Chapter 12: Structures & Properties of Ceramics

- Structures of ceramic materials:
 - How do they differ from those of metals?
- Point defects:
 - How are they different from those in metals?
- Impurities:
 - How are they accommodated in the lattice and how do they affect properties?
- Mechanical Properties:
 - What special provisions/tests are made for ceramic materials?

Ceramic Bonding

- Bonding:
 - -- Mostly ionic, some covalent.
 - -- % ionic character increases with difference in electronegativity.
- Large vs small ionic bond character:

Adapted from Fig. 2.7, Callister 7e.

Ionic Crystals

Table 12.1 For Several Ceramic Materials, Percent Ionic Character of the Interatomic Bonds

Material	Percent Ionic Character	Cation Radius (nm)	Anion Radius (nm)
CaF ₂	89	0.100	0.133
MgO	73	0.072	0.14
NaCl	67	0.102	0.182
Al_2O_3	63	0.053	0.140
SiO_2	51	0.040	0.140
Si_3N_4	30		
ZnS	18		
SiC	12		

Most ionic crystals can be considered as close-packed structure of anions with cations in the interstitial sites.

Cations: metallic ions, positively charged

Anions: nonmetallic ions, negatively charged

Note: larger anion radius

Ceramic Crystal Structures

Oxide structures

- oxygen anions much larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations in the holes of the oxygen lattice

Site Selection

Which sites will cations occupy?

- 1. Size of sites
 - does the cation fit in the site
- 2. Stoichiometry
 - if all of one type of site is full, the remainder have to go into other types of sites.
- 3. Bond Hybridization

Ionic Bonding & Structure

- 1. Size Stable structures:
 - --maximize the # of nearest oppositely charged neighbors.

unstable

stable

Adapted from Fig. 12.1, Callister 7e.

stable

- Charge Neutrality:
 - --Net charge in the structure should be zero.

--General form:

m, p determined by charge neutrality

Coordination # and Ionic Radii

· Coordination # increases with

rcation ranion

Issue: How many anions can you arrange around a cation?

rcation ranion	Coord #	d
< 0.155	2	linear
0.155 - 0.225	3	triangular
0.225 - 0.414	4	T_D
0.414 - 0.732	2 6	O_H
0.732 - 1.0 Adapted from Tal Callister 7e.	8 ole 12.2,	cubic

Cation-anion stable configuration

FIGURE 12.1 Stable and unstable anion–cation coordination configurations. Open circles represent anions; colored circles denote cations.

e.g. 3-coordinate

Anion

Minimum ratio for 3-coordinate

when
$$\cos \alpha = \frac{r_A}{r_A + r_C}$$

Rewrite as

$$\frac{r_C}{r_A} = \frac{1}{\cos \alpha} - 1$$

With $\alpha = 30^{\circ}$

$$\frac{r_C}{r_A} = 0.155$$

Cation Site Size

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for O_H site (C.N. = 6)

$$2r_{\text{anion}} + 2r_{\text{cation}} = 2\sqrt{2}r_{\text{anion}}$$

$$r_{\text{anion}} + r_{\text{cation}} = \sqrt{2} r_{\text{anion}}$$
 $r_{\text{cation}} = (\sqrt{2} - 1) r_{\text{anion}}$

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = 0.414$$

Site Selection II

2. Stoichiometry

 If all of one type of site is full, the remainder have to go into other types of sites.

Ex: FCC unit cell has 4 O_H and 8 T_D sites.

If for a specific ceramic each unit cell has 6 cations and the cations prefer O_H sites

4 in O_H

 $2 \text{ in } T_D$

Interstitial sites in FCC

Octahedral (O_h) sites

1 at the center

Net 4 O_h sites/unit cell

12 middle of the edge sites (each shared by 4 unit cells)

Tetrahedral (T_d) sites

Net 8 T_d sites/unit cell

Site Selection III

- 3. Bond Hybridization significant covalent bonding
 - the hybrid orbitals can have impact if significant covalent bond character present
 - For example in SiC
 - $X_{Si} = 1.8$ and $X_{C} = 2.5$

% ionic character = 100 {1- exp[-0.25($X_{Si} - X_{C})^{2}$]} = 11.5%

- ca. 89% covalent bonding
- both Si and C prefer sp³ hybridization
- Therefore in SiC get T_D sites

Example: Predicting Structure of FeO

 On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation Ionic radius (nr	n)
-------------------------	----

