
Lesson Two – No Neighbors Page 1

Install wxDFS3 wxWidgets framework and solution

First thing is to download the whole wxWidgets DFS solution.

Lessons Two and Three will go into this wxWidgets solution and duplicate the condition explained in
the video thereby limiting the complete solution.

1. Download the zip file wxDFS3X.zip for the solution:
http://web.eng.fiu.edu/watsonh/eel3 370 /Maze/Module2/wxDFS3X.zip

2. Unzip the file into the Downloads folder (Illustration 1):

3. Start Code::Blocks and create a wxWidgets application using wxSmith and allowing it to create
the default source and header files. The default files will be overwritten with the files from the
unzipped folder. First create default wxWidgets application (with wxSmith)
Start Code::Blocks
File → New → Project

See the screen shots shown below:

Illustration 1 Unzip to this exact folder

http://web.eng.fiu.edu/watsonh/eel3370/Maze/Module2/wxDFS3X.zip
http://web.eng.fiu.edu/watsonh/eel3370/Maze/Module2/wxDFS3X.zip
http://web.eng.fiu.edu/watsonh/eel3370/Maze/Module2/wxDFS3X.zip

Lesson Two – No Neighbors Page 2

The New Project Wizard starts (each dot is a screen):
• wxWidgets Project - Illustration 14
• wxWidgets 3.1x

• Illustration 3 Project Title: wxDFS3 << important use this EXACT name in your project folder
• Author: hw

Illustration 3: Use EXACT same title

Illustration 2: New wxWidgets Project

Lesson Two – No Neighbors Page 3

• Preferred GUI Builder: wxSmith Illustration 4
• Application Type: Frame Based

• Create “Release” configuration: Release - Illustration 5

• use Default wxWidgets configuration - Illustration 6

Illustration 4: wxSmith GUI Builder

Illustration 5: Create Release

Illustration 6: Default Library Settings

Lesson Two – No Neighbors Page 4

• Quit Code::Blocks. <<<<<<<<<<<<<
• Copy files from unzipped wxDFS3X/wxDFS3 folder to your wxDFS3 project folder

• Paste into the new Code::Blocks wxDFS3 Project folder and overwrite the files with same name

• Now back to the unzipped wxsmith folder. Copy and paste (overwrite) the wxDFS3frame.wxs
file into the new Project folder.

Illustration 7: Copy Files

Copy these
unzipped files

Illustration 8: Paste Files (Overwrite)

Project folder

Overwrite these
files with exact
same names

Illustration 9: Copy and Paste wxsmith file

Lesson Two – No Neighbors Page 5

• Reopen Code::Blocks wxDFS3 project - Illustration 10

Compile and run the Project:

Illustration 10: Reopen wxDFS3 project

Illustration 11: wxDFS3 Start Up Screen

Lesson Two – No Neighbors Page 6

wxWidgets Code Architecture
wxSmith is used to create the Frame and application code. See the wxDFS3Main.cpp file.

Events are created
1. when a button is pushed,
2. when the timer ticks, and
3. when the Panel is redrawn.

When wxDFS3 is running, the timer (wxTimer) runs a State Machine integrating the application with
it’s Windows framework. (EEL 4730 :-)

wxEvents generated by application:
• On Quit: void wxDFS3Frame::OnQuit(wxCommandEvent& event)
• On About: void wxDFS3Frame::OnAbout(wxCommandEvent& event)
• On Timer1: void wxDFS3Frame::OnTimer1Trigger(wxTimerEvent& event)

 Tick the State Machine

• On Panel1 Paint: void wxDFS3Frame::OnPanel1Paint(wxPaintEvent& event)
 Draw the Maze

• OnButton1: void wxDFS3Frame::OnButton1Click(wxCommandEvent& event

 Start (Timer) (optional- enter Orgin coordinates)
• OnButton2: void wxDFS3Frame::OnButton2Click(wxCommandEvent& event)

 Stop (Timer)
• OnButtonStep: void wxDFS3Frame::OnButtonStepClick(wxCommandEvent& event)

 Step (Single step Timer)
• OnButton4: void wxDFS3Frame::OnButton4Click(wxCommandEvent& event)

 Solve (Draw path from end point coordinates through Maze to origin)

OnTimer1Trigger function implements the State Machine and switches on TickState variable value to
pick the State actions: switch(MyPath.TickState)

The four States are as follows:

TNextCell to Case 4 loop is the implementation of the DFS Algorithm in the simplest form.
Illustration 12: Cases loop implements DFS Algorithm

Lesson Two – No Neighbors Page 7

Watch Coding Challenge #2 video by Daniel Shiffman
Select Part 2 of this link: https://thecodingtrain.com/challenges/10-dfs-maze-generator

Video: time wxDFSMain.cpp Lines

Part 1 review 00:00 Source split into 4 files: wxDFS3App.h,
wxDFS3App.cpp, wxDFS3Main.h,
wxDFS3Main.cpp

Cell Object review 00:40 wxDFS3Main.h references
 Cell Class

Forward tracking 01:00

Mark cell as visited 01:20 method - Cell::SetCellVisited(bool bvalue)

Current cell 01:45 Line 91 Maze Class Cell object variable

Set Current to origin 02:00 wxDFS3Main.cpp code references
Line 292 void Maze::InitExplore()

Mark current as visited 02:20 void Maze::NewCurrentFromStack ()
Line 308

02:30 Mark visited as different color MazeSetCellColor(current.x, current.y, green);
visited is green Line 322

03:35 While unvisited cells and neighbors
Does current cell have unvisited neighbors?

void Maze::TryEdge (int dx, int dy, int from)
mark tried as pink

05:08 Check each of 4 neighbors to see if
unvisited

Cases 0-3 of State Machine
Lines 193-212

05:42 make temp array Neighbors MyPath.Edges Line 195

05:48 Explore the neighbors Cases 0-3 of State Machine
Lines 193-212

07:09 Index Main.h MazeIndex (int X, int Y) Line 110

08:20 Have neighbor been visited? TryEdge Line 414 Unvisited?

08:28 Unvisited – add to neighbors array TryEdge: Line 422 Add to Edges vector

09:30 Boundaries TryEdge: Line 406 Test boundaries

11:40 If available neighbors found, pick a random
one

Case 4 of State Machine: Line 213
randomize neighbors

13:08 Mark next visited and set to current case TNextCell of State Machine Line 180

13:34 March along to identify neighbors

Run to no available neighbors AND no remove
walls

Load the Application and push ‘Step’ button
Observe the ‘Current’ (Red) and the neighbors
being explored (Pink). The log text shows each
Edge being explored and if it is available or not

https://thecodingtrain.com/challenges/10-dfs-maze-generator

Lesson Two – No Neighbors Page 8

For this lesson, modify the wxDFS3 solution to place only ONE available neighbor onto the stack.
This prevents ‘backtrack’ of Stack operating for this Lesson.

 Also, turn off the part that erases Walls. This way the solution will behave same as Video 2 example.

Note: the explored edges are pink. The solution can be single stepped by clicking ‘Step’.

The log information gives details about the algorithm execution. Try single-stepping and see
the information printed by the application.

Application modifications:

For this assignment:

1. In Case 4, comment line 225 and add code for line 226 to take only 1 edge to explore

 //for (int i=0; i<numEdges; i++)
 { int i=0; // only one neighbor, not more

2. Turn off erasing Walls by commenting out line 347 and replace with
 //switch(current.from)
 switch(5)

3. Compile and run.

The ‘Start’ button allows specifying the graph origin location.

For now, just use the default origin of X:0, Y:0, so click OK

Illustration 13: Start Button Dialog - Origin coordinates

Lesson Two – No Neighbors Page 9

The Pink squares show the cells being examined as neighbors. The algorithm can be single stepped by
pressing the ‘Step’ button. That way the exploration process can be viewed and debugged in the log
screen.
When ‘Step’ is pressed, the debugging log shows the sequence of exploration using relative
coordinates.

 Pressing ‘Start’ again will ignore the 0,0 coordinates and continue the automatic run of the algorithm
from where it is at.

Illustration 14: Log showing expansion sequence

Lesson Two – No Neighbors Page 10

4. Submit screen shot of this version configured just like Illustration 15. Note the Cell walls are
not erased yet and the application stops when there are no unvisited neighbors. (See the log
output) Yours will be different!

Illu
stration 15: Example assignment submission screen shot

	Install wxDFS3 wxWidgets framework and solution
	Compile and run the Project:

	wxWidgets Code Architecture
	wxEvents generated by application:
	The four States are as follows:

	Watch Coding Challenge #2 video by Daniel Shiffman
	Application modifications:

