

Introduction to C++ and Data Structures

What is the C++ programming language?

http://www.youtube.com/watch?v=tgY0QFszZS4

C++ Classes - Part 1 of 2 - Definition and Instantiation
http://www.youtube.com/watch?v=QKCfQtSX8Rg

Going Native 2012 Keynote Stroustrup
http://www.youtube.com/watch?v=OB-bdWKwXsU

http://www.youtube.com/watch?v=OB-bdWKwXsU

Unrestricted Access - Bad
In a procedural program, one written in C for example, there are two kinds of data.
Local data is hidden inside a function, and is used exclusively by the function.

However, when two or more functions must access the same data—and this is true of the most
important data in a program—then the data must be made global, as our collection of inventory
items is. Global data can be accessed by any function in the program

 In a large program, there are many functions and many global data items. The problem with
the procedural paradigm is that this leads to an even larger number of potential connections
between functions and data, as shown in Figure 1.2

 This large number of connections causes problems in several ways. First, it makes a
program’s structure difficult to conceptualize. Second, it makes the program difficult to modify.
A change made in a global data item may necessitate rewriting all the functions that access
that item

Real-World Modeling
The second—and more important—problem with the
procedural paradigm is that its arrangement of
separate data and functions does a poor job of
modeling things in the real world. In the physical world we
deal with objects such as people and cars. Such objects aren’t
like data and they aren’t like functions. Complex real-world
objects have both attributes and behavior.
 Attributes (Properties)
Examples of attributes (sometimes called characteristics) are,
for people, eye color and job title; and, for cars, horsepower
and number of doors. As it turns out, attributes in the real
world are equivalent to data in a program: they have a certain
specific values, such as blue (for eye color) or four (for the
number of doors).
 Behavior (Methods)
Behavior is something a real-world object does in response to
some stimulus. If you ask your boss for a raise, she will
generally say yes or no. If you apply the brakes in a car, it will
generally stop. Saying something and stopping are examples
of behavior.
Behavior is like a function: you call a function to do something
(display the inventory, for example) and it does it.So neither
data nor functions, by themselves, model real-world objects
effectively.

The Object-Oriented Approach
The fundamental idea behind object-oriented languages is to
combine into a single unit both data and the functions that
operate on that data. Such a unit is called an
Object

 An object’s functions (methods), called member functions in
C++, typically provide the only way to access its data. If you want
to read a data item in an object, you call a member function in the
object. It will access the data and return the value to you. You
can’t access the data directly.

The data is hidden (properties), so it is safe from accidental
alteration. Data and its functions are said to be encapsulated into
a single entity. Data encapsulation and data hiding are key
terms in the description of object-oriented languages.

If you want to modify the data in an object, you know exactly what
functions interact with it: the member functions in the object. No
other functions can access the data. This simplifies writing,
debugging, and maintaining the program.

OOP: An Approach to Organization
Object-oriented programming is not primarily concerned with the details of program
operation. Instead, it deals with the overall organization of the program.
Most individual program statements in C++ are similar to statements in procedural
languages, and many are identical to statements in C. Indeed, an entire member
function in a C++ program may be very similar to a procedural function in C. It is
only when you look at the larger context that you can determine whether a statement
or a function is part of a procedural C program or an object-oriented C++ program

Organization

Objects
When you approach a
programming problem in an
object-oriented language, you no
longer ask how the problem will
be divided into functions, but
how it will be divided into
objects.

Thinking in terms of objects,
rather than functions, has a
surprisingly helpful effect on how
easily programs can be
designed. This results from the
close match between objects in
the programming sense and
objects in the real world.

 • Physical objects
 Automobiles in a traffic-flow simulation
Electrical components in a circuit-design program
Countries in an economics model
Aircraft in an air traffic control system

• Elements of the computer-user environment
Windows
Menus
Graphics objects (lines, rectangles, circles)
The mouse, keyboard, disk drives, printer

• Data-storage constructs
Customized arrays
Stacks
Linked lists
Binary trees

• Human entities
Employees
Students
Customers
Salespeople

• Collections of data
An inventory
A personnel file
A dictionary
A table of the latitudes and longitudes of world cities

• User-defined data types
Time
Angles
Complex numbers
Points on the plane

Object-oriented programming
Object-oriented programming is a programming paradigm that uses abstraction to create
models based on the real world. It uses several techniques from previously established
paradigms, including modularity, polymorphism, and encapsulation. Today, many popular
programming languages (such as Java, JavaScript, C#, C++, Python, PHP, Ruby and
Objective-C) support object-oriented programming (OOP).

Object-oriented programming may be seen as the design of software using a collection
of cooperating objects, as opposed to a traditional view in which a program may be
seen as a collection of functions, or simply as a list of instructions to the computer.
In OOP, each object is capable of receiving messages, processing data, and sending
messages to other objects. Each object can be viewed as an independent little
machine with a distinct role or responsibility.

Object-oriented programming is intended to promote greater flexibility and maintainability in
programming, and is widely popular in large-scale software engineering. By virtue of its
strong emphasis on modularity, object oriented code is intended to be simpler to
develop and easier to understand later on, lending itself to more direct analysis, coding,
and understanding of complex situations and procedures than less modular programming
methods.2

https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_Object-Oriented_JavaScript#Reference

 http://www-h.eng.cam.ac.uk/help/tpl/languages/C++/doc/doc.pdf

http://www-h.eng.cam.ac.uk/help/tpl/languages/C++/doc/doc.pdf

https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_Object-Oriented_JavaScript

Terminology
Class

Defines the characteristics of the Object.

Object

An Instance of a Class.

Property

An Object characteristic, such as color.

Method

An Object capability, such as walk.

Constructor

A method called at the moment of instantiation.

Inheritance

A Class can inherit characteristics from another Class.

Encapsulation

A Class defines only the characteristics of the Object, a method defines only how the method executes.

Abstraction

The conjunction of complex inheritance, methods, properties of an Object must be able to simulate a
reality model.

Polymorphism

Different Classes might define the same method or property

https://developer.mozilla.org/en-US/docs/JavaScript/Introduction_to_Object-Oriented_JavaScript

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

