

Uncertainty in Stocks

- In practice, there is almost always some uncertainty in stocks
 - As prices rise with inflation,
 - operations change,
 - new products become available,
 - supply chains are disrupted,
 - competition alters,
 - new laws are introduced,
 - the economy varies,
 - customers and suppliers move, and so on.
- From an organization's point of view, the main uncertainty is likely to be in customer demand, which might appear to fluctuate randomly or follow some long-term trend.

Uncertainty in Stocks: Areas with Uncertainty

- *Demand.* Aggregate demand for an item usually comes from a number of separate customers. The organization has little real control over who buys their products, or how many they buy. Random fluctuations in the number and size of orders give a variable and uncertain overall demand.
- Costs. Most costs tend to drift upwards with inflation, and we cannot predict the size and timing of increases. On top of this underlying trend, are short-term variations caused by changes to operations, products, suppliers, competitors, and so on. Another point is that changing the accounting conventions can change the apparent costs.

Uncertainty in Stocks: Areas with Uncertainty

- Lead time. There can be many stages between the decision to buy an item and actually having it available for use. Some variability in this chain is inevitable, especially if the item has to be made and shipped over long distances. A hurricane in the Atlantic, or earthquake in southern Asia can have surprisingly far-reaching effects on trade.
- Deliveries. Orders are placed for a certain number of units of a specified item, but there are times when these are not actually delivered. The most obvious problem is a simple mistake in identifying an item or sending the right number. Other problems include quality checks that reject some delivered units, and damage or loss during shipping. On the other hand, a supplier might allow some overage and send more units than requested. The deliveries ultimately depend on supplier reliability.

COLLEGE OF ENGINEERING

Worked Example 1: Uncertain Demand

Demand for an item over the past 6 months has been 10, 80, 240, 130, 100 and 40 units respectively. The reorder cost is £50 and holding cost is £1 a unit a month, and any orders placed in one month become available in the following month. How good is an ordering policy based on average values?

TLORIDA	INTERNATIONAL UNIFERSITY	
COLLEG	DE OF ENGINEERIN	G

	Wo Un	rkec certa	I Exa ain [amp Dem	le 1: and	2	
Given: Average D = 10 RC = \pounds 50 an or HC = \pounds 1 per un LT = 1 mo.	0 units der iit-mo.	s/mo.	Calcu	lated v Q _o = T _o = ROL	vith EC 100 ur 1 mo. = LT ×	DQ moo nits D = 1	del: 00 units
Mo.	1	2	3	4	5	6	
Opening stock	0	90	110	0	0	0	
Delivery	100	100	0	100	100	100	
Demand	10	80	240	130	100	40	
Closing stock	90	110	-130	-30	0	60	
 Assumptions: an opening stock of 0, 1 orders are placed every delivery is available to all unmet demand (i.e. 	out an o / month meet de negative	rder of 1 when th mand in e closing	00 units le closin the follo stock) i	arriving g stock i wing mo s lost.	at the s s below onth;	tart of m 100 uni	nonth 1; ts, and the

Uncertain Demand

- Assume that the overall demand for an item is made up of small demands from a large number of customers, then we can reasonably say that the overall demand is Normally distributed.
- A deterministic model will use the mean of this distribution and then calculate the reorder level as:

Reorder Level = Mean Demand × Mean Lead Time

• The actual lead time demand is likely to be either above or below the expected value. The problem is that a Normal distribution gives a demand that is higher than expected in 50% of stock cycles – so we can expect shortages and unsatisfied customers in half the cycles.

Models for Discrete Demand: Marginal Analysis

- The models we have looked at so far consider stable conditions where we want the minimal cost over the long term.
- Sometimes, however, we need models for the shorter term and, in the extreme, for a single period. (a newsagent buys a Sunday magazine from its wholesaler.)
- We can tackle this problem of ordering for a single cycle by using a marginal analysis, which considers the expected profit and loss on each unit.
- If the demand is discrete, and we place a very small order for Q units, the probability of selling the Qth unit is high and the expected profit is greater than the expected loss.
- If we place a very large order, the probability of selling the Qth unit is low and the expected profit is less than the expected loss.

