

14.1 S⁴/IEE Application Examples: Cause-and-Effect Matrix

- Transactional 30,000-foot-level metric: DSO reduction was chosen as an S⁴/IEE project. The team used a cause-andeffect matrix to prioritize items from a cause-and-effect diagram. An FMEA was conducted of the process steps and/or highest categories from the cause-and-effect matrix.
- Manufacturing 30,000-foot-level metric (KPOV): An S⁴/IEE project was to improve the capability/performance of a process that affected the diameter of a manufactured product (i.e., reduce the number of parts beyond the specification limits). The team used a cause-and-effect matrix to prioritize items from a cause-and-effect diagram. An FMEA was conducted of the process steps and/or highest categories from the cause-and-effect matrix.

COLLEGE OF ENGINEERING

14.1 S⁴/IEE Application Examples: Cause-and-Effect Matrix

- Transactional and manufacturing 30,000-foot-level cycle time metric (a lean metric): An S⁴/IEE project was to improve the time from order entry to fulfillment was measured. The team used a cause-and-effect matrix to prioritize items from a cause-and-effect diagram. An FMEA was conducted of the process steps and/or highest categories from the cause-andeffect matrix.
- Transactional and manufacturing 30,000-foot-level inventory metric or satellite-level TOC metric (a lean metric): An S⁴/IEE project was to reduce inventory. The team used a causeand-effect matrix to prioritize items from a cause-and-effect diagram. An FMEA was conducted of the process steps and/ or highest categories from the cause-and-effect matrix.

14.1 S⁴/IEE Application Examples: Cause-and-Effect Matrix

- Manufacturing 30,000-foot-level quality metric: An S⁴/IEE project was to reduce the number of defects in a printed circuit board manufacturing process. The team used a cause-and-effect matrix to prioritize items from a causeand-effect diagram. An FMEA was conducted of the process steps and/or highest categories from the causeand-effect matrix.
- Process DFSS: A team was to create a new call center. A process flow-chart of the planned call center process was created. An FMEA was conducted to assess risks for steps within this process and then create action plans to address identified issues.

14.1 S⁴/IEE Application Examples: Cause-and-Effect Matrix

 Product DFSS: An S⁴/IEE product DFSS project was to reduce the 30,000-foot-level metric of number of product phone calls generated for newly developed products. The team used a cause-and-effect matrix to prioritize items from a cause-and-effect diagram. An FMEA was conducted of the process steps when developing a product and/or highest categories from the cause-and-effect matrix. One process improvement idea for the development process was to establish a product design FMEA procedure.

14.2 Implementation

Implementation Issues:

- Use as a living document with periodic review and updates.
- Conduct early enough in development cycle to
 - Design out potential failure modes by eliminating root causes
 - Reduce seriousness of failure mode if elimination is not possible.

COLLEGE OF ENGINEERING

• Reduce occurrence of the failure mode.

14.3 Implement of a Design FMEA

- A FMEA team should include representation from design, test, reliability, materials, service, and manuf./process.
- A design FMEA presumes the implementation of manuf./ assembly needs and design intents. (It doesn't need to include potential failure modes from manuf./assembly, but it does consider technical/physical limits of manuf process.)
- Design intent is expressed as a list of what the design is expected to do, and what is not.
- A block diagram shows the relationship among analysis items and establishes a logical order for analysis.

14.3 Implement of a Design FMEA: Relational Block Diagram Example

Potential							
	Failure Mode and Effect Analysis						
FMEA Type (Design or Process)	Project Name/Description:		Date (Orig.):				
Responsibility:	Prepared by:		Date (Rev.):				
Core Team:			Date (Key):				
Design FMEA (Item/Function) Process FMEA (Function/ Requirements) Potential Failure Mode Failure	Potential Cause(s)/ Mechanism(s) of Failure Controls Prevention	Current e R Controls t P Detection e N c	Responsibility & Target Completion Date				
	COLLEGE OF ENGINEERING						

14.4 Design FMEA Tabular Entries

• Header Information. Documents the system/subsystem/ component (under project name/description) and supplies other information about when and who created the FMEA.

