

C++ Language Basics

Chapter 1. Getting Started

1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions, one of which must be named
main. The operating system runs a C++ program by calling main.

Here is a simple version of main that does nothing but return a value to the operating
system:

int main()
{
return 0;
}

A function definition has four elements:

● return type,
● function name,
● (possibly empty) parameter list enclosed in parentheses,
● function body.

Although main is special in some ways, we define main the same way we define
any other function.

1.2. A First Look at Input/Output

The C++ language does not define any statements to do input or output
(IO). Instead, C++ includes an extensive standard library that provides IO
(and many other facilities).

a few basic concepts and operations from the IO library can get
programming started

Most of the examples in this book use the iostream library. Fundamental to
the iostream library are two types named istream and ostream, which
represent input and output streams, respectively.

A stream is a sequence of characters read from or written to an IO device.
The term stream is intended to suggest that the characters are generated,
or consumed, sequentially over time

Standard Input and Output Objects
The library defines four IO objects.

● Input, we use an object of type istream named cin (pronounced see-in).
This object is also referred to as the standard input.

● Output, we use an ostream object named cout (pronounced
see-out). This object is also known as the standard output.

● The library also defines two other ostream objects, named cerr and clog
(pronounced see-err and see-log, respectively).

● We typically use cerr, referred to as the standard error, for warning and
error messages and

● clog for general information about the execution of the program

#include <iostream>
int main()
{
 std::cout << "Enter two numbers:" << std::endl;
 int v1 = 0, v2 = 0;
 std::cin >> v1 >> v2;
 std::cout << "The sum of " << v1 << " and " << v2
 << " is " << v1 + v2 << std::endl;
 return 0;
}

Using Names from the Standard Library
note that this program uses std::cout and std::endl rather
than just cout and endl. The prefix std:: indicates that the names cout
and endl are defined inside the namespace named std.

Namespaces

allow avoiding inadvertent collisions between the names we define and uses of
those same names inside a library. All the names defined by the standard
library are in the std namespace.

One side effect of the library’s use of a namespace is that when we use a
name from the library, we must say explicitly that we want to use the name
from the std namespace.

Scope Operator
Writing std::cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std.

 § 3.1 (p.82) shows a simpler way to access names from the library.

Up to now, our programs have explicitly indicated that each library name we use is in
the std namespace. For example, to read from the standard input, we write
std::cin. These names use the scope operator (::) (§ 1.2, p. 8), which says that
the compiler should look in the scope of the left-hand operand for the name of the
right-hand operand. Thus, std::cin says that we want to use the name cin from
the namespace std.
Referring to library names with this notation can be cumbersome. Fortunately, there
are easier ways to use namespace members. The safest way is a using declaration.
§ 18.2.2 (p. 793) covers another way to use names from a namespace.
A using declaration lets us use a name from a namespace without qualifying the
name with a namespace_name:: prefix. A using declaration has the form
using namespace::name;
Once the using declaration has been made, we can access name directly:

A Separate using Declaration Is Required for Each Name

3.1. Namespace using Declarations

#include <iostream>
// using declarations for names from the standard library
using std::cin;
using std::cout; using std::endl;
int main()
{
cout << "Enter two numbers:" << endl;
int v1, v2;
cin >> v1 >> v2;
cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << endl;
return 0;
}

18.2.2. Using Namespace Members using Directives

A using directive, like a using declaration, allows us to use the unqualified form of
a namespace name. Unlike a using declaration, we retain no control over which
names are made visible—they all are.

A using directive begins with the keyword using, followed by the keyword
namespace, followed by a namespace name. It is an error if the name is not a
previously defined namespace name. A using directive may appear in global, local, or
namespace scope. It may not appear in a class scope.
These directives make all the names from a specific namespace visible without
qualification. The short form names can be used from the point of the using directive
to the end of the scope in which the using directive appears.

In the case of a using declaration, we
are simply making name directly accessible in the local scope. In contrast, a using
directive makes the entire contents of a namespace available In general, a namespace
might include definitions that cannot appear in a local scope. As a consequence, a
using directive is treated as if it appeared in the nearest enclosing namespace scope.

When a namespace is injected into an enclosing scope, it is possible for names in
the namespace to conflict with other names defined in that (enclosing) scope.