Models for Discrete Demand: Marginal Analysis

- Based on this observation, we might suggest that the best order size is the largest quantity that gives a net expected profit on the Qth unit – and, therefore, a net expected loss on the (Q+1)th and all following units.
- Ordering less than this value of Q will lose some potential profit, while ordering more will incur net costs.

Models for Discrete Demand: Marginal Analysis

• We will only buy Q units if the expected profit is greater than the expected loss and:

 $Prob(D \ge Q) \times (SP - UC) \ge Prob(D < Q) \times (UC - SV)$ $\ge (1 - Prob(D \ge Q)) \times (UC - SV)$

• We can rearrange to give the general rule, that we place an order for the largest value of Q which still has:

$$Prob(D \ge Q) \ge \frac{UC - SV}{SP - SV}$$

- Starting with a small value of Q, we can iteratively increase it, and the expected profit continues to rise while the inequality remains valid.
- At some point the inequality becomes invalid, showing the last units would have an expected loss, and net profit begins to fall.
- This identifies the best value for the order size.

		Wo N	orke larg	ed Jina	Exa al Ar	mple nalys	e 2: sis			
UC=	1000					_				
SP=	2000									
SV=	500									
(UC-SV)/(SP-SV)=	0.3333									
0	1	2	3	4	5					
Prob(D >= Q)	1	0.8	0.5	0.2	0.1					
	Valid	Valid	Valid	Inv.	0					
	0	Demand	Q=	1	Q=2	Q=3	Q=4	Q=5	Prob	
			1 100	00	500	0	-500	-1000	0.2	
		:	2 100	00	2000	1500	1000	500	0.3	
		;	3 100	00	2000	3000	2500	2000	0.3	
			4 100	00	2000	3000	4000	3500	0.1	
		1	5 100	00	2000	3000	4000	5000	0.1	
	E	Expected	100	00	1700	1950	1750	1400		
								ollege of ei	NGINEERING	

Models for Discrete Demand: Newsboy Problem

- This marginal analysis is particularly useful for seasonal goods.
- A standard example is a newsboy selling papers on a street corner. The newsboy has to decide how many papers to buy from his supplier when customer demand is uncertain. If he buys too many papers, he is left with unsold stock which has no value at the end of the day; if he buys too few papers he has unsatisfied demand which could have given a higher profit.
- Because of this illustration, single period problems are often called newsboy problems.
- The marginal analysis described above is based on intuitive reasoning, but we can use a more formal approach to confirm the results.

Models for Discrete Demand: Newsboy Problem

- Assuming the newsboy buys Q papers, and then:
- If demand, D, is greater than Q the newsboy sells all his papers and makes a profit of Q × (SP – UC) (assuming there is no penalty for lost sales);
- If demand, D, is less than Q, the newsboy only sells D papers at full price, and gets the scrap value, SV, for each of the remaining Q-D. Then his profit is D × SP + (Q-D)× SV - Q× UC.
- The optimal value for Q maximizes this expected profit.

A A A A A A A A A A A A A A A A A A A	
COLLEGE OF ENGINEERIN	6

Models for Discrete Demand:
Newsboy Problem

D	Revenue	Cost	Profit	Prob.
0	0×SP+(Q-0)×SV	Q×UC	0×SP+(Q-0)×SV-Q×UC	Prob(0)
1	1×SP+(Q-1)×SV	Q×UC	1×SP+(Q-1)×SV-Q×UC	Prob(1)
:	÷	:	÷	:
Q-1	(Q-1)×SP+1×SV	Q×UC	(Q-1)×SP+1×SV-Q×UC	Prob(Q-1)
Q	Q×SP+0×SV=Q×SP	Q×UC	Q×SP+0×SV-Q×UC=Q(SP-UC)	Prob(Q)
Q+1	QxSP+0xSV=QxSP	Q×UC	QxSP+0xSV-QxUC=Q(SP-UC)	Prob(Q+1)
:	÷	÷	:	:
∞	QxSP+0xSV=QxSP	Q×UC	QxSP+0xSV-QxUC=Q(SP-UC)	Prob(∞)
			COLLEGE	OF ENGINEERING