System Subsystem Component 01.03/Body Close	ures	
Model Year(s)/Vehicle(s) 199X/Lion	4 door / Wagon	_
Design Responsibility <u>Body Engineeri</u> Key Date 9X 03 01 ER	ing	
<u>, , , , , , , , , , , , , , , , , , , </u>		

14.4 Design FMEA Tabular Entries

- Item/Function. Contains the name and number of the item to be analyzed.
- Includes a concise, exact, and easy-tounderstand explanation of a function of the item task or response that is analyzed to see whether it meets the intent of the design.
- Includes information regarding the temperature, pressure, and other pertinent system operating conditions.
- When there is more than one function, it lists each function separately, with different potential failure modes.

Item Function

Front door L.H. H8HX-0000-A

- Ingress to and egress from vehicle
- Occupant protection from weather, noise, and side impact
- Support anchorage for door hardware including mirror, hinges, latch and window regulator
- Provide proper surface for appearance items
- Paint and soft trim

COL

14.4 Design FMEATabular Entries	Potential Failure Mode
 Potential Failure Mode. Describes ways a design might fail to perform its intended function. May include the cause of a potential failure mode in a higher-level 	Corroded interior lower door panels
 subsystem or process step. May also be the effect of a failure in a lower-lead component or process step. Contains, for each Item/ function, a list of poter modes given the assumption that the failure means that could under certain operation conditions. Descriptions are in physical/technical terms, not stated to the stated terms. 	evel ential failure hight occur. arise only not symptoms.
	College of engineering

14.4 Design FMEA Tabular Entries

- Potential Effect(s) of Failure. Describes the effects of the failure mode on the function from an internal or external customer point of view.
- Highlights safety or noncompliance with regulation issues.
- Expressed in terms of the specific system, subsystem, or component hierarchical relationship that is analyzed.
- Includes failure effects such as intermittent operation, lost computer data, and poor performance.

Potential Effect(s) of Failure

Deteriorated life of door leading to:

- Unsatisfactory appearance due to rust through paint over time
- Impaired function of interior door hardware

COLLEGE OF ENGINEERING

14.4 Design FMEA Tabular Entries

- Severity. Assesses the seriousness of the effect of the potential failure mode to the next component, subsystem, or system.
- Design change usually strives to reduce severity levels.
- Estimation is typically based on a 1 to 10 scale where the team agrees to a specific evaluation criteria for
- each ranking value. Table 14.2 shows example evaluation criteria for the automotive industry.

14.4 Design FMEA Tabular Entries Table 14.2

	Severity Evaluation Criterion Example for Design FMEA						
Effect	Criteria: Severity of Effect	Ranking					
Hazardous	Very high severity ranking when a potential failure mode affects safe vehicle operation	10					
w/o warning	and/or involves noncompliance with government regulations without warning.	10					
Hazardous	Very high severity ranking when a potential failure mode affects safe vehicle operation						
with warning	and/or involves noncompliance with government regulation with warning.	9					
Very high	Vehicle/ item inoperable (loss of primary function).	8					
High	Vehicle/ item operable, but at reduced level of performance. Customer very dissatisfied.	7					
Moderate	Vehicle / item operable, but comfort/convenience item(s) inoperable. Customer dissatisfied.	6					
Low	Vehicle / item operable, but comfort/convenience item(s) operable at reduced level of performance. Customer somewhat dissatisfied.	5					
Very low	Fit & finish / squeak & rattle item does not conform. Defect noticed by most customers (greater than 75%).	4					
Minor	Fit & finish / squeak & rattle item does not conform. Defect noticed by 50% of customers.	3					
Very minor	Fit & finish / squeak & rattle item does not conform. Defect noticed by discriminating customers (less than 25%).	2					
None	No discernible effect.	1					
	COLLEGE OF ENGINE	EERING					

14.4 Design FMEA Tabular Entries

- Classification. Includes optional information such as critical characteristics requiring additional process controls.
- An appropriate character or symbol in this column indicates the need for an entry in the recommended action column and special process controls within the process FMEA.

