Functions Review

/[function example

#include <iostream> The first result is 5
using namespace std; The second result is 5
The third result is 2

int subtraction (int a, int b) The fourth result is 6
{

int r;

r=a-b;

return (r);
}
int main ()
{

int x=95, y=3, z;

z = subtraction (7,2);

cout << "The first result is " << z << '\n";

cout << "The second result is " << subtraction (7,2) << "\n';
cout << "The third result is " << subtraction (x,y) << '\n';
z= 4 + subtraction (x,y);

cout << "The fourth result is " << z << '\n"

return O;

http://cplusplus.com/doc/tutorial/functions/

roid duplicate (int& a,int& b,int& c)

Y F &

duplicate (T A v . g)

1 // passing parameters by reference

2 #include <iostream>

3 using namespace std;

, , _ _ _ X=2, y=6, z=14
void duplicate (int& a, int& b, int& c)
{

2.
2,
2.

2 OC0O~NO O~
—

12 int main ()

13 {

14 int x=1, y=3, z=7,

15 duplicate (x, v, z);

16 cout << "x="<<x<<" y="<<y<<" z="<< z;
17 return O;

18 }

Overloaded functions

/l overloaded function
#include <iostream>
using namespace std;

int operate (int a, int b)
{
return (a*b);

}

float operate (float a, float b)

{

return (a/b);

}

int main ()

{
int x=5,y=2;
float n=5.0,m=2.0;
cout << operate (X,y);
cout << "\n";
cout << operate (n,m);
cout << "\n";
return O;

10
2.5

Recursion

// factorial calculator Please type a number: 9
#include <iostream> 9! = 362880
using namespace std;

long factorial (long a)
{
if (@>1)
return (a * factorial (a-1));
else
return (1);

}

int main ()
{
long number;
cout << "Please type a number: ";
cin >> number;
cout << number << "l =" << factorial (number);
return O;

Function Prototypes

Type a number (0 to exit): 9
Number is odd.

Type a number (0 to exit): 6
Number is even.

Type a number (0 to exit): 1030
Number is even.

Type a number (0 to exit): 0
Number is even.

/I declaring functions prototypes
#include <iostream>
using namespace std;

void odd (int a);
void even (int a);

int main ()

{

10 inti;

11 do{

12 cout << "Type a number (0 to exit): ;
13 cin>>;

OCoOoONOOOTPR,WN -~

14 odd (i);

15 } while (i'=0);
16 return O;

17 }

18

19 void odd (int a)
20 {

21 if ((a%2)!=0) cout << "Number is odd.\n";
22 else even (a);

23 }

24

25 void even (int a)

26 {

27 if (@%2)==0) cout << "Number is even.\n";
28 else odd (a);

29 }

Reference operator

Consider the following code fragment:

landy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are shown in the following diagram:
andy

25
1775 1776 1777

e £\
25 | 1776

First, we have assigned the value 25 to andy (a variable whose address in memory we have assumed to be 1776),

fred ted

The second statement copied to fred the content of variable andy {which is 25). This is a standard assignment
operation, as we have done so many times before,

Dereference operator

beth = *ted:

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since tedis 1776, and the
value pointed by 1776 is 25.

ted
1776

1775 1776 1777
295

(remory)

+
29
heth

You must clearly differentiate that the expression ted refers to the value 1776, while *ted (with an asterisk * preceding
the identifier) refers to the value stored at address 1776, which in this case is 25, Notice the difference of including or not

including the dereference operator (I have included an explanatory commentary of how each of these two expressions
could be read):

Using Pointers

firstvalue is 10

1 // using pointers secondvalue is 20

#include <iostream>
using namespace std;

{

2

3

4

5 int main ()
6

7 int firstvalue = 5, secondvalue = 15;

8 int*p1,*p2;

9

10 p1 = &firstvalue; // p1 = address of firstvalue

11 p2 = &secondvalue; // p2 = address of secondvalue

12 *p1=10; // value pointed by p1 =10

13 *p2 ="*p1; // value pointed by p2 = value pointed by p1
14 p1=p2; // p1 = p2 (value of pointer is copied)

15 *p1 = 20; // value pointed by p1 = 20

16

17 cout << "firstvalue is " << firstvalue << end|I;
18 cout << "secondvalue is " << secondvalue << endI;
19 return O;

/[more pointers
#include <iostream>
using namespace std;

int main ()
{

int numbers[5];

int * p;

p = numbers; *p = 10;
10 p++; *p = 20;
11 p = &numbers|[2]; *p = 30;
12 p =numbers + 3; *p = 40;
13 p = numbers; *(p+4) = 50;
14 for (int n=0; n<5; n++)
15 cout << numbers[n] << ", ";
16 return O;

O©COoONOOOP,WN -

10, 20, 30, 40, 50,

Pointer Arithmetic

Increment is sizeof(type)

mychar++;
myshort++;
- mylong++;

mychar, as you may expect, would contain the value 1001, But not so obviously, myshort would contain the value
2002, and my long would contain 3004, even though they have each been increased only once. The reason is that
when adding one to a pointer we are making it to point to the following element of the same type with which it has
been defined, and therefore the size in bytes of the type pointed is added to the pointer.

