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Abstract
In this study, we proposed a generic speckle simulation for optical coherence tomography (OCT)
signal, by convolving the point spread function (PSF) of the OCT system with the numerically
synthesized random sample field. We validated our model and used the simulation method to
study the statistical properties of cross-correlation coefficients (XCC) between Ascans which have
been recently applied in transverse motion analysis by our group. The results of simulation show
that over sampling is essential for accurate motion tracking; exponential decay of OCT signal
leads to an under estimate of motion which can be corrected; lateral heterogeneity of sample leads
to an over estimate of motion for a few pixels corresponding to the structural boundary.

1. Introduction
Illuminating an object with a coherent light source leads to images with a speckle pattern
[1,2]. Optical coherence tomography (OCT) uses light sources with high spatial coherence;
therefore, speckle exists ubiquitously in OCT images, as it is in other coherent imaging
modalities [3].

In OCT, speckle reduces image contrast; therefore it makes fine anatomic structures
indiscernible and tissue boundaries blurred. As a result, speckle is often considered as noise
that degrades image quality. Over the years, researchers have developed various methods to
suppress speckle noise in OCT images [4–10], which include hardware compounding and
digital signal processing approaches. However, speckle also carries information and can be
considered as signal. For example, studies have shown tissue type differentiation is possible
by analyzing speckle texture in OCT images [11–13]. OCT speckle can also be used to infer
tissue or probe dynamics. For example, temporal speckle variance of OCT signal was used
to detect blood flow [14–19]. In addition, speckle decorrelation was used to correct scanning
speed in manually scanned OCT [20, 21].

Whether or not speckle is being considered as noise or signal, it is a random phenomenon;
therefore, a comprehensive study of speckle statistics in OCT could be beneficial for both
the suppression of speckle noise as well as the extraction of information from speckle. The
statistical properties of OCT speckle have been investigated previously [3, 4, 22, 23]. In
those studies, OCT signal at different pixels are considered as statistically independent
random variables. However, none of the previous studies considered the point spread
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function (PSF) of an OCT system, which plays a critical role in the formation of OCT
images. Due to the finite dimension of PSF, OCT signals at neighboring pixels are
correlated rather than independent [19, 20]. In our previous work, we utilized such
correlation to estimate lateral displacement and demonstrated great potential of this
technique toward the development of simple, miniature and light-weight hand-held OCT
probes [20].

As suggested by early laser speckle studies, it is difficult to theoretical derive a closed-form
probability density function for a speckle pattern convolved with a PSF [1]. Alternatively,
numerical simulation can be performed to study speckle statistics with known properties of
the imaging system used. For example, a model involving system PSF was established to
simulate speckle patterns in ultrasound for motion analysis [24]. Band-limited speckle
patterns were also numerically synthesized and used to study the properties of OCT signal
[25, 26]. In this manuscript, we proposed a generic simulation method which incorporates
the PSF of OCT system to study speckle in OCT. The method is based on Fourier domain
OCT (FD OCT) since it is the most popular form of OCT due to its superior sensitivity and
imaging speed. However, results obtained based on a FD OCT schematic can still be applied
to time domain OCT (TD OCT) with minimal modifications. Using the method, one can
generate speckle patterns from any arbitrary system PSF and sample structure. This provides
a convenient means to study speckle properties in different imaging conditions. Particularly,
our study focused on the statistics of cross correlation coefficient (XCC) between Ascans.
XCC were used to estimate lateral displacement in our previous work and a more
comprehensive appreciation of the statistical properties of XCC would help evaluating the
stability and accuracy of our speckle decorrelation algorithm [20].

This manuscript is organized as follows: first we develop a theoretical model for speckle
analogous to the model established for ultrasound imaging systems [23]; afterwards, we
verify the model by comparing the probability density function (PDF) and power spectral
density (PSD) of speckled image obtained from our simulation with results obtained from a
different speckle simulation method proposed by D. Duncan et al [25, 26]; finally we use
our simulation to study the statistics of XCC in various imaging conditions.