 $\underbrace{FP(Q) - EP(Q-1) = SP \times \sum_{D=Q}^{\infty} Prob(D) + SV \times \sum_{D=0}^{Q-1} Prob(D) - UC}_{D=Q}}_{P(Q) - EP(Q-1) = SP \times \sum_{D=Q}^{\infty} Prob(D) + SV \times [1 - \sum_{D=Q}^{\infty} Prob(D)] - UC}_{D=Q}}_{P(Q) - EP(Q-1) = (SP - SV) \times \sum_{D=Q}^{\infty} Prob(D) - (UC - SV)}_{P(Q+1) - EP(Q) = (SP - SV) \times \sum_{D=Q+1}^{\infty} Prob(D) - (UC - SV)}_{Prob(D) - EP(Q_0 - 1) > 0 > EP(Q_0 + 1) - EP(Q_0)}_{Prob(D) - EP(Q_0 - 1) > 0 > EP(Q_0 + 1) - EP(Q_0)}_{Prob(D) = Q_0} > \underbrace{UC - SV}_{SP - SV} > Prob(D \ge Q_0 + 1)$

	V	Vork Mar	ted E ginal	xam Ana	nple alysi	3: s		
In recent year the following p	s the d battern.	emano	d for a s	seasor	nal pro	oduct	has h	ad
Demand	1	2	3	4	5	6	7	8
Probability	0.05	0.1	0.15	0.2	0.2	0.15	0.1	0.05
It costs £80 to How many un expected profi has a scrap va	buy ea its wou it? Wo alue of	ach un Id you uld yo £20?	it and t buy fo ur deci	the sel or the s sion cl	ling p easor hange	rice is n? WI a if the	£120 hat is produ	the uct
						Col	LEGE OF EN	IGINEERING)

		,	Wor Ma	ked rgin	Exa al A	amp Inal <u>i</u>	ole 3 ysis	3:	
Demand	Q=1	Q=2	Q=3	Q=4	Q=5	Q=6	Q=7	Q=8	Prob
1	40	-40	-120	-200	-280	-360	-440	-520	0.05
2	40	80	0	-80	-160	-240	-320	-400	0.1
3	40	80	120	40	-40	-120	-200	-280	0.15
4	40	80	120	160	80	0	-80	-160	0.2
5	40	80	120	160	200	120	40	-40	0.2
6	40	80	120	160	200	240	160	80	0.15
7	40	80	120	160	200	240	280	200	0.1
8	40	80	120	160	200	240	280	320	0.05
Expected	40	74	96	100	80	36	-26	-100	

Worked Example 4: Marginal Analysis

Zennor Package Holiday Company is about to block book hotel rooms for the coming season. The number of holidays actually booked is equally likely to be any number between 0 and 99 (for simplicity rather than reality). Each room booked costs Zennor €500 and they can sell them for €700. How many rooms should the company book if unsold rooms have no value? How many rooms should it book if unsold rooms can be sold as last-minute bookings for €200 each?

	Worked E Marginal	xample 4: Analysis
UC= SP= SV= (UC-SV)/(SP-SV)= UC= SP= SV= (UC-SV)/(SP-SV)=	500 700 0 0.7143 500 700 200 0.6	$Q_o = 29$ $Q_o = 40$

COLLEGE OF ENGINEERING

Models for Discrete Demand: Discrete Demand with Shortages

- We can extend the newsboy problem by looking at models for discrete demand over several periods.
- A useful approach to this incorporates the scrap value into a general shortage cost, SC, which includes all costs incurred when customer demand is not met.
- We can illustrate this kind of analysis by a model that has:
 - discrete demand for an item which follows a known probability distribution;
 - relatively small demands and low stock levels;
 - a policy of replacing a unit of the item every time one is used;
 - the objective of finding the optimal number of units to stock.
 - e.g., situation with stocks of spare parts for equipment.