14.4 Design FMEA Tabular Entries Occurrence. Estimates the likelihood that a specific cause will occur.

- Consideration of historical data of components/subsystems similar to the new design helps determine the ranking value.
- Teams need to agree on an evaluation criterion, where possible failure rates are anticipated values during design life. Table 14.3 shows example occurrence criteria.

14.4 Design FMEA Tabular Entries Table 14.3

Occurrence Evaluation Criterion Example for Design FMEA					
Probability of Failure	Possible Failure Rates	Ranking			
Very high: Persistent	≥100 per thousand vehicles/items	10			
failures	50 per thousand vehicles/Items	9			
High: Fraguent failurea	20 per thousand vehicles/Items	8			
Figh. Frequent failures	10 per thousand vehicles/items	7			
Moderate: Occasional	5 per thousand vehicles/items	6			
	2 per thousand vehicles/items	5			
laiures	1 per thousand vehicles/items	4			
Low Deletively few feilures	0.5 per thousand vehicles/items	3			
Low. Relatively lew failures	0.1 per thousand vehicles/items	2			
Remote: Failure is unlikely	≤0.010 per thousand vehicles/items	1			

14.4 Design FMEA Tabular Entries

- Current Design Controls. Lists activities such as design verification tests, design reviews, DOEs, and tolerance analysis that ensure adequacy of design control for the failure mode.
- In an update to their booklet, AIAG (2001) changed this from a one-column category to a two-column category, where one column is for prevention, while the other column is for detection.

Current Design Controls Detection

COLLEGE OF ENGINEERING

Vehicle general durability test vah. T-118 T-109 T-301

Vehicle general durability testing (as above)

Physical and Chem Lab test: Report No. 1265

Design aid investigation with nonfunctioning spray head

Laboratory test using "worst-case" wax application and hole size

Drawing evaluation of spray head access

College of Engineering

() 12	4.4 Design FMEA Tabular Entrie Table 14.4	es
Detection	Criteria: Likelihood of Detection by Design Control	Ranking
Absolute uncertainty	Design control will not and/or cannot detect a potential cause/mechanism and subsequent failure mode; or there is no design control.	10
Very remote	Very remote chance the design control will detect a potential cause/mechanism and subsequent failure mode.	9
Remote	Remote chance the design control will detect a potential cause/mechanism and subsequent failure mode.	8
Very low	Very low chance the design control will detect a potential cause/mechanism and subsequent failure mode.	7
Low	Low chance the design control will detect a potential cause/mechanism and subsequent failure mode.	6
Moderate	Moderate chance the design control will detect a potential cause/mechanism and subsequent failure mode.	5
Moderately high	Moderately high chance the design control will detect a potential cause/mechanism and subsequent failure mode.	4
High	High chance the design control will detect a potential cause/mechanism and subsequent failure mode.	3
Very high	Very high chance the design control will detect a potential cause/mechanism and subsequent failure mode.	2
Almost certain	Design control will almost certainly detect a potential cause/mechanism and subsequent failure mode.	1

14.4 Design FMEA Tabular Entries

 Risk Priority Number (RPN). Product of severity, occurrence, and detection rankings. The ranking of RPN prioritizes design concerns; however, problems with a low RPN still deserve special attention if the severity ranking is high.

14.4 Docian EMEA	Actions Taken
Tabular Entries	Based on test results (test no. 1481) upper edge
 Actions Taken. Describes implementation of recommended action and effective date. 	spec raised 125 mm
• Resulting RPN. Contains the recalculated RPN resulting from corrective actions that affected previous severity, occurrence, and detection rankings. Blanks indicate no action taken.	Test results (test no. 1481) show specified thickness is adequate. DOE shows 25% variation in specified thickness is acceptable.
	Based on test, three additional vent holes provided in affected areas
	Evaluation showed adequate access

14.5 Development of a Process FMEA

- A FMEA team should include representation from design, manuf./process, quality, reliability, tooling, and operators.
- A process FMEA presumes the product meets the design intents. (It doesn't need to include potential failure modes, causes, and mechanism from design.)
- A flow chart identifies the characteristics of the product/ process associated with each operation.

)	14.	5	Dev	/(elop F	mei ME	n :/	t 4	of a P	roce	SS				
						Pote	ential									
				Fai	lu	re Mode an	d Effect An	al	ysi	s	-		_			
FMEA Type (Des	ign or Pro	cess)		Project Nam	e/[Description:					Date (Orig.):					
Responsibility:				Prepa	are	ed by:					Date (Rev.):					
Core Team:					_			_	_	1	Date (Key):		_		_	_
Design FMEA (Item/Function) Process FMEA (Function/ Requirements)	Potential Failure Mode	Potential Effect(s) of Failure	C Sl ea vs	Potential Cause(s)/ Mechanism(s) of Failure	O c u r	Current Controls Prevention	Current Controls Detection	D e t c	R P N	Recommended Actions	Responsibility & Target Completion Date	Action Taken	S e v	O c u r	D t c	R P N
											FLODIDA INTERNA	TIORAL ENIFE		rt		
											COLLEGE OF	ENGNE		n ING		

14	.6 Process En	FMEA Tal tries	oular
Header Inform and supplies the FMEA. FMEA Type (Design of	nation. Documen other information	about when an	lescription d who created
Responsibility: Paula I	Hinkel	,	-
Core Team: Sam Smit	h, Harry Adams, Hilton Dean, J	Harry Hawkins, Sue Watkins	-
Project Name / Desc	ription: Cheetah/Change sur	face finish of part	-
	Prepared By: Paula	1 Hinkel	
Date (Orig.): 4/14			
Date (Rev.): 6/15			
Date (Key):			
+	/		
			COLLEGE OF ENGINEERING

14.6 Process FMEA Tabular Entries	Design FMEA (Item / Function) Process FMEA (Function /
 Process Function/Requirements from a Process FMEA. Contains a simple description of the process or operation analyzed. Example processes include assembly, soldering, and drilling. Concisely indicates the purpose of the analyzed process or operation. When numeric assembly operations exist with differing potential failure modes, the operations may be listed as separate processes. 	Solder dipping
COLLEG	Marking

	14.6 Process FMEA	Potential Effect(s) of Failure	S e v
		Short to shield cover	9
•	Potential Effect(s) of Failure. Describes the effects of the failure mode on the function from an internal or external customer point of	Visual defects	7
	view.		7
•	the ramifications of this failure mode either	Visual defects	7
	subsequent operation steps.		7
•	Example end-user effects are poor performance, intermittent failure, and poor appearance. Example subsequent operation	Contact problem/no signal	8
	effects are "does not fit," "cannot mount," and "fails to open "	Legible marking/ customer	6
_		unsatisfaction	6
			6

14.6 Process FMEA Tabular Entries

- Severity. Assesses the seriousness of the effect of the potential failure mode to the customer.
- Estimation is typically based on a 1 to 10 scale where the team agrees to a specific evaluation criterion for each ranking value.
- Table 14.6 shows example evaluation criterion for the automotive industry.