2. Theory
A speckled OCT signal can be synthesized by convolving sample field reflectivity with the
PSF of OCT system’s, similar to J. Meunier et al’s simulation method in ultrasound image
[23]. In this manuscript, we use a Cartesian coordinate system (x, y, z) to describe the 3D
space. z indicates the axial direction; x is the lateral direction of Bscan. We assume the
scanning of OCT sample beam is limited in x-z plane. As a result, the coordinate y stays
constant for a Bscan and we can arbitrarily choose the origin of the coordinate system so
that y=0 for the Bscan of interest.

In a FD OCT system, the interference signal is detected in the spectral domain. The
interference term of the spectrum is denoted as S(x,k) and k is wavenumber (k=2π/λ, λ is
wavelength). The coordinate y is omitted because we assume that y=0 which implies a B-
mode imaging. Denote the sample field reflectivity at location (x,y,z) as rs(x,y,z), which can
be considered as the three dimensional (3D) object. For OCT system, axial reflectance
profile ra(z) can be considered as the convolution of rs(x,y,z) with hx,y(x,y). This is because
the axial PSF of OCT hz(z) and the lateral PSF hx,y(x,y) in general are separable. Axial and
lateral PSFs are governed by different physical principles: the axial PSF is determined by
the temporal coherence property of the light source while the lateral PSF is determined by
the imaging optics in the sample arm. Furthermore, in Gaussian optics model, hx,y(x,y) is the
product of PSFs in x and y dimensions hx(x) and hy(y) [21]. Therefore, we have
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(1)

Here, * indicates convolution; hx(x) and hy(y) can be expressed as exp[−(4ln2)x2/wx
2] and

exp[−(4ln2)y2/wy
2], respectively. wx and wy are the FWHM of the Gaussian shaped lateral

impulse response of the imaging system in x and y directions. wx and wy are identical if the
beam is circular. In addition, wx and wy are assumed to be constant for the entire imaging
range, which is appropriate for a weakly focused beam.

Therefore, S(x,k) can be expressed as:

(2)

Here, α is a system responsive factor; rr is the reference field reflectivity; S0(k) indicates the
Gaussian shaped source spectrum and S0(k)=s0exp(−4ln2(k-k0)2/Δk2) with s0 as a constant
indicating the magnitude of the source spectrum, k0 as the center of the source spectrum and
Δk as the spectral full width half maximum (FWHM). Re( ) stands for taking the real part of
a complex value; j is the unit imaginary number. Eq. (2) assumes optical path lengths in
reference and sample arms are identical for z=0. In the following analysis, we neglect the
Re( ) operator, but it is worth mentioning that performing FFT on real valued spectral
signals leads to complex conjugate ambiguity in OCT images [27].

Denote hy(0)*rs(x,0,z) as Ns(x,z), which can be expressed explicitly:

(3)

Spatial domain OCT signal S(x,z) is obtained by taking the inverse Fourier Transform of Eq
(2):

(4)

In Eq. (4), δk indicates the spectral range of the spectrometer (for spectral domain FD OCT)
or the sweeping range of the tunable laser source (for swept source FD OCT). With the
FWHM bandwidth of the light source Δk sufficiently smaller than δk, integral over k in the
range [k−δk/2, k+δk/2] can be approximated by integral over k in the range (−∞, +∞).
Replacing the variable k with k′=k−k0 in Eq. (4), changing the order of integration so that
integral over wavenumber is performed first, and expanding the integration range from −∞
to +∞, we have:

(5)

The integration over variable k is in fact the Fourier transform of Gaussian:
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(6)

Therefore, we have:

(7)

In the Eq (7), β=Δkαrrs0/(8ln2)1/2 and wz=4ln2/Δk. Denote exp(j2k0z)exp(−4ln2z2/wz
2) as

hz(z), we have:

(8)

Describing the sample field reflectivity Ns(x,z) as a collection of scatterers that are randomly
distributed, we can model the object Ns(x,z) as summation of 2D Dirac functions:

(9)

In Eq. (9), (xn, zn) indicates the location of the nth scatterers; an indicates the amplitude of
signal from the nth scatterer.