COLLEGE OF ENGINEERING

Models for Discrete Demand: Discrete Demand with Shortages

- The objective is to find an optimal stock level rather than calculate an optimal order quantity.
- When an amount of stock, A, is greater than the demand, D, there is a cost for holding units that are not used. This is (A – D) × HC per unit of time.
- When demand, D, is greater than the stock, A, there is a shortage cost for demand not met. This is (D A) × SC per unit of time.
- Expected cost =
 - probability of no shortage × holding cost for unused units +
 - probability of a shortage x shortage cost for unmet demand

$$TEC(A) = HC \times \sum_{D=0}^{A} (A - D) \times Prob(D) + SC \times \sum_{D=A+1}^{\infty} (D - A) \times Prob(D)$$

	D	iscret	Work e Dei	ed Ex mand	ample with \$	e 5: Shorta	ages	
JF ec or sh £1 th	P Gupta an quipment. he unit of an nortage of t I,000 a unit e following	d Associa The com n item in he item p t a month demand	ates store pany acc stock for productio n. Over t pattern.	e spare p countant e a month n is disru he past fe	arts for the estimates to be £5 pted with ew monthe	the cost the cost 0. When estimate there h	ufacturing of holdir there is ed costs o has been] ig a of
	Demand	0	1	2	3	4	5	
	Probability	0.8	0.1	0.05	0.03	0.015	0.005	
W	hat is the c	optimal st	ock leve	l for the p	oart?			
						COLLE	EGE OF ENGINEE	RING

Worked Example 5: Discrete Demand with Shortages

Domond	0	4	2	2	4	F
Demand	0	1	2	3	4	5
Probability	0.8	0.1	0.05	0.03	0.015	0.005
SC=	1000					
HC	50					
SC/(HC+SC)=	0.9524					
,						
Α	0	1	2	3	4	5
Prob(D<=A)	0.8	0.9	0.95	0.98	0.995	1
· · · ·						

	Worked Example 5: Discrete Demand with Shortages								
	HC								
1	Demand		A=0	A=1	A=2	A=3	A=4	A=5	Prob
1		0	0	40	80	120	160	200	0.8
		1	0	0	5	10	15	20	0.1
		2	0	0	0	2.5	5	7.5	0.05
		3	0	0	0	0	1.5	3	0.03
		4	0	0	0	0	0	0.75	0.015
		5	0	0	0	0	0	0	0.005
	Expected HC		0	40	85	132.5	181.5	231.3	
	SC								
	Demand		A=0	A=1	A=2	A=3	A=4	A=5	Prob
		0	0	0	0	0	0	0	0.8
		1	100	0	0	0	0	0	0.1
		2	100	50	0	0	0	0	0.05
		3	90	60	30	0	0	0	0.03
		4	60	45	30	15	0	0	0.015
		5	25	20	15	10	5	0	0.005
	Expected SC		375	175	75	25	5	0	
			375	215	160	157.5	186.5	231.3	
								Con	

18

Models for Discrete Demand: Discrete Demand with Shortages

- This analysis relies on a value for the shortage cost SC, which can be very difficult to find. It is, though, often revealing to find the shortage cost implied by current practice.
- Suppose, for example, that JP Gupta and Associates in the last example actually held stocks of 4 units. We can work backwards and calculate an implied shortage cost.

$$Prob(D \le A_o) \ge \frac{SC}{HC + SC} \ge Prob(D \le A_o - 1)$$

$$Prob(D \le 4) \ge \frac{SC}{50 + SC} \ge Prob(D \le 3)$$

$$.995 \ge \frac{SC}{50 + SC} \ge .98$$

$$.9950 \ge SC \ge 2450$$

 $9950 \ge SC \ge 2450$

Models for Discrete Demand: Intermittent Demand

· Alternatively, we can look at the service level, with:

Service level = 1 - Prob(shortage)= $1 - [Prob(there is a demand) \times Prob(demand > A)]$

where:

Prob(there is a demand) = 1/ET

Prob(demand > A) from the distribution of demand.

- As you can imagine, this kind of problem is notoriously difficult and the results are often unreliable.
- In practice, the best policy is often a simple rule along the lines of 'order a replacement unit whenever one is used'.

Order Quantity with Shortages

Assumptions:

- Demand is variable and discrete,
- There is a relatively small number of shortages that are all met by back-orders.
- The lead time is shorter than the stock cycle.

Order Quantity with Shortages

• Minimize this cost per unit time.

$$\frac{d(VC)}{d(Q)} = 0 \text{ and } \frac{d(VC)}{d(ROL)} = 0$$

Solving these simultaneous equations,

$$\begin{bmatrix} Q = \sqrt{\frac{2 \times D}{HC}} \times \left[RC + SC \times \sum_{D=ROL}^{\infty} (D - ROL) \times Prob(D) \right] \\ \frac{HC \times Q}{SC \times D} = \sum_{D=ROL}^{\infty} Prob(D) \end{bmatrix}$$

Order Quantity with Shortages

Unfortunately, the equations are not in a form that is easy to solve, so the best approach uses an iterative procedure:

- 1. Calculate the economic order quantity and use this as an initial estimate of Q.
- 2. Substitute this value for Q into the second equation and solve this to find a value for ROL.
- 3. Substitute this value for ROL into the first equation to give a revised value for Q.

COLLEGE OF ENGINEERING

4. Repeat steps 2 and 3 until the results converge to their optimal values.

Worked Example 7: Order Quantity with Shortages						
The demand units a mon unit a month month. Cale level.	d for an ite th. The le n, reorder culate opt	em follows ad time is cost is £40 imal values	a Pois one we), and I s for th	son distr eek, sho nolding c e order c	ribution rtage co cost is £ quantity	with mean 4 ost is £200 a 4 a unit a and reorder
D (mean)=		4 units/mo				
LT=		1 week	0.25	mo.		
SC=	£ 200.00	per unit-mo				
RC=	£ 40.00	per order				
HC=	£ 4.00	per unit-mo				
EOQ=	8.94427	72				
HC×Q/SC×D=	0.04472	21				

Worked Example 7: Order Quantity with Shortages								
2.01					HC×Q/SC			
ROL=	9.13636	8	9		×D=	0.04832		
>ROL)	0.021363	0.051134	0.021363		ROI -	9 13636	8	9
					CProb(D>	0.10000	U	0
D	Prob(D)	D-ROL	(D-ROL)P		ROL)	0.021363	0.051134	0.021363
8	0.02977	0	`´´0					
g	0.013231	1	0.013231		D	Prob(D)	D-ROL	(D-ROL)P
10	0.005292	2	0.010585		8	0.02977	0	0
11	0.001925	3	0.005774		9	0.013231	1	0.013231
12	0.000642	4	0.002566		10	0.005292	2	0.010585
13	0.000197	5	0.000987		11	0.001925	3	0.005774
14	5.64E-05	6	0.000338		12	0.000642	4	0.002566
			0.033481		13	0.000197	5	0.000987
					14	5.64E-05	6	0.000338
Q=	9.663977							0.033481
					Q=	9.663977		
							COLLEGE OF E	NGINEERING

Service Level

- · percentage of orders completely satisfied from stock;
 - Disadvantage: not taking into account the frequency of stock-outs
- percentage of units demanded that are delivered from stock;
- percentage of units demanded that are delivered on time;
- percentage of time there is stock available;
- percentage of stock cycles without shortages;
- percentage of item-months there is stock available.
- Cycle service level is the probability of meeting all demand in a stock cycle.

Worked Example 8: Service Level								
In the past 50 stock cycles demand in the lead time for an item has been as follows.								
Demand	10	20	30	40	50	60	70	80
Frequency	1	5	10	14	9	6	4	1
What reorder I	evel w	ould g	ive a s	ervice	level	of 95%	K?	CONTENT OF CONTENT

Worked Example 8: Service Level				
LT Demand 10 20 30 40 50 60 70 80 Total 66.25	Freq. 1 5 10 14 9 6 4 1 50 (interpolation	Probability 0.02 0.10 0.20 0.28 0.18 0.12 0.08 0.02	Cum Prob. 0.02 0.12 0.32 0.60 0.78 0.90 0.98 1.00	
				OLLEGE OF ENGINEERING

Uncertain Lead Time Demand: Uncertain Demand

- If the aggregate demand for an item is made up of a large number of small demands from individual customers, it is reasonable to assume the resulting demand is continuous and Normally distributed.
- Even if the lead time is constant, the lead time demand is Normally distributed and greater than the mean in half of cycles.

<image><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Uncertain Lead Time Demand: Uncertain Demand

Uncertain Lead Time Demand: Uncertain Demand					
Z	% Shortage	Service Level(%)			
0.00	50.0	50.0			
0.84	20.0	80.0	1		
1.00	15.9	84.1			
1.04	15.0	85.0	Service Level Shortages		
1.28	10.0	90.0	Shortages		
1.48	7.0	93.0			
1.64	5.0	95.0			
1.88	3.0	97.0			
2.00	2.3	97.7			
2.33	1.0	99.0	Z		
2.58	0.5	99.5	LT×D		
3.00	0.1	99.9			
			COLLEGE OF ENGINEERING		

Worked Example 9: Uncertain Demand

A retailer guarantees a 95% service level for all stock items. Stock is delivered from a wholesaler who has a fixed lead time of 4weeks. What reorder level should the retailer use for an item that has Normally distributed demand with mean 100 units a week and standard deviation of 10 units? What is the reorder level with a 98% service level?

LT=	4	weeks
D(mean)=	100	units/wk
D(std dev)=	10	units/wk
Service Level	95%	98%
Z=	1.644854	2.053749
Safety Stock=	32.89707	41.07498
ROL=	432.8971	441.075

COLLEGE OF ENGINEERING

Worked Example 10: Uncertain Demand

Polymorph Promotions plc find that demand for an item is Normally distributed with a mean of 2,000 units a year and standard deviation of 400 units. Unit cost is \in 100, reorder cost is \in 200, holding cost is 20% of value a year and lead time is fixed at 3 weeks. Describe an ordering policy that gives a 95% service level. What is the cost of the safety stock?

Service Level	95%
Z=	1.64485363
Safety Stock= ROL=	158.032425 273.41704
Cost (SS)=	€ 3,160.65

Worked Example 11: Uncertain Lead Time						
Lead time for a product is Normally distributed with mean 8 weeks and standard deviation 2 weeks. If demand is constant at 100 units a week, what ordering policy gives a 95 per cent cycle service level?						
	LT (mean)=	8weeks				
	LT(std dev)=	2v	veeks			
	D=	100 u	units/wk			
	Service Level	95%				
	Z=	1.64485363				
	Safety Stock= 328.970725					
	ROL=	1128.97073				
				TLORIDA INTERNATIONAL ENIFERITT		

Uncertain Lead Time Demand: Uncertainty in both Lead Time & Demand

• Assume that both LT and demand are Normally distributed, with LT and D as the meads and σ_{LT} and σ_D as the standard deviations, the lead time demand has mean LT×

D and standard deviation $\sigma_{LTD} = \sqrt{LT \times \sigma_D^2 + D^2 \times \sigma_{LT}^2}$

- Safety stock = $Z \times \sigma_{LTD}$
- $ROL = LT \times D + Z \times \sigma_{LTD}$

COLLEGE OF ENGINEERING

Worked Example 12: Uncertainty in both Lead Time & Demand

Demand for a product is Normally distributed with mean 400 units a month and standard deviation 30 units a month. Lead time is Normally distributed with mean 2 months and standard deviation 0.5 months. What reorder level gives a 95% cycle service level? What is the best reorder quantity if reorder cost is £400 and holding cost is £10 a unit a month?

