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Chapter 33 

 

 Response Surface Methodology 

Introduction 

• Response Surface Methodology (RSM) is used to determine 

how a response is affected by a set of quantitative factors 

over some specified region.  

• This information can be used to optimize the settings of a 

process to give a maximum or minimum response.  

• For a given number of variables, response surface analysis 

techniques require more trials than the two-level fractional 

factorial design techniques; hence. the number of variables 

considered in an experiment may first need to be reduced 

through either technical considerations or fractional factorial 

experiments. 
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Introduction 

• This chapter explains how to apply central composite 

rotatable and Box-Behnken designs for determining the 

response surface analysis of variables. 

• It discusses extreme vertices and simplex lattice designs 

along with computer algorithm designs for mixture designs. 

33.1 Modeling Equations 

• The previous DOE chapters covering 2-level fractional 

factorial experimentation considered main effects and 

interaction effects.  For these designs the response was 

assumed to be linear between the levels of the factors.  

• The general approach of investigating factor extremes 

addresses problems expediently with a minimal number of 

test trials. This form of experimentation is adequate in itself 

for solving many types of problems, but there are situations 

in which a response needs to be optimized as a function of 

the levels of a few input factors. This chapter focuses on 

such situations. 
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33.1 Modeling Equations 

• The prediction equation for a two-factor linear main-effect 

model without the consideration of interactions takes the 

form 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 

where 𝑦 is the response, 𝑏0 is the y-axis intercept, and (𝑏1, 

𝑏2) are the coefficients of the factors.  For a balanced 

experiment design with factor-level considerations for 𝑥1, 

and 𝑥2, respectively, equal to -1 and +1, the 𝑏1, and 𝑏2 

coefficients equate to one-half of the effect and 𝑏0 is the 

average of all the responses.  

• Computer programs can determine these coefficients by 

such techniques as least squares regression. 

33.1 Modeling Equations 

• If there is an interaction consideration, the equation model 

will then take the form 
𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 

• The number of terms in the equation represents the 

minimum number of experimental trials needed to determine 

the model.  For example, the equation above has 4 terms; a 

minimum of 4 trials is needed to calculate the coefficients. 

• The 2-level DOE significance tests discussed in previous 

chapters were to determine which of the coefficient 

estimates were large enough to have a statistically 

significant affect on the response (𝑦) when changed from a 

low (-1) level to a high (+1) level. 
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33.1 Modeling Equations 

• Centerpoints can be added to the 2-level fractional factorial 

design to determine the validity of the linearity assumption of 

the model.  

• When using a regression program on the coded effects, the 

fractional factorial levels should take on symmetrical values 

around zero (i.e., -1 and +1).  

• To determine if the linearity assumption is valid, the average 

response of the centerpoints can be compared to the overall 

average of the two-level fractional factorial experiment trials. 

33.1 Modeling Equations 

• If the first-degree polynomial approximation does not fit the 

process data, a second-degree polynomial model may 

adequately describe the curvature of the response surface 

as a function of the input factors.  

• For 2-factor considerations, this model takes the form 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 + 𝑏12𝑥1𝑥2 
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33.2 Central Composite Design 

• To determine the additional 

coefficients of a second-

degree polynomial, additional 

levels of the variables are 

needed between the end-

point levels.  

• An efficient test approach to 

determine the coefficients of 

a second-degree polynomial 

is to use a central composite 

design.  

0,0 

(0,𝑎) 

(0,−𝑎) 

(𝑎,0) (−𝑎,0) 

(−1,−1) 

(−1,1) 

(1,−1) 

(1,1) 

33.2 Central Composite Design 

• An experiment design is said to be rotatable if the variance 

of the predicted response at some point is a function of only 

the distance of the point from the center.  

• The central composite design is made rotatable when 

[𝑎 = (𝐹)1/4], where 𝐹 is the number of points used in the 

factorial part of the design. For two factors 𝐹 = 22 = 4; 

hence, 𝑎 = (4)1/4= 1.414  

• A useful property of the central composite design is that the 

additional axial points can be added to a two-level fractional 

factorial design as additional trials after the curvature is 

detected from initial experimental data. 
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33.2 Central Composite Design 

• With a proper number of center points, the central composite 

design can be made such that the variance of the response at 

the origin is equal to the variance of the response at unit 

distance from the origin (i.e., a uniform precision design).  

• This characteristic in the uniform precision design is important 

because it gives more protection against bias in the 

regression coefficients (because of the presence of third-

degree and higher terms in the true surface) than does the 

orthogonal design.  

33.2 Central Composite Design 

• Table 33.1 shows the parameters needed to achieve a 

uniform precision design as a function of the number of 

variables in the experiment.  

No. of 

Variables 

No. of 

Factorial 

Trials 
No. of Axial 

Trials 

No. of 

Center 

Trials 𝑎 
Total No. of 

Trials 

2 4 4 5 1.4142 13 

3 8 6 6 1.6818 20 

4 16 8 7 2.0000 31 

5 16 10 6 2.0000 32 

6 32 12 9 2.3784 53 

7 64 14 14 2.8284 92 
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33.2 Central Composite Design 

• From this table, for example, a design assessing five 

variables along with all two-factor interactions plus the 

curvature of all variables would be that shown in Table 33.2.  

A B C D E 

1 +1 -1 -1 -1 +1 

2 +1 +1 -1 -1 -1 

3 +1 +1 +1 -1 +1 

4 +1 +1 +1 +1 -1 

5 -1 +1 +1 +1 +1 

6 +1 -1 +1 +1 +1 

7 -1 +1 -1 +1 -1 

8 +1 -1 +1 -1 -1 

9 +1 +1 -1 +1 +1 

10 -1 +1 +1 -1 -1 

11 -1 -1 +1 +1 -1 

12 +1 -1 -1 +1 -1 

13 -1 +1 -1 -1 +1 

14 -1 -1 +1 -1 +1 

15 -1 -1 -1 +1 +1 

16 -1 -1 -1 -1 -1 

Fractional Factorial Design  

A B C D E 

17 -2 0 0 0 0 

18 +2 0 0 0 0 

19 0 -2 0 0 0 

20 0 +2 0 0 0 

21 0 0 -2 0 0 

22 0 0 +2 0 0 

23 0 0 0 -2 0 

24 0 0 0 +2 0 

25 0 0 0 0 -2 

26 0 0 0 0 +2 

Axial trials 

A B C D E 

27 0 0 0 0 0 

28 0 0 0 0 0 

29 0 0 0 0 0 

30 0 0 0 0 0 

31 0 0 0 0 0 

32 0 0 0 0 0 

Center point trials 

33.2 Central Composite Design 

• Data are then analyzed using regression techniques to 

determine the output response surface as a function of the 

input variables. 



5/31/2013 

8 

33.2 Central Composite Design 

• Comell (1984), Montgomery (1997), and Box et al. (1978) 

discuss analytical methods to determine maximum points on 

the response surface using the canonical form of the 

equation.  The coefficients of this equation can be used to 

describe the shape of the surface (ellipsoid, hyperboloid, 

etc.).  

• An alternative approach is to understand the response 

surface by using a computer contour plotting program, as 

illustrated in the next example.  

• Determining the particular contour plot may help determine/ 

change process factors to yield a desirable/improved 

response output with minimal day-to-day variation. 

33.2 Central Composite Design 

• Creating a contour representation for the equation derived 

from an RSM can give direction for a follow-up experiment.  

For example, if the contour representation does not capture 

a peak that we are interested in, we could investigate new 

factor levels, which are at right angles to the contours that 

appear to give a higher response level.  This is called 

direction of steepest ascent.  

• When searching for factor levels that give a lower response, 

a similar direction of steepest descent approach could be 

used. 
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33.3 Example 33.1  

Response Surface Design 

• A chemical engineer desires to determine the operating 

conditions that maximize the yield of a process.  

• An earlier 2-level factorial experiment of many 

considerations indicated that reaction time and reaction 

temperature were the parameters that should be optimized.  

• A central composite design was chosen and yielded the 

responses shown in Table 33.3 (Montgomery I997).  

 

 

33.3 Example 33.1  

Response Surface Design 

Response 

Natural Variables Coded Variables Yield Viscosity 
Mole. 

Weight 

𝑢1 𝑢2 𝑣1 𝑣2 𝑦1 𝑦2 𝑦3 

80 170 -1 -1 76.5 62 2940 

80 180 -1 1 77.0 60 3470 

90 170 1 -1 78.0 66 3680 

90 180 1 1 79.5 59 3890 

85 175 0 0 79.9 72 3480 

85 175 0 0 80.3 69 3200 

85 175 0 0 80.0 68 3410 

85 175 0 0 79.7 70 3290 

85 175 0 0 79.8 71 3500 

92.07 175 1.414 0 78.4 68 3360 

77.93 175 -1.414 0 75.6 71 3020 

85 182.07 0 1.414 78.5 58 3630 

85 167.93 0 -1.414 77.0 57 3150 
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33.3 Example 33.1  

Response Surface Design 

• A second-degree model can be fitted using the natural levels 

of the variables (e.g., time = 80) or the coded levels (e.g., 

time=-1).  

 

 

33.3 Example 33.1  

Response Surface Design 

Response Surface Regression: y1 versus v1, v2  

The analysis was done using coded units. 

 

Estimated Regression Coefficients for y1 

 

Term         Coef  SE Coef        T      P 

Constant  79.9400  0.11909  671.264  0.000 

v1         0.9951  0.09415   10.568  0.000 

v2         0.5152  0.09415    5.472  0.001 

v1*v1     -1.3764  0.10098  -13.630  0.000 

v2*v2     -1.0013  0.10098   -9.916  0.000 

v1*v2      0.2500  0.13315    1.878  0.103 

 

S = 0.266290   PRESS = 2.35346 

R-Sq = 98.27%  R-Sq(pred) = 91.81%  R-Sq(adj) = 97.04% 

Minitab 

Stat 

  DOE 

    Response Surface 

      Define/Analyze 
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33.3 Example 33.1  

Response Surface Design 

Analysis of Variance for y1 

Source          DF   Seq SS   Adj SS   Adj MS       F      P 

Regression       5  28.2467  28.2467  5.64934   79.67  0.000 

  Linear         2  10.0430  10.0430  5.02148   70.81  0.000 

  Square         2  17.9537  17.9537  8.97687  126.59  0.000 

  Interaction    1   0.2500   0.2500  0.25000    3.53  0.103 

Residual Error   7   0.4964   0.4964  0.07091 

  Lack-of-Fit    3   0.2844   0.2844  0.09479    1.79  0.289 

  Pure Error     4   0.2120   0.2120  0.05300 

Total           12  28.7431 

Estimated Regression Coefficients 

for y1 using data in uncoded units 

Term          Coef 

Constant   79.9400 

v1        0.995050 

v2        0.515203 

Term          Coef 

v1*v1     -1.37645 

v2*v2     -1.00134 

v1*v2     0.250000 

 

33.3 Example 33.1  

Response Surface Design 

Response Surface Regression: y1 versus u1, u2  

 

The analysis was done using uncoded units. 

 

Estimated Regression Coefficients for y1 

 

Term          Coef  SE Coef        T      P 

Constant  -1430.69  152.851   -9.360  0.000 

u1            7.81    1.158    6.744  0.000 

u2           13.27    1.485    8.940  0.000 

u1*u1        -0.06    0.004  -13.630  0.000 

u2*u2        -0.04    0.004   -9.916  0.000 

u1*u2         0.01    0.005    1.878  0.103 

 

S = 0.266290   PRESS = 2.35346 

R-Sq = 98.27%  R-Sq(pred) = 91.81%  R-Sq(adj) = 97.04% 
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33.3 Example 33.1  

Response Surface Design 

Analysis of Variance for y1 

 

Source          DF   Seq SS   Adj SS   Adj MS       F      P 

Regression       5  28.2467  28.2467  5.64934   79.67  0.000 

  Linear         2  10.0430   6.8629  3.43147   48.39  0.000 

  Square         2  17.9537  17.9537  8.97687  126.59  0.000 

  Interaction    1   0.2500   0.2500  0.25000    3.53  0.103 

Residual Error   7   0.4964   0.4964  0.07091 

  Lack-of-Fit    3   0.2844   0.2844  0.09479    1.79  0.289 

  Pure Error     4   0.2120   0.2120  0.05300 

Total           12  28.7431 

 

33.3 Example 33.1  

Response Surface Design 

• From this analysis, the second-degree in terms of the coded 

levels of the variables is 
𝑦 = 79.940 + 0.995𝑣1 + 0.515𝑣2 − 1.376𝑣1

2 + 0.250𝑣1𝑣2 − 1.001𝑣2
2 

• This equates to an equation for the natural levels of 
𝑦 = −1430.69 + 7.81𝑢1 + 13.27𝑢2 − 0.06𝑢1

2 + 0. 01𝑢1𝑢2 − 0.04𝑢2
2 

• The advantage of using the coded levels is that the importance of 

each term can be easily compared. 

• When projections are made from a response surface, it is 

obviously important that the model fit the initial data satisfactorily. 

• Erroneous conclusions can result when there is lack of fit. 
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33.3 Example 33.1  

Response Surface Design 

33.3 Example 33.1  

Response Surface Design 
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33.4 Box-Behnken Designs 

• When estimating the first- and second-order terms of a 

response surface, Box and Behnken (1960) give an 

alternative to the central composite design approach.  

• They present a list of l0 second-order rotatable designs 

covering 3, 4, 5, 6, 7, 9, 10, 11, 12, and 16 variables.  

• However, in general, Box-Behnken designs are not always 

rotatable nor are they block orthogonal. 

• One reason that an experimenter may choose this design 

over a central composite design is physical test constraints. 

• This design requires only three levels of each variable, as 

opposed to five for the central composite design. 

33.4 Box-Behnken Designs 

• Figure 33.4 shows the test points for this design approach 

given three design variables. 

 
x y z 

1 1 0 

1 -1 0 

-1 1 0 

-1 -1 0 

1 0 1 

1 0 -1 

-1 0 1 

-1 0 -1 

0 1 -1 

0 1 1 

0 -1 -1 

0 -1 1 

0 0 0 

0 0 0 

0 0 0 

y 

x 

z 

(0,1,-1) 

(1,0,-1) 

(0,-1,1) 
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33.5 Mixture Designs 

• The experiment designs discussed previously apply to 

discrete and/or continuous factors, where the levels of each 

factor are completely independent from the other factors.  

• However, consider a chemist who mixes three ingredients 

together.  If the chemist wishes to increase the percentage 

of one ingredient, the percentage of another ingredient must 

be adjusted accordingly.  

• Mixture experiment designs are used for this situation, 

where the components (factors/variables) under 

consideration take levels that are a proportion of the whole. 

• Computer-generated designs and analyses are usually 

better for most realistic mixture problems. 

33.5 Mixture Designs 

• In the general mixture problem the measured response 

depends only on the proportions of the components present 

in the mixture and not on the total amount of the mixture.  

• For three components this can be expressed as 

𝑥1 + 𝑥2 + 𝑥3 = 1 

• To illustrate the application of this equation, consider that a 

mixture consists of three components: A, B, and C.  If 

component A is 20% and B is 50%, C must be 30% to give a 

total of 100% (i.e., 0.2 + 0.5 + 0.3 = 1). 
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33.5 Mixture Designs 

• When three factors are 

considered in a 2-level full 

factorial experiment (23), the 

factor space of interest is a 

cube.  However, a three-

component mixture experiment 

is represented by an equilateral 

triangle.  

• The coordinate system for 

these problems is called a 

simplex coordinate system.  

𝑥3 = 1 

(1,0,0) 

(0,0,1) 

(0,1,0) 

𝑥1 = 1 

𝑥2 = 1 

33.5 Mixture Designs 

• A four-component experiment would similarly take on the 

space of a tetrahedron. 

• With three components, coordinates are plotted on 

equilateral triangular graph paper that has lines parallel to 

the three sides of the triangle.  

• Each vertex of the triangle represents 100% of one of the 

components in the mixture.  

• The lines away from a vertex represent decreasing amounts 

of the component represented by that vertex.  

• The center of the equilateral triangle represents, for 

example, a mixture with equal proportions (⅓, ⅓, ⅓) from 

each of the components. 
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33.5 Mixture Designs 

• In a designed mixture experiment, several combinations of 

components are chosen within the spatial extremes defined by 

the number of components (e.g., an equilateral triangle for 

three components).  

• In one experiment all possible combinations of the components 

can be considered as viable candidates for determining an 

“optimal” response. However, in many situations some 

combinations of the components are not reasonable or may 

even cause a dangerous response. 

• In this chapter, simplex lattice designs will be used when all 

combinations of the components are under consideration, while 

extreme vertices designs will be used when restrictions are 

placed on the proportions of the components. 

33.6 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

• The simplex lattice designs (Scheffé 1958) address 

problems where there are no restrictions on the limits of the 

percentages of compounds comprising the total 100% 

composition. 

• A simplex lattice design for 𝑞 components consists of points 

defined by the coordinates (𝑞,𝑚), where the proportions 

assumed by each component take 𝑚 + 1 equally spaced 

values from 0 to 1 and all possible combinations of the 

components are considered.  

• Figure 33.6 illustrates pictorially the spatial test 

consideration of several lattice design altematives for three 

and four components.  



5/31/2013 

18 

33.6 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

(0,1,0) 

𝑥1 = 1 

𝑥2 = 1 𝑥3 = 1 

(0,0,1) 

(3, 1) lattice 

(1,0,0) 

(0,1,0) 

𝑥1 = 1 

𝑥2 = 1 𝑥3 = 1 

(0,0,1) 

(3, 2) lattice 

(½,0,½) 
(½,½,0) 

(½,½,0) 

(1,0,0) 

(0,1,0) 

𝑥1 = 1 

𝑥2 = 1 𝑥3 = 1 

(0,0,1) 

(3, 3) lattice 

(1,0,0) 

(⅔,⅓,0) 

(⅓,⅔, 0) 

(⅔,0,⅓) 

(⅓,0,⅔) 
(⅓, ⅓, ⅓) 

33.6 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

(0,1,0,0) 

𝑥1 = 1 

𝑥2 = 1 𝑥4 = 1 

(0,0,0,1) 

(4, 1) lattice 

(1,0,0,0) 

(0,1,0,0) 

𝑥1 = 1 

𝑥2 = 1 

𝑥3 = 1 

(0,0,0,1) 

(4, 2) lattice 

(½,0,0,½) 
(½,½,0,0) 

(0,0,½,½) 

(1,0,0,0) 

𝑥3 = 1 

(0,0,1,0) 

𝑥4 = 1 

(0,0,1,0) 

(0,½,½,0) 
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33.6 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

(0,1,0,0) 

𝑥1 = 1 

𝑥2 = 1 

𝑥3 = 1 

(0,0,0,1) 

(4, 3) lattice 

(1,0,0,0) 

(⅔,⅓,0,0) 

(⅓,⅔,0,0) 

(⅔,0,0,⅓) 

(⅓,0,0,⅔) 

𝑥4 = 1 

(0,0,1,0) 

(0,0,⅔,⅓) 

(0,0,⅓,⅔) (0,⅔,⅓,0) 

(0,⅓,⅔,0) 

33.6 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

• Cornell (1983) notes that the general form of a regression function 

that can be fitted easily to data collected at the points of a 

(𝑞,𝑚) simplex lattice is the canonical form of the polynomial.  This 

form is then modified by applying the restriction that the terms of a 

polynomial sum to 1.  