	14.6 Process FM Tabl	IEA Tabular Entries le 14.6	
	Severity Evaluation Criterion Ex	cample for Process FMEA	
This rankir	ng results when a potential failure mode results in a fina	al customer and/or a manufacturing/assembly plai	nt defect.
The final c	ustomer should always be considered first. If both occ	ur, use the higher of the two severities.	
Effect	Customer Effect	Manufacturing/Assembly Effect	Ranking
Hazardous w/o warning	Very high severity ranking when a potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation without warning.	Or may endanger operator (machine or assembly) without warning.	10
Hazardous with warning	Very high severity ranking when a potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation with warning.	Or may endanger operator (machine or assembly) with warning.	9
Very high	Vehicle/ item inoperable (loss of primary function).	Or 100% of product may have to be scrapped, or vehicle/item repaired in repair department with a repair time greater than one hour.	8
High	Vehicle/item operable but at a reduced level of performance. Customer very dissatisfied.	Or product may have to be sorted and a portion (less than 100%) scrapped, or vehicle/item repaired in repair department with a repair time between a half-hour and an hour.	7
Moderate	Vehicle/item operable but comfort/ convenience item(s) inoperable. Customer dissatisfied.	Or a portion (less than 100%) of the product may have to be scrapped with no sorting, or vehicle/item repaired in repair department with a repair time less than a half-hour.	6
Low	Vehicle/item operable but comfort/convenience item(s) operable at reduced level of performance.	Or 100% of product may have to be reworked, or vehicle/item repaired off-line but does not go to repair department.	5
Very low	Fit and finish/squeak and rattle item does not conform. Defect noticed by most customers (greater than 75%).	Or the product may have to be sorted, with no scrap, and a portion (less than 100%) reworked.	4
Minor	Fit and finish/squeak and rattle item does not conform. Defect noticed by 50% of customers.	Or a portion (less than 100%) of the product may have to be reworked, with no scrap, on-line but out-of-station.	3
Very minor	Fit and finish/squeak and rattle item does not conform. Defect noticed by discriminating customers (less than 25%).	Or a portion (less than 100%) of the product may have to be reworked, with no scrap, on-line but in-station.	2
None	No discernible effect.	Or slight inconvenience to operation or operator, or no	1

14.6 Process FMEA Tabular Entries

- Classification. Includes optional information that classifies special process characteristics that may require additional process controls.
- Applies when government regulations, safety, and engineering specification concerns exist for the product and/or process.
- An appropriate character or symbol in this column indicates the need for an entry in the recommended action column to address special controls in the control plan.

A NOTE OF COMPANY	14.6 Process FMEA	Potential Cause(s)/ Mechanism(s) of Failure	c u r
	Tabular Entries	Flux wire termination	6
•	Potential Causes(s) of Failure. Describes how failure could occur in terms of a correctable or	Long solder time	8
•	Contains a concise, descriptive, and	High temp	8
	comprehensive list of all root causes (not symptoms) of failure.	See interlock base damage	8
•	The resolution of some causes directly affects the failure mode	Moisture in interlock base	5
•	In other situations a DOE determines the major and most easily controlled root causes.	Not being cleaned in time	7
•	Includes causes such human error, improper	Marking ink	4
	cure time, and missing part.	Curing	5
		Smooth marking surface	8

14.6 Process FMEA Tabular Entries

- Occurrence. Estimates the frequency of occurrence of failure without consideration of detecting measures.
- Gives the number of anticipated failures during the process execution.
- Consideration of statistical data from similar processes improves the accuracy of ranking values.
- Alternative subjective assessments use descriptive words to describe rankings.
- Table 14.7 shows example occurrence criteria.

COLLEGE OF ENGINEERING

Occurrence Evaluation Criterion Example for Process FMEA					
Probability of Failure	Possible Failure Rates	Ranking			
Very high: Persistent	≥100 per thousand pieces	10			
failures	50 per thousand pieces	9			
High: Fraguent failures	20 per thousand pieces	8			
riigh. Frequent failures	10 per thousand pieces	7			
Moderate: Occasional	5 per thousand pieces	6			
failuras	2 per thousand pieces	5			
laiures	1 per thousand pieces	4			
Low: Polotivoly fow foiluroo	0.5 per thousand pieces	3			
Low. Relatively lew failules	0.1 per thousand pieces	2			
Remote: Failure is unlikely	≤0.010 per thousand pieces	1			