1000 1001

pu—
muthar-—1++

2000 2001 2002 2003

-—
mwghnrt-—————1++

3000 3001 3002 3003 3004 3005 3006 3007

o

I i I I
I i i i
I i I I
I i I 1
i A i i

mylong I ++

Thic la cemllccalkla hatle tiilh e caddlicce ced cile b alle

S o | R

void pointers

The void type of pointer is a special type of pointer. In C++, void represents the absence of type, so void pointers
are pointers that point to a value that has no type (and thus also an undetermined length and undetermined
dereference properties),

This allows void pointers to point to any data type, from an integer value or a float to a string of characters, But in
exchange they have a great limitation: the data pointed by them cannot be directly dereferenced (which is logical,
since we have no type to dereference to), and for that reason we will always have to cast the address in the void
pointer to some other pointer type that points to a concrete data type before dereferencing it.

/] increaser
#ir)clude <iostream> y, 1603
using namespace std;

void increase (void* data, int psize)

{
if (psize == sizeof(char))
{ char* pchar; pchar=(char*)data; ++(*pchar); }
else if (psize == sizeof(int))

10 {int* pint; pint=(int*)data; ++(*pint); }

OCONOOGAPLWN -

11}

12

13 int main ()
14 {

15 chara="'x"
16 intb =1602;

17 increase (&a,sizeof(a));

18 increase (&b,sizeof(b));

19 cout<<a<<" "<<b<<end,
20 return O;

21}

Pointers to functions

O©CoOoO~NOOOPRWN -~

10

11 int operation (int x, inty, int (*functocall)(int,int))

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// pointer to functions
#include <iostream>
using namespace std;

int addition (int a, int b)

{

return (a+b); }

int subtraction (int a, int b)

{

{

}

return (a-b); }

int g;
g = (*functocall)(x,y);
return (Q);

int main ()

{

}

int m,n;
int (*minus)(int,int) = subtraction;

m = operation (7, 5, addition);
n = operation (20, m, minus);
cout <<n;

return O;

C++ allows operations with pointers to
functions.

The use of this is for passing a
function as an argument to another
function, since these cannot be
passed dereferenced.

In order to declare a pointer to a
function we have to declare it like the
prototype of the function except that
the name of the function is enclosed
between parentheses () and an
asterisk (*) is inserted before the
name:

Data Structures

A data structure creates a new type: Once a data structure is
declared, a new type with the identifier specified as
structure_name is created and can be used in the rest of the
program as if it was any other type.

Once declared, product has become a new valid type name like
the fundamental ones int, char or short and from that point on we
are able to declare objects (variables) of this compound new type,
like we have done with apple, banana and melon

1. struct product {

2. int weight; 1. struct product {

3. float price; or 2- intweight;

4.}; 3. float price;

5. 4. } apple, banana, melon;

6. product apple;

/. product banana, melon;
apple.weight
apple.price

banana.weight
banana.price
melon.weight
melon.price

1. /] pointers to structures
Pointers to Structures 2. #include <iostream>
3. #include <string>
4. #include <sstream>
5. using namespace std;
6.
7. struct movies_t{
8. string title;
9. intyear;
10.};
11.

_ : 12.int main ()
Enter title: Invasion of the body snatchers 13 ¢

Enter year: 1978 14. string mystr;
15.
You have entered: 16. movies_t amovie;

Invasion of the body snatchers (1978) 17. movies_t * pmovie;
18. pmovie = &amovie;

19.

20. cout << "Enter title: ";

21. getline (cin, pmovie->title);

22. cout << "Enter year: ";

23. getline (cin, mystr);

24. (stringstream) mystr >> pmovie->year;
25.

26. cout << "\nYou have entered:\n";

27. cout << pmovie->title;

28. cout <<" (" << pmovie->year << ")\n";
29.

30. return O;

31.}

Defining data types (typedef)

C++ allows the definition of
our own types based on other
existing data types. We can
do this using the keyword
typedef

In this case we have defined
four data types:

C, ischar

WORD, is unsigned int
pChar is char pointer

field as array of char

that we could perfectly use in
declarations later as any other
valid type:

1. typedef char C;

2. typedef unsigned int WORD;
3. typedef char * pChar;

4. typedef char field [50];

1. C mychar, anotherchar, *ptc1;
2. WORD myword;

3. pChar ptc2;

4. field name;

Enumerations enum enumeration_name {
value1,
value2,
value3,

} object_names;

enum colors_t {black, blue, green, cyan, red, purple, yellow, white};

1. colors_t mycolor;

2.

3. mycolor = blue;

4. if (mycolor == green) mycolor = red;

We can explicitly specify an integer value for any of the constant values that our enumerated type can take. If the
constant value that follows it is not given an integer value, it is automatically assumed the same value as the previous
one plus one. For example:

enum months_t { january=1, february, march, april,
may, june, july, august,
september, october, november, december} y2k;

In this case, variable y2k of enumerated type months_t can contain any of the 12 possible values that go from january
to december and that are equivalent to values between 1 and 12 (not between 0 and 11, since we have made january
equal to 1).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