Caution: Avoid using Directives
using directives, which inject all the names from a namespace, are deceptively
simple to use: With only a single statement, all the member names of a
namespace are suddenly visible. Although this approach may seem simple, it can
introduce its own problems. If an application uses many libraries, and if the
names within these libraries are made visible with using directives, then we are
back to square one, and the global namespace pollution problem reappears.
Moreover, it is possible that a working program will fail to compile when a new
version of the library is introduced. This problem can arise if a new version
introduces a name that conflicts with a name that the application is using.

1.4.3. Reading an Unknown Number of Inputs

#include <iostream>
int main()
{
 int sum = 0, value = 0;
 // read until end-of-file, calculating a running total of all values read
 while (std::cin >> value)
 sum += value; // equivalent to sum = sum + value
 std::cout << "Sum is: " << sum << std::endl;
 return 0;
}

If we give this program the input
3 4 5 6
then our output will be 18

Numbers are separated by white space. Each value is read until an end-of-line or white space
is encountered.

When we use an istream as a condition, the effect is to test the state of the stream. If
the stream is valid—that is, if the stream hasn’t encountered an error—then the test succeeds.

An istream becomes invalid when we hit end-of-file or encounter an invalid input, such as
reading a value that is not an integer. An istream that is in an invalid state will cause the
condition to yield false.

Header Files

Although we can define a class inside a function, such classes have
limited functionality. As a result, classes ordinarily are not defined
inside functions.

When we define a class outside of a function, there may be only one
definition of that class in any given source file. In addition, if we use a
class in several different files, the class’ definition must be the same in
each file.

In order to ensure that the class definition is the same in each file,
classes are usually defined in header files.

Typically, classes are stored in headers whose name derives from the
name of the class. For example, the string library type is defined in
the string header. Similarly, as we’ve already seen, we will define our
Sales_data class in a header file named Sales_data.h.

Header & Source files (abc.h and abc.cpp from Stroustrup p 262)

Header Guards

C++ programs also use the preprocessor to define header guards. Header guards
rely on preprocessor variables.

Preprocessor variables have one of two possible states: defined or not defined. The
#define directive takes a name and defines that name as a preprocessor variable.

There are two other directives that test whether a given preprocessor variable has or
has not been defined: #ifdef is true if the variable has been defined, and #ifndef is
true if the variable has not been defined. If the test is true, then everything following
the #ifdef or #ifndef is processed up to thematching #endif.

We can use these facilities to guard against multiple inclusion as follows:

#ifndef SALES_DATA_H
#define SALES_DATA_H
#include <string>
struct Sales_data {
 std::string bookNo;
 unsigned units_sold = 0;
 double revenue = 0.0;
};
#endif

2.4. const Qualifier

We can make a variable unchangeable by defining the variable’s type as
const:

const int bufSize = 512; // input buffer size
defines bufSize as a constant. Any attempt to assign to bufSize is an error:

Because we can’t change the value of a const object after we create it, it must be
initialized. As usual, the initializer may be an arbitrarily complicated expression:

When a const object is initialized from a compile-time constant

const int bufSize = 512; // input buffer size

the compiler will usually replace uses of the variable with its corresponding value
during compilation. That is, the compiler will generate code using the value 512 in the
places that our code uses bufSize.

When we split a program into multiple files, every file that uses the const
must have access to its initializer. In order to see the initializer, the variable must be
defined in every file that wants to use the variable’s value. To support
this usage, yet avoid multiple definitions of the same variable, const variables are
defined as local to the file. When we define a const with the same name in multiple files, it
is as if we had written definitions for separate variables in each file.

Sometimes we have a const variable that we want to share across multiple files
but whose initializer is not a constant expression. In this case, we don’t want the
compiler to generate a separate variable in each file. Instead, we want the const
object to behave like other (nonconst) variables. We want to define the const in
one file, and declare it in the other files that use that object.

To define a single instance of a const variable, we use the keyword extern on
both its definition and declaration(s):

// file_1.cc defines and initializes a const that is accessible to other files
extern const int bufSize = fcn();
// file_1.h
extern const int bufSize; // same bufSize as defined in file_1.cc

In this program, file_1.cc defines and initializes bufSize. Because this declaration
includes an initializer, it is (as usual) a definition. However, because bufSize is
const, we must specify extern in order for bufSize to be used in other files.
The declaration in file_1.h is also extern. In this case, the extern signifies
that bufSize is not local to this file and that its definition will occur elsewhere.

Extern keyword

Exercises Section 2.4.2

C++ is a strongly typed language

Stroustrup

Everything has a type declaration – The compiler strongly checks type agreement

Wrong

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

