
Lesson Four – Backtracking Page 1

Watch the last Video – this covers Backtracking using Stack
Coding challenge #4: Select Part 4 video
https://thecodingtrain.com/challenges/10-dfs-maze-generator

Video: time Main.cpp Lines

Source split into 4 files: wxDFS3App.h,
wxDFS3App.cpp, wxDFS3Main.h,
wxDFS3Main.cpp

00:00 Summary Cell moving around removing
walls – need backtracking

00:50 Backtracking - algorithm review Illustration 1 Algorithm Steps

01:00 choose randomly unvisited neighbor 3e Case 4

01:12 Push current cell to stack 3e Case 4

01:37 What is stack? - data structure

02:40 push – pop LIFO

03:50 implement stack – JS array? std::stack <Cell> MStack;

04:27 stack.push(current); 3e Case 4

05:20 when need to use stack? No available
neighbors stuck

void Maze::NewCurrentFromStack ()
Line 308

06:05 stuck, so use stack if not empty Line 325

06:30 pop new current cell from stack

07:20 runs now without getting stuck – visits
every single spot

07:37 stops when stack is empty – maze map
complete

Line 314

08:00 see backtrack when got stuck Backtrack not shown, just proceed with exploring
next available neighbor

https://thecodingtrain.com/challenges/10-dfs-maze-generator

Lesson Four – Backtracking Page 2

 Algorithm review
Algorithm outline from the wxDFS3Main.cpp code:

for 2) TNextCell:

case TNextCell:
// get new current cell from stack
// current(squirrel) = stack.pop()
MyPath.NewCurrentFromStack();<<<<<<< Backtrack though the Stack contents
edgeCounter = 0;
break;

Setup and run:

Either use original code that was unzipped or go back and use code from Lesson 3 and re-enable the
backtracking function

In Case 4, line 225 remove the code added in Lesson Two and switch back to the original code.
 convert back to original code like below
225 for (int i=0; i<numEdges; i++)
226 { // int i=0; // only one neighbor, not more

This original code for State 4: randomizes available neighbor edges and pushes them
onto stack. This way in Illustration 1, Step 2, TNextCell: if Current cell has no

Illustration 1: Algorithm Steps

Lesson Four – Backtracking Page 3

available neighbors, then Step 2) is repeated and another cell is pulled from the
stack. This keeps popping prior available neighbors from the stack until one is
found still not visited and available or stops looping if the stack is empty. This
decision is made by looping and repeating TNextCell in Illustration 1 Algorithm
Steps.

Assignment:

1. Compile and run the code modified as instructed above – use a different
origin by entering coordinates for the ‘Start’ step. Illustration 2

2. The program will run to examine every cell in the Maze. Notice the
backtracking when there is no free neighbor available when exploring.

3. The ‘Step’ button can be pressed and will place the exploration into a
single step mode where a single ‘current’ cell is explored.

4. Pressing the ‘Start’ button after ‘Step’ will continue the solution at full
speed. The coordinates given there are ignored and the solution continues.

Illustration 2: Set the Maze origin

Lesson Four – Backtracking Page 4

Created Maze
5. When every cell has been explored, you will see all the remaining cells

still on the stack being rejected because they are already visited.

6. When the Stack is empty, the Timer and program are stopped automatically.

7. Turn in a copy of this screen shot when it is complete. Screen Shot #1

Illustration 3: Maze, completed DFS discovery

Lesson Four – Backtracking Page 5

Your Maze will be different because the randomization of available cells makes the
path unique and different each time.

Now, have some fun with the Maze!

Solved Maze
The ‘Solve’ button allows tracing back through the Maze to the origin from any
selected end point cell in the Maze.

Press the ‘Solve’ button and the path back to the origin will be solved. The linked
list ‘from’ variable in each cell provides a numeric value for the edge which
entered the Cell. This provides a reverse linked list allowing tracing back to the
orgin to be done.

Since a temporary copy of the solution is created to ‘Solve’, multiple path
‘Solve’s can be done on the same Maze solution.

Press the ‘Solve’ button and give the coordinates of a destination cell.
Illustration 4

Illustration 4: 'Solve' coordinate dialog

Lesson Four – Backtracking Page 6

8. Pick the destination cell coordinates and turn in a copy of it’s screen shot
when solved. Error: Reference source not found

The path from the specified destination is traced back to the origin. This can be
repeated multiple times from different destinations.

9. Turn this in as Screen Shot #2.

Illustration 5: Solved Maze

Origin

Destination

	Watch the last Video – this covers Backtracking using Stack
	Algorithm review
	Setup and run:
	Assignment:

	Created Maze
	Solved Maze