		2	
LT (mean)=		2	mos
LT(std dev)=		0.5	mos
D (mean)=		400	units/mo
D(std dev)=		30	units/mo
· · · ·			
RC=	£	400.00	per order
HC=	£	10.00	per unit-mo
std dev(LTD)=	2	04.450483	
Service Level		95%	
Z=	1	.64485363	
Sofaty Stook-	2	26 201110	
Salety Stock=	3	50.291110	
ROL=	1	136.29112	
EOQ=	1	78.885438	

Periodic Review Methods: Target Stock Level

- Fixed order quantity methods: we place an order of fixed size whenever stock falls to a certain level;
 - allowing for uncertainty by placing orders of fixed size at varying time intervals.
- Periodic review methods: we order a varying amount at regular intervals.
 - allowing for uncertainty by placing orders of varying size at fixed time intervals.
- If demand is constant these two approaches are identical, so differences only appear when the demand is uncertain.
- With a periodic review method, the stock level is examined at a specified time, and the amount needed to bring this up to a target level is ordered.

Periodic Review Methods: Target Stock Level

- The size of order A is determined by the stock level at point A₁, but when this actually arrives at time A₂ stock has declined. This order has to satisfy all demand until the next order arrives at point B₂. So the target stock level has to satisfy all demand over the period A₁ to B₂, which is T+LT.
- The demand over T+LT is Normally distributed with mean of (T+LT)×D, variance of σ²×(T+LT)
- Target stock level = mean demand over (T+LT)+ safety stock
- Safety stock = $Z \times \sigma_D \times \sqrt{(T + LT)}$
- Target stock level = $D \times (T + LT) + Z \times \sigma_D \times \sqrt{(T + LT)}$
- Order quantity = Target stock level stock on hand stock on order

COLLEGE OF ENGINEERING

Worked Example 13: Uncertain Lead Time

At a recent management workshop Douglas Fairforth explained that demand for an item in his company is Normally distributed with a mean of 1,000 units a month and standard deviation of 100 units. They check stock every three months and lead time is constant at one month. They use an ordering policy that gives a 95% service level, and wanted to know how much it would cost to raise this to 98 per cent if the holding cost is £20 a unit a month.

LT (mean)=	1	mo
D (mean)=	1000	units/mo
D(std dev)=	100	units/mo
HC=	£ 20.00	per unit-mo
T=	3	mo.
Service Level	95%	98%
Z=	1.64485363	2.0537489
Safety Stock=	328.970725	410.74978
Target=	4328.97073	4410.7498

Periodic Review Methods: Advantages of Each Method

Periodic Review Method:

- Main benefit is that it is simple and convenient to administer.
- This is particularly useful for cheap items with high demand.
- The routine also means that the stock level is only checked at specific intervals and does not have to be monitored continuously.
- Another advantage is the ease of combining orders for several items into a single order. The result can be larger orders that encourage suppliers to give price discounts.

Periodic Review Methods: Advantages of Each Method

Fixed Order Quantity Method:

- major advantage is that orders of constant size are easier to administer than variable ones.
- Suppliers know how much to send and the administration and transport can be tailored to specific needs.
- They also mean that orders can be tailored to the needs of each item
- Perhaps the major advantage is that they give lower stocks. The safety stock has to cover uncertainty in the lead time, LT, while the safety stock in a periodic review method has to cover uncertainty in the cycle length plus lead time, T+ LT. This allows smaller safety stock and hence lower overall stocks.

COLLEGE OF ENGINEERING

Periodic Review Methods: Advantages of Each Method

Sometimes it is possible to get the benefits of both approaches by using a hybrid method.

- Periodic review with reorder level. This is similar to the standard periodic review method, but we only place an order if stock on hand is below a specified reorder level.
- Reorder level and target stock. This is a variation of the fixed order quantity method which is useful when individual orders are large, and might take the stock level well below the reorder level. Then, when stock falls below the reorder level, we do not order for the economic order quantity, but order an amount that will raise current stock to a target level. This is sometimes called the min-max system as gross stock varies between a minimum (the reorder level) and a maximum (the target stock level).