14.6 Process FMEA Tabular Entries	Current Controls	t c 3
Current Design Controls. Describes controls that can prevent failure mode from occurring or detect occurrence of the failure mode.	Automatic solder tool	3
 Process controls includes control methods such as SPC and poka-yoke (fixture error proofing) at 	Automatic solder tool/ SPC	3
the subject or subsequent operations.The preferred method of control is prevention or	Automatic solder tool/ SPC	3
reduction in the frequency of the cause/ mechanism to the failure model effect.	No	7
 The next preferred method of control is detection of the cause/mechanism, which leads to corrective actions. 	Clean in 30 minutes after solder dip	5
The least preferred method of control is detection of the failure mode	SPC	2
	UV energy and SPC	3
	None	6

14.6 Process FMEA Tabular Entries Table 14.8

Detection	Criteria	lnsp Type	Suggestion Range of Detection Methods	Rank
Almost impossible	Absolute certainty of nondetection.	С	Cannot detect or is not checked.	10
Very remote	Controls will probably not detect.	С	Control is achieved with indirect or random checks only.	9
Remote	Controls have poor chance of detection.	С	Control is achieved with visual inspection only.	8
Very low	Controls have poor chance of detection.	С	Control is achieved with double visual inspection only.	7
Low	Controls may detect.	ВC	Control is achieved with charting methods, such as SPC.	6
Moderate	Controls may detect.	В	Control is based on variable gauging after parts have left the station. or Go/No Go gauging performed on 100% of the parts after parts have left the station.	5
Moderately high	Controls have a good chance to detect.	ΑB	Error detection in subsequent operations, OR gauging performed on setup and first-piece check (for setup causes only).	4
High	Controls have a good chance to detect.	ΑB	Error detection in-station, or error detection in subsequent operations by multiple layers of acceptance: supply, select, install, verify. Cannot accept discrepant pan.	3
Very high	Controls almost certain to detect.	ΑB	Error detection in-station (automatic gauging with automatic stop feature). Cannot pass discrepant part.	2
Almost certain	Controls certain to detect.	А	Discrepant parts cannot be made because item has been error-proofed by processl product design.	1

14.6 Process FMEA Tabular Entries

- Risk Priority Number (RPN). Product of severity, occurrence, and detection rankings.
- The ranking of RPN prioritizes design concerns; however, problems with a low RPN still deserve special attention if the severity ranking is high.

EE	
· M	TANI

14.6 Process FMEA Tabular Entries

- Recommended Action(s). This entry is proposed actions intended to lower the occurrence, severity, and/or detection rankings of the highest RPN failure modes.
- Teams should focus on activities that lead to the prevention of defects (i.e., occurrence ranking reduction) rather than improvement of detection methodologies (i.e., detection ranking reduction).
- Teams should implement corrective action to identified potential failure modes where the effect is a hazard to manufacturing/assembly personnel.
- Severity reduction requires a revision in the design and/or process.

Recommended Actions Automation/DOE/ 100% chk with go/no go gage Automation/DOE/ define visual criteria Automation / DOE Automation/DOE Inform supplier to control molding cond. Improve quality of plating define criteria with customer None None Rough surface

14.6 Process FMEA	Responsibility and Target Completion Date
I abular Entries	Sam Smith 6/4
Responsibility for Recommended Action.	
Documents the organization and individual responsible for recommended	Harry Adams 5/15
action and target completion date.	Hilton Dean 5/15
	Sue Watkins 5/15
	Harry Hawkins 5/15
	Sam Smith 5/15
	Sam Smith 5/15

14.6 Process FMEA Tabular Entries	Actions Taken Done	S e v 9	O c u r	D e t c 2	R P N 72
Actions Taken. Actions Taken. Describes implementation of recommended action		7	4	2	56
 and effective date. Resulting RPN. Resulting RPN. Contains the recalculated RPN resulting from corrective actions that affected previous 	Done	7	4	2	56
	Done	7	4	2	56
severity, occurrence, and detection rankings. Blanks indicate no action taken.	Done	7	2	7	98
	Done	8	2	5	80
	Change interlock texture surface	6	3	6	108