In practice, pixels in OCT images have finite pixel widths Δx and Δz in lateral and axial
dimensions. Considering the pixel dimension, SP(x,z), OCT signal at pixel (x, z) is:

(10)

In Eq (10), hx,z(x,z) indicates hx(x)hz(z).

NP(x, z) can be calculated:

(11)

Here, m is the number of scatterers within the pixel located at (x,z). Eq (11) implies that Np
follows a Poisson distribution. Moreover if m is large enough (>5), NP(x,z) can be described
as a Gaussian random variable according to central limit theorem [24]. In our program, we
generated 2D normally distributed random field to model NP(x,z). In practice, the statistical
distribution of Np can be determined by the voxel dimension and the size of scatterer of
interest.
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To synthesize a speckle pattern based on this model, one generates 2D PSF in x-z plane to
represent the property of the imaging system and 2D random object; and then convolves the
PSF with the random object field. Arbitrary PSF can be used. With different spatial
locations, random variables (NP(x,z)) with different statistical properties can be generated to
represent scatterers with heterogeneous spatial distribution. Due to the procedure of signal
generation of our method, this simulation is referred as spatial domain simulation (SD
simulation) in this manuscript. To validate our model, we also implemented a speckle
simulation method proposed by D. Duncan et al with slight modifications and referred this
method as frequency domain simulation (FD simulation), because their method generates
speckle patterns by Fourier transforming band-limited frequency domain random field [25].

3. Simulated speckle pattern and its statistical properties
Assuming an OCT system operates with a central wavelength of 840nm, and has a Gaussian
shaped PSF with 6μm FWHM in axial direction and a Gaussian shaped PSF with 10μm
FWHM lateral direction, we simulated OCT PSF as shown in Figure 1 (a), (b) and (c).
Figure 1 (a) shows the magnitude (blue), real part (red) and imaginary part (black) of the
complex valued axial PSF hz(z); Figure 1 (b) shows the lateral PSF hx(x); Figure 1(c) shows
the 2D PSF hx,z(x,z) (magnitude). We generate a matrix with random variables as a 2D
normally distributed random field NP(x,z). The mean and standard deviation of these
random variables are both 1. To obtain the OCT speckle pattern shown in Figure 1 (d), we
convolved the hx,z(x,z) in Figure 1(c) with NP(x,z), took the magnitude of the convoluted
image and rescale the magnitude of the image so that pixel values ranged from 0 to 1.

To validate our simulation method, we compared results of our simulation with the one
obtained from a method proposed by D. Duncan et al [25]. In their simulation, the authors
filled a circular region of diameter D of a L×L matrix with complex random numbers. The
amplitudes of these random numbers were unity and the phases were uniformly distributed
over (−π, +π). To synthesize a spatially band limited speckle pattern, a 2D Fourier
transform was performed on the L×L array. In fact, the spatial bandwidth of an image is
determined the bandwidth of modulation transfer function (MTF) of the imaging system or
the width of PSF. Essentially, an ideal low pass filter was applied to the broadband signal to
generate band limited speckle patterns in D. Duncan et al’s simulations. However, the
spatial frequency component of a real image does not have an infinitely sharp cut-off
frequency as simulated in [25]. Therefore, we implemented D. Duncan et al’s with a slight
modification. In our simulation, we filled a matrix with complex numbers of unity amplitude
and with phases uniformly distributed over (−π, +π), filtered it with 2D MTF which is the
Fourier transform of the 2D PSF hx,z(x,z)and performed 2D Fourier transform to obtain
OCT speckle pattern. The axial MTF, lateral MTF, 2D MTF and synthesized OCT image are
shown in Figure 1 (e), (f), (g) and (h).