• The simplified expression for three components yields the first-

degree model form 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 

• The second-degree model form is 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +𝑏12 𝑥1𝑥2 +𝑏13 𝑥1𝑥3 +𝑏23 𝑥2𝑥3 

• The special cubic polynomial form is 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +𝑏12 𝑥1𝑥2 +𝑏13 𝑥1𝑥3 +𝑏23 𝑥2𝑥3 +𝑏123 𝑥1𝑥2𝑥3 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• Any one combination of three solvents could be most effective in the 

solvent rinse of a contaminating by-product (Diamond I989).  

• A (3, 2) simplex lattice with a center point was chosen for the initial 

evaluation.  

• The design proportions with the by-product responses are shown in 

Table 33.4. 

Trial Methanol Acetone Trichloroethylene By-product(%) 
1 1 0 0 6.2 

2 0 1 0 8.4 

3 0 0 1 3.9 

4 ½ ½ 0 7.4 

5 ½ 0 ½ 2.8 
6 0 ½ ½ 6.1 

7 ⅓ ⅓ ⅓ 2.2 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• A plot of the results is shown in Figure 33.7.  

#2 (0,1,0) 

100% Methanol 

#3 (0,0,1) 

#1 (1,0,0) 

#1 6.2% by-product 

100% Acetone 100% Acetone 

8.4% by-product 3.9% by-product 

7.4% 2.8% 

2.2% 

6.1% 

#4 #5 

#6 

#7 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• A regression analysis for mixtures could be conducted, but in some 

cases, including this one, the conclusions are obvious.  

• For this example, the best result is the center-point composition; 

however, there is curvature and a still better response is likely 

somewhere in the vicinity of this point. 

• To reduce the by-product content amount of 2.2%, more 

experimental trials are needed near this point to determine the 

process optimum. 

• Diamond (1989) chose to consider the following additional trials. 

• These points are spatially shown in Figure 33.8, where the lines 

decrease in magnitude of 0.05 for a variable from an initial 

proportion value of 1.0 at the apex.  



5/31/2013 

22 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

Regression for Mixtures: By-product(%) versus Methanol, Acetone, 

...  

 

Estimated Regression Coefficients for By-product(%) (component 

proportions) 

 

Term                          Coef  SE Coef      T      P    VIF 

Methanol                      6.40    2.332      *      *  1.599 

Acetone                       8.60    2.332      *      *  1.599 

Trichloroethylene             4.10    2.332      *      *  1.599 

Methanol*Acetone             -3.68   10.722  -0.34  0.790  1.569 

Methanol*Trichloroethylene  -13.08   10.722  -1.22  0.437  1.569 

Acetone*Trichloroethylene    -4.28   10.722  -0.40  0.758  1.569 

 

S = 2.34132     PRESS = 2315.39 

R-Sq = 83.53%   R-Sq(pred) = 0.00%   R-Sq(adj) = 1.20% 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

Analysis of Variance for By-product(%) (component proportions) 

 

Source          DF   Seq SS   Adj SS   Adj MS     F      P 

Regression       5  27.8068  27.8068  5.56136  1.01  0.634 

   Linear        2  18.6042  10.1267  5.06335  0.92  0.593 

   Quadratic     3   9.2026   9.2026  3.06755  0.56  0.726 

Residual Error   1   5.4818   5.4818  5.48177 

Total            6  33.2886 

 

Unusual Observations for By-product(%) 

 

Obs  StdOrder  By-product(%)    Fit  SE Fit  Residual  St Resid 

  1         1          6.200  6.404   2.332    -0.204     -1.00 X 

  2         2          8.400  8.604   2.332    -0.204     -1.00 X 

  3         3          3.900  4.104   2.332    -0.204     -1.00 X 

X denotes an observation whose X value gives it large leverage. 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

100% Methanol 
(1,0,0) 

6.2% by-product 

7.4% 2.8% 

(0,1,0) 

100% Acetone 

8.4% by-product 

(0,0,1) 

100% Acetone 

3.9% by-product 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• Table 33.5 illustrates these trials and their rationales. 

Exp. Point # Rationale 

8, 9, 10 (3,1) simplex lattice design vertices around the best 

response with the noted diagonal relationship to the 

original data points. 

11 Because point #5 has the second best result, 

another data point was added in that direction. 

12 Repeat the treatment combination that was the best 

in the previous experiment and is now the centroid 

of this follow-up experiment. 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• The results from these experimental trials are given in Table 33.6. 

 

 

 

 

 

 

 

• A plot of the data and an estimate of the response surface is shown 

in Figure 33.9. 

  

Trial Methanol Acetone Trichloroethylene By-product(%) 
8 ½ ¼ ¼ 3.3 

9 ¼ ½ ¼ 4.8 

10 ¼ ¼ ½ 1.4 

11 ⅜ ¼ ⅜ 1.2 

12 ⅓ ⅓ ⅓ 2.4 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

100% Methanol 
(1,0,0) 

6.2% by-product 

(0,1,0) 

100% Acetone 

8.4% by-product 

(0,0,1) 

100% Acetone 

3.9% by-product 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

Regression for Mixtures: By-product(%) versus Methanol, Acetone, 

...  

 

Estimated Regression Coefficients for By-product(%) (component 

proportions) 

 

Term                          Coef  SE Coef      T      P    VIF 

Methanol                      6.58    1.371      *      *  2.188 

Acetone                       8.86    1.370      *      *  2.108 

Trichloroethylene             4.13    1.371      *      *  2.188 

Methanol*Acetone             -5.95    5.868  -1.01  0.350  2.348 

Methanol*Trichloroethylene  -17.39    5.743  -3.03  0.023  2.438 

Acetone*Trichloroethylene    -7.44    5.868  -1.27  0.252  2.348 

 

S = 1.38681     PRESS = 842.844 

R-Sq = 81.62%   R-Sq(pred) = 0.00%   R-Sq(adj) = 66.30% 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 
Analysis of Variance for By-product(%) (component proportions) 

 

Source          DF   Seq SS   Adj SS    Adj MS       F      P 

Regression       5  51.2431  51.2431  10.24862    5.33  0.033 

   Linear        2  24.5430  11.3557   5.67785    2.95  0.128 

   Quadratic     3  26.7001  26.7001   8.90003    4.63  0.053 

Residual Error   6  11.5394  11.5394   1.92323 

   Lack-of-Fit   5  11.5194  11.5194   2.30388  115.19  0.071 

   Pure Error    1   0.0200   0.0200   0.02000 

Total           11  62.7825 

 

Unusual Observations for By-product(%) 

Obs  StdOrder  By-product(%)    Fit  SE Fit  Residual  St Resid 

  2         2          8.400  8.856   1.370    -0.456     -2.13R 

  5         5          2.800  1.005   1.144     1.795      2.29R 

  6         6          6.100  4.631   1.179     1.469      2.01R 

R denotes an observation with a large standardized residual. 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 
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33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

33.7 Example 33.2: Simplex Lattice 

Mixture Experiment 

• The apparent minimum (shown as the point with no number in 

Figure 33.9) along with the results from an additional trial setting at 

 

 

 

• Additional simplex design trials around this point could yield a yet 

smaller amount of by-product.  However, if the by-product 

percentage is “low” enough, additional experimental trials might not 

serve any economic purpose.  

 

Trial Methanol Acetone Trichloroethylene By-product(%) 
13 0.33 0.15 0.52 0.45 



5/31/2013 

29 

33.8 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

• Consider the situation where a response is a function, not only 

of a mixture, but also of its process variables (e.g., cooking 

temperature and cooking time). 

• For the situation where there are three components to a 

mixture and three process variables, the complete simplex-

centroid design takes the form shown in Figure 33.10. 

33.8 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

z2 

z1 

z3 
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33.8 Simplex Lattice Designs for 

Exploring the Whole Simplex Region 

• In general, the number of experimental trial possibilities can 

get very large when there are many variable considerations. 

• Comell and Gorman (1984) discuss fractional factorial design 

alternatives. Comell (1990) discusses the embedding of 

mixture experiments inside factorial experiments.  

• Algorithm designs, discussed in Section 33.12, can also 

reduce the number of test trials. 

 

33.9 Example 33.3: Mixture 

Experiment with Process Variables 

• The data in Table 33.7 are the average of a replicated texture reading in 

kilogram force required to puncture fish patty surfaces (Comell 1981; 

Cornell and Gorman 1984: Gorman and Comell 1982) that were 

prepared under process conditions that had code values of -1 and +1 

for 

• 𝑧1: cooking temperature (-1 = 375°F, +1 = 425°F) 

• 𝑧2: cooking time (-1 = 25 min, +1 = 40 min) 

• 𝑧3: deep fat frying time (-1 = 25 sec, +1 = 40 sec) 

• The patty was composed of three types of fish that took on composition 

ratios of 0, 1/3, 1/2, or 1.  

• The fish designations are 

• 𝑥1 : mullet 

• 𝑥2: sheepshead 

• 𝑥3: croaker 
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33.9 Example 33.3: Mixture 

Experiment with Process Variables 

Coded 
Process 

Variables Mixture Composition (𝑥1, 𝑥2, 𝑥3 

𝑧1 𝑧2 𝑧3 (1,0,0) (0,1,0) (0,0,1) (½,½,0) (½,0,½) (0,½,½) (⅓,⅓,⅓) 

-1 -1 -1 1.84 0.67 1.51 1.29 1.42 1.16 1.59 

1 -1 -1 2.86 1.10 1.60 1.53 1.81 1.50 1.68 

-1 1 -1 3.01 1.21 2.32 1.93 2.57 1.83 1.94 

1 1 -1 4.13 1.67 2.57 2.26 3.15 2.22 2.60 

-1 -1 1 1.65 0.58 1.21 1.18 1.45 1.07 1.41 

1 -1 1 2.32 0.97 2.12 1.45 1.93 1.28 1.54 
-1 1 1 3.04 1.16 2.00 1.85 2.39 1.60 2.05 

1 1 1 4.13 1.30 2.75 2.06 2.82 2.10 2.32 

33.9 Example 33.3: Mixture 

Experiment with Process Variables 
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33.9 Example 33.3: Mixture 

Experiment with Process Variables 
Regression for Mixtures: Force versus x1, x2, x3, z1, z2, z3  

 

Estimated Regression Coefficients for Force (component 

proportions) 

Term         Coef  SE Coef      T      P    VIF 

x1         2.8645  0.05203      *      *  1.599 

x2         1.0745  0.05203      *      *  1.599 

x3         2.0020  0.05203      *      *  1.599 

x1*x2     -0.9742  0.23914  -4.07  0.000  1.569 

x1*x3     -0.8342  0.23914  -3.49  0.001  1.569 

x2*x3      0.3558  0.23914   1.49  0.147  1.569 

x1*z1      0.4873  0.05203   9.37  0.000  1.599 

x2*z1      0.1773  0.05203   3.41  0.002  1.599 

x3*z1      0.2498  0.05203   4.80  0.000  1.599 

x1*x2*z1  -0.8014  0.23914  -3.35  0.002  1.569 

x1*x3*z1  -0.5314  0.23914  -2.22  0.033  1.569 

x2*x3*z1  -0.1314  0.23914  -0.55  0.587  1.569 

33.9 Example 33.3: Mixture 

Experiment with Process Variables 

Regression for Mixtures: Force versus x1, x2, x3, z1, z2, z3  

x1*z2      0.7086  0.05203  13.62  0.000  1.599 

x2*z2      0.2561  0.05203   4.92  0.000  1.599 

x3*z2      0.4036  0.05203   7.76  0.000  1.599 

x1*x2*z2  -0.6614  0.23914  -2.77  0.009  1.569 

x1*x3*z2  -0.1214  0.23914  -0.51  0.615  1.569 

x2*x3*z2  -0.0064  0.23914  -0.03  0.979  1.569 

x1*z3     -0.0878  0.05203  -1.69  0.101  1.599 

x2*z3     -0.0803  0.05203  -1.54  0.133  1.599 

x3*z3      0.0097  0.05203   0.19  0.853  1.599 

x1*x2*z3   0.1055  0.23914   0.44  0.662  1.569 

x1*x3*z3  -0.0195  0.23914  -0.08  0.935  1.569 

x2*x3*z3  -0.1845  0.23914  -0.77  0.446  1.569 

* NOTE * Coefficients are calculated for coded process variables. 

S = 0.147710    PRESS = 2.28771 

R-Sq = 97.68%   R-Sq(pred) = 92.40%   R-Sq(adj) = 96.01% 
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33.9 Example 33.3: Mixture 

Experiment with Process Variables 
Analysis of Variance for Force (component proportions) 

Source            DF   Seq SS   Adj SS   Adj MS       F      P 

Regression        23  29.4142  29.4142  1.27888   58.62  0.000 

  Component Only 

   Linear          2  14.0361  12.8220  6.41102  293.84  0.000 

   Quadratic       3   0.6729   0.6729  0.22430   10.28  0.000 

  Component* z1 

   Linear          3   3.3169   2.7025  0.90084   41.29  0.000 

   Quadratic       3   0.3405   0.3405  0.11349    5.20  0.005 

  Component* z2 

   Linear          3  10.6360   5.9602  1.98673   91.06  0.000 

   Quadratic       3   0.1703   0.1703  0.05678    2.60  0.069 

  Component* z3 

   Linear          3   0.2234   0.1155  0.03850    1.76  0.174 

   Quadratic       3   0.0181   0.0181  0.00602    0.28  0.842 

Residual Error    32   0.6982   0.6982  0.02182 

Total             55  30.1124 

33.9 Example 33.3: Mixture 

Experiment with Process Variables 
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33.9 Example 33.3: Mixture 

Experiment with Process Variables 

33.9 Example 33.3: Mixture 

Experiment with Process Variables 

• The desired range of fish texture (in the noted scaled units) for 

customer satisfaction is between 2.0 and 3.5.  Other 

characteristics, not discussed here, were also considered in the 

actual experiment.  

• A computer analysis of these data yielded the coefficient estimates 

shown in Table 33.8.  