AI3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca^{2+}	0.100

Anion

O ² -	0.140
CI ⁻	0.181
F-	0.133

Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$$
$$= 0.550$$

based on this ratio,

$$--$$
coord # = 6

Rock Salt Structure

Same concepts can be applied to ionic solids in general. Example: NaCl (rock salt) structure

o Na⁺ $r_{Na} = 0.102 \text{ nm}$

$$r_{Cl} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

 \therefore cations prefer O_H sites

Adapted from Fig. 12.2, *Callister 7e.*

MgO and FeO

MgO and FeO also have the NaCl structure

$$O^{2-}$$
 $r_{\rm O} = 0.140 \text{ nm}$

$$Mg^{2+}$$
 $r_{Mg} = 0.072 \text{ nm}$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

 \therefore cations prefer O_H sites

Adapted from Fig. 12.2, Callister 7e.

So each oxygen has 6 neighboring Mg²⁺

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

$$\frac{r_{\text{Cs}^+}}{r_{\text{Cl}^-}} = \frac{0.170}{0.181} = 0.939$$

.. cubic sites preferred

So each Cs⁺ has 8 neighboring Cl⁻

Adapted from Fig. 12.3, *Callister 7e.*

AX Crystal Structures

Zinc Blende structure

Ex: ZnO, ZnS, SiC

$$\frac{r_{\rm Zn^{2+}}}{r_{\rm O^{2-}}} = \frac{0.074}{0.140} = 0.529 \implies O_H??$$

- Size arguments predict Zn²⁺ in O_H sites,
- In observed structure Zn^{2+} in T_D sites
- Why is Zn^{2+} in T_D sites?
 - bonding hybridization of zinc favors T_D sites

So each Zn²⁺ has 4 neighboring O²⁻

AX₂ Crystal Structures

Fluorite structure

Adapted from Fig. 12.5, *Callister 7e.*

- Calcium Fluorite (CaF₂)
- cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- antifluorite structure cations and anions reversed

ABX₃ Crystal Structures

Perovskite

Ex: complex oxide BaTiO₃

Adapted from Fig. 12.6, *Callister 7e.*

Mechanical Properties

We know that ceramics are more brittle than metals. Why?

- Consider method of deformation
 - slippage along slip planes
 - in ionic solids this slippage is very difficult
 - too much energy needed to move one anion past another anion

Ceramic Density Computation

Number of formula units/unit cell

$$\rho = \frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}}$$

Volume of unit cell

n' = number of cations in unit cell

 A_C = atomic weight of cation

 n_A = number of anions in unit cell

 A_A = atomic weight of anion

 V_C = volume of unit cell

 N_A = Avogadro's number

Theoretical Density Calculation of NaCl

$$\rho = \frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}}$$

$$A_{Na} = 22.99 \text{ g/mol}$$

$$A_{Cl} = 35.45 \text{ g/mol}$$

$$a = 2(r_{Na+} + r_{Cl}) = 2(0.102 + 0.181) \text{ nm}$$

Thus,
$$Vc = a^3 = (2r_{Na+} + 2r_{Cl-})^3$$

And n' is 4 pair of Na and Cl in one unit cell finally,

 $a=2(r_{Na+}+r_{Cl}-)$

$$\rho = \frac{n'(A_{Na} + A_{Cl})}{(2r_{Na+} + 2r_{Cl-})^3 N_A} = 2.14g / cm^3$$

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) structures are quartz, crystobalite, & tridymite
- The strong Si-O bond leads to a strong, high melting material (1710°C)

Amorphous Silica

- Silica gels amorphous SiO₂
 - Si⁴⁺ and O²⁻ not in well-ordered lattice
 - Charge balanced by H⁺ (to form OH⁻) at "dangling" bonds
 - very high surface area > 200 m²/g
 - SiO₂ is quite stable, therefore unreactive
 - makes good catalyst support

Silica Glass

- Dense form of amorphous silica
 - Charge imbalance corrected with "counter cations" such as Na+
 - Borosilicate glass is the pyrex glass used in labs
 - better temperature stability & less brittle than sodium glass

Silicates

 Combine SiO₄⁴⁻ tetrahedra by having them share corners, edges, or faces

 Cations such as Ca²⁺, Mg²⁺, & Al³⁺ act to neutralize & provide ionic bonding

Layered Silicates

- Layered silicates (clay silicates)
 - SiO₄ tetrahedra connected together to form 2-D plane

- $(Si_2O_5)^{2-}$
- So need cations to balance charge

Layered Silicates

Kaolinite clay alternates (Si₂O₅)²⁻ layer with Al₂(OH)₄²⁺

Note: these sheets loosely bound by van der Waal's forces

Layered Silicates

- Can change the counterions
 - this changes layer spacing
 - the layers also allow absorption of water
- Micas $KAI_3Si_3O_{10}(OH)_2$
 - smooth surface for AFM sample holder
- Bentonite
 - used to seal wells
 - packaged dry
 - swells 2-3 fold in H₂O
 - pump in to seal up well so no polluted ground water seeps in to contaminate the water supply.

Carbon Forms

- Carbon black amorphous surface area ca. 1000 m²/g
- Diamond
 - tetrahedral carbon
 - hard no good slip planes
 - brittle can cut it
 - large diamonds jewelry
 - small diamonds
 - often man made used for cutting tools and polishing
 - diamond films
 - hard surface coat tools, medical devices, etc.

Adapted from Fig. 12.15, *Callister 7e.*

Carbon Forms - Graphite

layer structure – aromatic layers

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

Carbon Forms - Graphite

Carbon Forms – Fullerenes and Nanotubes

- Fullerenes or carbon nanotubes
 - wrap the graphite sheet by curving into ball or tube
 - Buckminister fullerenes
 - Like a soccer ball C_{60} also C_{70} + others

Diamond-like Carbon Film

- Ultralow friction surface
- http://en.wikipedia.org/wiki/Diamondlike_carbon

Defects in Ceramic Structures

- Frenkel Defect
 - --a cation is out of place.
- Shottky Defect
 - --a paired set of cation and anion vacancies.

Adapted from Fig. 12.21, *Callister 7e.* (Fig. 12.21 is from W.G. Moffatt, G.W. Pearsall, and J. Wulff, *The Structure and Properties of Materials*, Vol. 1, *Structure*, John Wiley and Sons, Inc., p. 78.)

• Equilibrium concentration of defects $\sim e^{-Q_D / kT}$

Impurities

• Impurities must also satisfy charge balance = Electroneutrality

• Ex: NaCl Na+ Cl-

Substitutional cation impurity

Substitutional anion impurity

Ceramic Phase Diagrams

For the MgO/Al₂O₃ phase diagram, what are the:

- a) Composition of the MgO (ss) phase for a 40 wt% Al₂O₃ alloy at 1800°C?
- b) Chemical formula of the interceramic compound?
- c) Composition of the eutectic alloy with the lowest MgO composition?
- d) Primary phase for a 30 wt% Al₂O₃ alloy cooled from the liquid phase to room temperature?
- e) Solubility of Al₂O₃ in MgO at 1900°C?

a) Composition of the MgO(ss) phase:

MgO: 92-93 wt%, Al2O3: 7-8 wt%

- b) Chemical formula of the interceramic compound: MgAl2O4
- c) Composition of the eutectic alloy with the lowest MgO composition:

MgO: 6-7 wt%, Al2O3: 93-94 wt%

d) Primary phase for a 30 wt% Al2O3 alloy cooled from the liquid phase to room temperature:

MgO(ss)

e) Solubility of Al2O3 in MgO at 1900 °C:

12-13 wt%

Measuring Elastic Modulus

- Room T behavior is usually elastic, with brittle failure.
- 3-Point Bend Testing often used.
 - --tensile tests are difficult for brittle materials (ε <0.1%).

Determine elastic modulus according to:

$$E = \frac{F}{\delta} \frac{L^3}{4bd^3} = \frac{F}{\delta} \frac{L^3}{12\pi R^4}$$
rect. circ. cross section section

Measuring Strength

3-point bend test to measure room T strength.

• Flexural strength:

 $\sigma_{fs} = \frac{1.5F_f L}{bd^2} = \frac{F_f L}{\pi R^3}$ $F_f \uparrow F \downarrow \delta$

• Typ. values:

Material	$\sigma_{fS}(MPa)$	E(GPa)
Si nitride	250-1000	304
Si carbide	100-820	345
Al oxide	275-700	393
glass (soda)	69	69

Data from Table 12.5, Callister 7e.

Measuring Elevated *T* **Response**

• Elevated Temperature Tensile Test ($T > 0.4 T_m$).

Summary

- Ceramic materials have covalent & ionic bonding.
- Structures are based on:
 - -- charge neutrality
 - -- maximizing # of nearest oppositely charged neighbors.
- Structures may be predicted based on:
 - -- ratio of the cation and anion radii.
- Defects
 - -- must preserve charge neutrality
 - -- have a concentration that varies exponentially w/T.
- Room T mechanical response is elastic, but fracture is brittle, with negligible deformation.
- Elevated *T* creep properties are generally superior to those of metals (and polymers).