The PDF and PSD of OCT speckle pattern were calculated from images generated with SD
and FD simulation. Figure 2 (a) shows the PDF (Pi, i=1,2,…,N, N is the number of bins used
to calculate PDF) obtained from the SD simulated OCT speckle patterns as red dots.
Assuming the PDF follows a Rayleigh distribution PR(S), as expressed by Eq (12), we can
obtain a maximum likelihood estimator of the parameter σ by calculating [Σ(Pi

2)/(2N)]1/2.
The Rayleigh distribution corresponding to the obtained σ is shown as black curve in Figure
2(a). The difference between the estimated Rayleigh distribution and the simulated PDF is
shown as the blue curve.

(12)
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In addition, we also calculated the PSD of the speckle pattern generated by SD simulation
and show the normalized and then logarithm scaled PSD in Figure 2(b). For comparison, we
did the same analysis to OCT speckle pattern generated by the FD simulation and show the
results in Figure 2(c) and (d).

In Figure 2 (a) and (c), the consistency between simulated result (black curve) and Rayleigh
distribution (red curve) suggests that we have generated a speckle pattern with Rayleigh
distribution using either SD or FD simulation which is consistent with previous studies [4,
23]. Moreover, the estimated value of σ for Rayleigh distribution are 0.2381 and 0.2402 for
SD and FD simulations shown in Figure 2, respectively. These values are close enough so
that we can consider that the PDFs generated from SD and FD simulations are identical. It is
worth mentioning that as the amplitude of OCT signal demonstrates Rayleigh distribution,
the intensity of OCT signal (square of amplitude) flows a negative exponential distribution,
according to the property of random variable transformation.

PSDs in Figure 2 (b) and (c) show the same oblong shape. The major axis of the ellipses is
along axial direction, because the axial resolution in our simulation was higher than the
lateral resolution.

In conclusion, the SD speckle simulation proposed in this paper generates Rayleigh
distributed OCT signal as the FD simulation which has been used for speckle analysis in
several studies. The FD method can only simulate global features of the speckle pattern;
while our SD method can simulate speckle pattern with spatial heterogeneity. For example,
we can generate NP(x,z) with different mean and variance at different spatial location to
represent a heterogeneous sample.

4. Statistics of XCC obtained from OCT speckle pattern
4.1. General statistics of XCC

Speckle decorrelation has been used for motion tracking in ultrasound imaging, as well as in
OCT [19–21, 28, 29]. In our previous work, we calculated Pearson cross correlation
coefficient (XCC) between adjacent A-scans to quantify the degree of speckle decorrelation
due to lateral motion. XCC calculated from A-scans that are displaced by Δx is denoted as
ρΔx, which can be calculated according to Eq (13):

(13)

In Eq (13), < > indicates to take the mean of a random signal; Ix(z) is the intensity of an A-
scan at lateral coordinate x: Ix(z) = S(x,z)S*(x,z). Ix+Δx(z) is the intensity of A-scan that is
displaced by Δx. σIx(z) and σIx+Δx(z) are the square roots of variance for Ix(z) and Ix+Δx(z).
It is worth mentioning that ρΔx is also a random variable. In other words, the value of ρΔx
obtained from an arbitrary experiment with a given Δx may be different in different
measurement and is generally different from its expectation value which can be calculated
with Eq (14) [21]:

(14)

On the other hand, displacement can be estimated by Eq (15), assuming the value of XCC
obtained experimentally is a good approximation of its expectation value.
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(15)

Eq (15) was theoretically derived and experimentally validated in our previous work [21].
To evaluate the accuracy and to optimize the performance of the speckle decorrelation
algorithm, it is desirable to obtain a more comprehensive statistical appreciation of XCC.
Using our SD simulation to synthesize a 2D OCT speckle pattern, we calculated values of
XCC with different lateral displacement Δx. 500 independent, random speckle patterns were
generated and therefore 500 sets of values of ρΔx for each displacement were obtained.
Pρ(Δx,r), the probability for XCC obtained with displacement Δx to take a value of r was
calculated using values obtained from simulation and the results are shown in Figure 3 (a).
In Figure 3 (a), each vertical line corresponds to a value of displacement and each horizontal
line corresponds to a value of ρ; the probability value Pρ(Δx,r) is encoded as the color of the
image: dark red indicates 1 and dark blue indicates 0 as shown in the colorbar of Figure 3
(a). To display Pρ(Δx,r), a 2D matrix with large dynamic range, we took the logarithm of
Pρ(Δx,r) and displayed the result using jet colormap in Matlab. Figure 3 (a) shows that ρ
decreases as lateral displacement Δx. Moreover, the distribution of Pρ(Δx,r) gets broadened
with increased Δx. In other words, if one uses the decorrelation of speckle to estimate
motion, the result is less accurate if ρ is calculated using A-scans far away from each other.
In Figure 3 (b), we show the averaged value of ρΔx as black circles. For comparison, we also
plot the relationship shown in Eq (14) as the red curve in Figure 3(b). Consistency between
results from simulation and theoretical calculation can be observed in Figure 3 (b). In Figure
3 (c), we show σρ2, the variance of the each cross correlation coefficient. With small Δx,
σρ2 increases as displacement between A-scans used for calculation; afterwards, σρ2 reaches
a plateau, when displacement is large so that A-scans are completely decorrelated and cross
correlation coefficient represents merely statistical noise. For accurate displacement
estimate, the A-scans involved in the calculation has to be displaced of a small enough value
so that σρ2 has to be smaller than the value at the plateau. According to Figure 3 (c), this
requires the displacement between A-scans used for correlation calculation to be smaller
than approximately 5μm. This conclusion is also consistent with the Nyquist sampling
theorem, which requires to sample twice as fast as the highest spatial frequency. In our
simulation, the lateral resolution is 10μm; therefore the sampling interval must be smaller
than half of this value which is 5μm.

4.2 XCC from signal with exponential decay
Due to signal loss from scattering and absorption, OCT signal often decays with imaging
depth exponentially and this might result in a speckle decorrelation curve different from the
results shown in Figure 3 (b). To simulate this scenario using our SD simulation, we
generated a spatially homogeneous 2D random matrix; multiplied each depth profile
generated with an exponential decay function a(z) = exp(−z/z0). Here, we chose the value of
z0 to be 50μm. Afterwards, we convolved the 2D object generated with the system PSF,
same as the one shown Figure 2 (c). One of the simulated A-scan with exponential decay is
shown in Figure 4(a), green curve. Using the generated OCT image with exponential decay,
we obtained XCC, ρΔx,decay, as green circles in Figure 4(b). ρΔx,decay has larger values
compared to the theoretical values shown as the red curve. As a result, using ρΔx,decay to
calculate displacement through Eq (15) would result in a smaller displacement estimation
than the actual displacement.

To correct for this effect, we averaged multiple A-scans. The averaging essentially served as
a low pass filter and removed drastic signal fluctuation between A-scans due to speckle. We
thereafter performed exponential fitting on the profile obtained from averaging to obtain
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ã(z), an exponential decay function that approximated a(z). To correct the decay, we divided
the simulated OCT signal shown as the green curve in Figure 4 (a) with ã(z). After such
correction, the green curve in Figure 4 (a) became the black curve. We calculated XCC
based on the exponential decay correction and show the results as black circles in Figure 4
(b). The consistency between the red curve and black circles indicates that one can extract
displacement with higher accuracy using XCC obtained from exponential decay corrected
OCT signal.

In reality, the implementation of this correction might be difficult because signal does not
decay exponentially in the presence of tissue boundaries in the axial direction. Even if the
signal decays exponentially, the decay constant might be different at different lateral
locations. If the average is performed on a limited number of A-scans with the same
exponential decay, the smoothing effect might not be significant and therefore simple curve
fitting cannot deduce the actual exponential decay function accurately. It is also worth
mentioning, the obtained exponential decay function might have extremely small values at
large of z. The correction procedure that involves dividing OCT signal extremely small
values (~0) might significantly increase the overall noise level.