 Mean 𝑧1 𝑧2 𝑧3 𝑧1𝑧2 𝑧1𝑧3 𝑧2𝑧3 𝑧1𝑧2𝑧3 SE 

𝑥1 2.87 0.49 0.71 -0.09 0.07 -0.05 0.10 0.04 0.05 

𝑥2 1.08 0.18 0.25 -0.08 -0.03 -0.05 -0.03 -0.04 0.05 

𝑥3 2.01 0.25 0.40 0.01 0.00 0.17 -0.05 -0.04 0.05 

𝑥1𝑥2 -1.14 -0.81 -0.59 0.10 -0.06 0.14 -0.19 -0.09 0.23 

𝑥1𝑥3 -1.00 -0.54 -0.05 -0.03 -0.06 -0.27 -0.43 -0.12 0.23 

𝑥2𝑥3 0.20 -0.14 0.07 -0.19 0.23 -0.25 0.12 0.27 0.23 

𝑥1𝑥2𝑥3 3.18 0.07 -1.41 0.11 1.74 -0.71 1.77 -1.33 1.65 
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33.9 Example 33.3: Mixture 

Experiment with Process Variables 

• Various 𝑥1, 𝑥2, and 𝑥3 

values are substituted to 

create a contour plot in a 

simplex coordinate 

system for each of the 

eight variable treatments.  

• The shaded area in this 

figure shows when the 

desirable response range 

of 2.0 to 3.5 is achieved.  

• This figure illustrates that 

a 𝑧2 = 1 level (i.e., 40 min 

cooking time) is desirable.  

33.9 Example 33.3: Mixture 

Experiment with Process Variables 

• To maximize customer satisfaction, effort should be directed toward 

achieving the nominal criterion on the average with minimum 

variability between batches. 

• It may be desirable to make the composition of the fish patty so that 

its sensitivity is minimized relative to deep fat frying time.  To 

address this concern, it appears that a 𝑧1 = -1 level (i.e., 375°F 

cooking temperature) may be most desirable with a relative high 

concentration of mullet in the fish patty composition. 

• Other considerations to take into consideration when determining 

the “best” composition and variable levels are economics (e.g.. cost 

of each type of fish) and other experimental output response 

surface plots (e.g., taste evaluation). 
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33.10 Extreme Vertices  

Mixture Designs 

• Extreme vertices designs can take on most of the nice properties 

of the matrix designs discussed above (Diamond 1989).  

• This type of design is explained in the following example. 

 

 

33.11 Example 33.4: Extreme 

Vertices Mixture Experiment 

• A chemist wishes to develop a floor wax product.  The following 

range of proportions of three ingredients is under consideration 

along with the noted proportion percentage limitations.  The 

response to this experiment takes on several values: level of shine, 

scuff resistance, and so forth. 

• Wax: 0-0.25 (i.e., 0%-25%) 

• Resin: 0-0.20 (i.e., 0%—20%) 

• Polymer: 0.70-0.90 (i.e., 70%-90%) 

• Again, mixture experiment trial combinations are determined by 

using a simplex coordinate system. This relationship is noted in 

Figure 33.12, where the lines leaving a vertex decrease by a 

magnitude of 0.05 proportion from an initial proportion value of 1. 
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33.11 Example 33.4: Extreme 

Vertices Mixture Experiment 

• The space of 

interest is noted by 

the polygon shown 

in the figure.  

33.11 Example 33.4: Extreme 

Vertices Mixture Experiment 

• The space of interest is noted by the polygon shown in the figure.  

• Table 33.9 shows test trials for the vertices along with a center 

point.   

 

 

 

 

 

 

 

• The logic used in Example 33.1 for follow-up experiments can 

similarly be applied to this problem in an attempt to optimize the 

process. 

Trail Wax(𝑥1) Resin(𝑥2) Polmer(𝑥3) Response(y) 

1 0.25 0.05 0.70 𝑦1 

2 0.25 0.00 0.75 𝑦2 

3 0.10 0.20 0.70 𝑦3 

4 0.10 0.00 0.90 𝑦4 

5 0.00 0.20 0.80 𝑦5 

6 0.00 0.10 0.90 𝑦6 

7 0.10 0.10 0.80 𝑦7 
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33.14 Additional Response Surface 

Design Considerations 

• When no linear relationship exists between the regressors, 

they are said to be orthogonal.  

• For these situations the following inferences can be made 

relatively easily: 

• Estimation and/or prediction. 

• Identification of relative effects of regressor variables. 

• Selection of a set of variables for the model. 

• However, conclusions from the analysis of response surface 

designs may be misleading because of dependencies 

between the regressors.  

• When near-linear dependencies exist between the 

regressors, multicollinearity is said to be prevalent.  

33.14 Additional Response Surface 

Design Considerations 

• Other books (e.g., Montgomery and Peck 1982) discuss 

diagnostic procedures for this problem (e.g., variance inflation 

factor) along with other procedures used to better understand 

the output from regression analyses (e.g., detecting influential 

observations). 

• Additional textbook design alternatives to the central composite 

and Box-Behnken designs are discussed in Cornell (1984), 

Montgomery (1997), and Khuri and Comell (1987).  

• “Algorithm” designs can also be applied to non-mixture 

problems, as discussed in B. Wheeler (1989), where, as 

previously noted, algorithm designs are “optimized” to fit a 

particular model (e.g., linear or quadratic) with a given set of 

factor considerations. 

 


