives a good impression on the performance

difference between these two types. Please note, that in System Studio’s optimized fast fixed-point code all

fixed-point types, limited and unlimited-precision, are mapped to integer types if the word length and integer

word length are known at code generation time. Hence, the generated fast fixed-point simulation code in this

example is the same, regardless whether limited or unlimited-precision types in the models are used.

These numbers impressively demonstrate the value of this simulation optimization. The simulation results

for complex designs are obtained either after the lunch-break when using System Studio’s fast fixed-point

optimization or, in the non-optimized mode, only next day (at best).

SUMMARY
In this article the challenges of different fixed-point design flows were presented, such as using native integral

data types of the host machine to represent fixed-point data, or to use dedicated fixed-point types along with

their operations and casting modes. The advantages and disadvantages of these flows were discussed, and

how System Studio’s fast fixed-point optimization manages to combine the best of these two approaches to a

solution that offers both, high simulation speed and excellent support for modeling and debugging

was shown.

In a tutorial example, that is also available with System Studio’s training material as reference, the key steps

turning a floating-point algorithm into a fixed-point representation were illustrated. In addition, the tutorial

section also contains useful tips on good practices or how to avoid typical pitfalls in fixed-point design.

Finally the results of the tutorial example were benchmarked to provide some quantitative data on the

simulation speed advantage that System Studio offers, showing that System Studio’s fast fixed-point

simulation run by an impressive factor of 31-69 times faster compared to the data types of the reference

IEEE 1666 SystemC library, and only 22-72% slower as the floating-point version of the same system. All this

demonstrates how System Studio can help making the fixed-point design flow faster and more reliable and

thus to avoid delays in projects.

http://www.synopsys.com/copyright.html