4.3 XCC from speckle pattern with lateral heterogeneity
To study the effect of lateral heterogeneity on the XCC calculation and displacement
estimation, we generated a matrix consisting of random sub-matrices with different
variances; and then convolved the generated matrix with 2D PSF shown as Figure 1 (c). The
resultant speckle pattern is shown as Figure 5 (a). The bright and dark stripes correspond to
different Gaussian random matrices M1 and M2. The variance of M1 is 4 times larger than
that of M2; while M1 and M2 have the same mean. We subsequently calculated the XCC
from the generated speckle pattern using adjacent A-scans at different lateral locations. The
obtained result is shown as red curve in Figure 5(b). We also generated a homogeneous
speckle pattern using Gaussian random matrix with the same mean and variance as M1 and
calculated XCC in a same manner. The XCC corresponding to the homogeneous speckle
pattern is shown as green curve in Figure 5(b). We also averaged signal along axial direction
and show the averaged signal amplitude as black curve in Figure 5(b). It is seen that XCC
drops slightly with a signal discontinuity. In another simulation, we used Gaussian random
matrices M1 and M2 with 16 times difference in variance to the simulated speckle pattern.
The obtained results are shown in Figure 5 (c) and (d). A larger drop in XCC can be
observed in Figure 5 (d) due to a larger contrast between different parts of the sample.

When signal decorrelation due to structural difference is interpreted as signal decorrelation
due to lateral displacement, the estimated lateral displacement is larger than its actual value.
However, the drop of XCC only happens at pixels corresponding to structural boundary.
Therefore, only a small amount of A-scans will cause inaccurate displacement estimation.
Therefore, the overall performance of the speckle decorrelation algorithm can be considered
as unaffected by such effect.

4.4 XCC from speckle pattern with axial heterogeneity
We generated an OCT speckle pattern with axial heterogeneity as shown in Figure 6 (a). The
bright and dark stripes correspond to different Gaussian random matrices M1 and M2. The
variance of M1 is 4 times larger than that of M2; while M1 and M2 have the same mean.
XCC values were calculated from the generated speckle pattern using adjacent A-scans at
different lateral locations and the results are shown as the red curve in Figure 6 (b). We also
generated a homogeneous speckle pattern using a Gaussian random matrix with the same
mean and variance as M1 and calculated XCC in a same manner. The XCC corresponding to
the homogeneous speckle pattern is shown as a green curve in Figure 6 (b). No significant
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difference can be observed between the red and green curves in terms of mean XCC value.
This is because A-scans with lateral displacements are involved in XCC calculation;
therefore the result is independent of sample structure in axial dimension.

5.Discussion
We have recently shown that the speckle decorrelation properties of OCT signal is highly
effective in obtaining sample motion speed, probe motion speed flow velocity, and scanning
speed correction [20]. In these applications, a few A-scans were involved in the calculation
of XCC for displacement extraction. Therefore the calculated XCC is local rather than
global. As indicated by D. D. Duncan et al [26], the global speckle contrast calculated from
an experimentally acquired, fully developed, speckle pattern shows good consistency with
its theoretical value, the local speckle contrast obtained from a limited number of pixels is
random and can be substantially different from its theoretical value. Therefore, a more
accurate estimation of displacement can be deduced from XCC obtained from a larger set of
A-scans within a given interval. In other words, oversampling is essential in motion
estimation using speckle decorrelation methods. This is also consistent with results in Figure
3 (a): the XCC value obtained with small displacement has a narrower distribution.

Acknowledgments
The research reported in this paper was supported in part by NIH BRP grants 1R01 EB 007969, R21
1R21NS063131-01A1, NIH/NIE R011R01EY021540-01A1, and in part by fellowship support from the ARCS
Foundation.

References
1. Goodman, JW. Statistical Optics. Wiley; New York: 1985.

2. Goodman JW. Some fundamental properties of speckle. J Opt Soc Am. 1976; 66:1145–1150.

3. Schmitt JM, Xiang SH, Yung KM. Speckle in optical coherence tomography. J Biomed Opt. 1999;
4(1):95. [PubMed: 23015175]

4. Pircher M, Götzinger E, Leitgeb R, Fercher AF, Hitzenberger CK. Speckle reduction in optical
coherence tomography by frequency compounding. J Biomed Opt. 2003; 8:565. [PubMed:
12880365]

5. Adler DC, Ko TH, Fujimoto JG. Speckle reduction in optical coherence tomography images by use
of a spatially adaptive wavelet filter. Opt Lett. 2004; 29:2878–2880. [PubMed: 15645810]

6. Marks DL, Ralston TS, Boppart SA. Speckle reduction by I-divergence regularization in optical
coherence tomography. J Opt Soc Am A. 2005; 22:2366–2371.

7. Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ. Speckle reduction in optical
coherence tomography images using digital filtering. J Opt Soc Am A. 2007; 24:1901–1910.

8. Desjardins AE, Vakoc BJ, Oh WY, Motaghiannezam SM, Tearney GJ, Bouma BE. Angle-resolved
Optical Coherence Tomography with sequential angular selectivity for speckle reduction. Opt
Express. 2007; 15:6200–6209. [PubMed: 19546925]

9. Kennedy BF, Hillman TR, Curatolo A, Sampson DD. Speckle reduction in optical coherence
tomography by strain compounding. Opt Lett. 2010; 35:2445–2447. [PubMed: 20634858]

10. Jian Z, Yu L, Rao B, Tromberg BJ, Chen Z. Three-dimensional speckle suppression in optical
coherence tomography based on the curvelet transform. Opt Express. 2010; 18:1024–1032.
[PubMed: 20173923]

11. Gossage KW, Tkaczyk TS, Rodriguez JJ, Barton JK. Texture analysis of optical coherence
tomography images: feasibility for tissue classification. J Biomed Opt. 2003; 8:570. [PubMed:
12880366]

12. Kasaragod DK, Lu Z, Smith LE, Matcher SJ. Speckle texture analysis of optical coherence
tomography images. Proc SPIE. 2010; 7387:73871V.

Liu et al. Page 9

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2013 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Gossage KW, Smith CM, Kanter EM, Hariri LP, Stone AL, Rodriguez JJ, Williams SK, Barton
JK. Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys
Med Biol. 2006; 51:1563–1575. [PubMed: 16510963]

14. Barton J, Stromski S. Flow measurement without phase information in optical coherence
tomography images. Opt Express. 2005; 13:5234–5239. [PubMed: 19498514]

15. Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, Jiang J, Cable
A, Wilson BC, Vitkin IA, Yang VXD. Speckle variance detection of microvasculature using
swept-source optical coherence tomography. Opt Lett. 2008; 33(13):1530–1532. [PubMed:
18594688]

16. Mariampillai A, Leung MKK, Jarvi M, Standish BA, Lee K, Wilson BC, Vitkin A, Yang VXD.
Optimized speckle variance OCT imaging of microvasculature. Opt Lett. 2010; 35(8):1257–1259.
[PubMed: 20410985]

17. Liu X, Zhang K, Huang Y, Kang JU. Spectroscopic-speckle variance OCT for microvasculature
detection and analysis. Biomed Opt Express. 2011; 2:2995–3009. [PubMed: 22076262]

18. Cadotte DW, Mariampillai A, Cadotte A, Lee KKC, Kiehl T, Wilson BC, Fehlings MG, Yang
VXD. Speckle variance optical coherence tomography of the rodent spinal cord: in vivo
feasibility. Biomed Opt Express. 2012; 3:911–919. [PubMed: 22567584]

19. Motaghiannezam R, Fraser S. Logarithmic intensity and speckle-based motion contrast methods
for human retinal vasculature visualization using swept source optical coherence tomography.
Biomedical Opt Express. 2012; 3:503–521.

20. Ahmad A, Adie SG, Chaney EJ, Sharma U, Boppart SA. Cross-correlation-based image
acquisition technique for manually-scanned optical coherence tomography. Opt Express. 2009;
17:8125–8136. [PubMed: 19434144]

21. Liu X, Huang Y, Kang JU. Distortion-free freehand-scanning OCT implemented with real-time
scanning speed variance correction. Opt Express. 2012; 20:16567–16583.

22. Bashkansky M, Reintjes J. Statistics and reduction of speckle in optical coherence tomography.
Opt Lett. 2000; 25:545–547. [PubMed: 18064106]

23. Karamata B, Hassler K, Laubscher M, Lasser T. Speckle statistics in optical coherence
tomography. J Opt Soc Am A. 2005; 22:593–596.

24. Meunier J, Bertrand M. Ultrasonic texture motion analysis: Theory and simulation. IEEE Trans
Med Imag. 1995; 14(2):293–300.

25. Kirkpatrick SJ, Duncan DD, Wang RK, Hinds MT. Quantitative temporal speckle contrast imaging
for tissue mechanics. J Opt Soc Am A. 2007; 24:3728–3734.

26. Duncan DD, Kirkpatrick SJ, Wang RK. Statistics of local speckle contrast. J Opt Soc Am A. 2008;
25:9–15.

27. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain
optical coherence tomography. Opt Express. 2003; 11:2183–2189. [PubMed: 19466106]

28. Chen JF, Fowlkes JB, Carson PL, Rubin JM. Determination of scan-plane motion using speckle
decorrelation: theoretical considerations and initial test. Int J Imaging Syst Technol. 1997; 8(1):
38–44.

29. Li PC, Cheng CJ, Yeh CK. On velocity estimation using speckle decorrelation. IEEE Trans
Ultrason Ferroelectr Freq Control. 2001; 48(4):1084–1091. [PubMed: 11477767]

Liu et al. Page 10

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2013 April 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) hz(z), the axial PSF of OCT system (blue: magnitude; red: real part; black: imaginary
part); (b) hx(x), the lateral PSF of OCT system; (c) hx,z(x,z), 2D PSF; (d) synthesized OCT
speckle pattern from spatial domain simulation; (e) axial MTF; (f) lateral MTF; (g) 2D
MTF; (h) synthesized OCT speckle pattern from frequency domain simulation.
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Figure 2.
(a) PDF of OCT speckle pattern obtained from SD simulation; (b) PSD of OCT speckle
pattern obtained from SD simulation; (c) PDF of OCT speckle pattern obtained from FD
simulation; (d) PSD of OCT speckle pattern obtained from SD simulation.
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Figure 3.
(a) The probability for ρΔx to take different values; (b) mean value of ρΔx from simulation
(black circles) as compared with the expectation of ρΔx from theoretical calculation (red
curve); (c) variance of ρΔx at different displacement
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Figure 4.
(a) OCT signal with exponential decay (green) and after exponential decay correction
(black); (b) XCC calculated using OCT signal with exponential decay (green circles); XCC
calculated using OCT signal after exponential decay correction (black circles); and
theoretical XCC values (red)
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Figure 5.
(a) speckle pattern with lateral heterogeneity generated from Gaussian random matrices M1
and M2; the variance of M1 is 4 times larger than that of M2; (b) XCC calculated from the
speckle pattern shown in Figure 5 (a) using adjacent A-scans at different lateral locations;
(c) speckle pattern with lateral heterogeneity generated using Gaussian random matrices M1
and M2; the variance of M1 is 16 times larger than that of M2; (d) XCC calculated from the
speckle pattern shown in Figure 5 (c) using adjacent A-scans at different lateral locations.
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Figure 6.
(a) speckle pattern with axial heterogeneity generated using Gaussian random matrices M1
and M2; the variance of M1 is 4 time larger than that of M2; (b) XCC calculated from the
speckle pattern shown in Figure 6 (a) using adjacent A-scans in different lateral locations.
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