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Abstract

Significance: Monte Carlo (MC) methods have been applied for studying interactions between
polarized light and biological tissues, but most existing MC codes supporting polarization mod-
eling can only simulate homogeneous or multi-layered domains, resulting in approximations
when handling realistic tissue structures.

Aim: Over the past decade, the speed of MC simulations has seen dramatic improvement with
massively parallel computing techniques. Developing hardware-accelerated MC simulation
algorithms that can accurately model polarized light inside three-dimensional (3D) hetero-
geneous tissues can greatly expand the utility of polarization in biophotonics applications.

Approach: Here, we report a highly efficient polarized MC algorithm capable of modeling arbi-
trarily complex media defined over a voxelated domain. Each voxel of the domain can be asso-
ciated with spherical scatters of various radii and densities. The Stokes vector of each simulated
photon packet is updated through photon propagation, creating spatially resolved polarization
measurements over the detectors or domain surface.

Results: We have implemented this algorithm in our widely disseminated MC simulator, Monte
Carlo eXtreme (MCX). It is validated by comparing with a reference central-processing-unit-
based simulator in both homogeneous and layered domains, showing excellent agreement and
a 931-fold speedup.

Conclusion: The polarization-enabled MCX offers biophotonics community an efficient tool to
explore polarized light in bio-tissues, and is freely available at http://mcx.space/.
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1 Introduction

Polarized light has been found to be highly sensitive to medium structures and hence has been
widely adopted in optical imaging to probe microstructural features inside biological tissues.1–4

For example, the polarization status of the backscattered light can be measured to characterize
the superficial layer of skin for cancer diagnostic purposes.5,6 The measurements of tissue bire-
fringence permit quantification of abnormalities of the retinal nerve fiber layer7 and cornea,8
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as well as three-dimensional (3D) reconstruction of nerve fiber orientations inside human brains9

and orientations of collagen within the uterine cervix.10 By measuring the unequal absorption
of left-handed and right-handed circularly polarized light, circular dichroism can rapidly
determine the folding properties of proteins.11 Quantification of collagen and birefringent
media alignment can improve evaluation of a therapeutic strategy and its outcome in scar
management.12 Polarized light imaging (PLI) uses linearly co-polarized images subtracted by
those of cross-polarized light to create a differential image based on the small population of
superficially scattered photons that still retain much of the incident polarization state.5 PLI sub-
tracts the large randomized population of multiple-scattered photons that produce a blinding
background of diffuse light. The resulting difference image enhances the contrast of superficial
tissue layers and rejects deeper tissue structures, enabling wide-field screening of epidermal or
epithelial layers. Mueller matrix polarimetry and the use of various decomposition methods can
also be used to pinpoint different regions and structures within biological tissue.2,3 Accurately
simulating polarized light transport inside complex tissues allow quantitative investigations
of the depth response of polarized light and the perturbations produced by local tissue
abnormalities.

The propagation of polarized light inside scattering media can be described by the vector
radiative transfer equation (VRTE).13 Analytically solving the VRTE is not viable in complex
media such as human tissues. Owing to its high flexibility and simplicity in programming, the
Monte Carlo (MC) method, among other numerical techniques,14–19 has been one of the limited
approaches available to quantitatively model interactions of polarized light with scattering
media. Depending on the vectorial representations of polarization states, polarized light MC
algorithms can be largely categorized into two formalisms—Jones calculus and Mueller
calculus.2,4,20 The Jones calculus used in the electric-field MC (EMC) algorithm traces the ampli-
tudes and phases of two orthogonal electric-field components (Jones vector) and is therefore well
suited for simulating light coherence effects.21 On the other hand, the Mueller calculus describes
the state of polarization using the Stokes vector.22–26 The Stokes vector does not contain
the absolute phase of the electrical field but allows to model unpolarized, partially polarized
and fully polarized light. It can be obtained by measuring four intensity values. Similarly,
Mueller matrices can be obtained through 16 intensity measurements and using Mueller matrix
decomposition, quantities, such as tissue retardation, depolarization and de-attenuation can be
obtained.4

A well-known limitation of MC methods is the long computation time. Due to the rapid
emergence of massively parallel computing techniques, benefit largely from the fast advances
in many core processors such as graphics processing units (GPUs), MC simulations of polarized
light have seen significant speed improvement over the past decade. Several groups have
reported parallel EMC implementations.27–29 Wang et al.27 presented a compute unified device
architecture (CUDA)30-based EMC to model coherent light in a single homogeneous slab and
achieved over 370× speedup compared to the central processing unit (CPU) counterpart.21 Ding
et al.29 extended the GPU-based EMC algorithm to consider multi-layered media at the expense
of reduced speedup (∼45×). In addition, Li et al.31 presented a CUDA-based polarized light MC
algorithm to model interstitial media embedded with spherical and cylindrical scatterers. It
employed a single-kernel scheme and was hundreds of times faster than its CPU version.26

In 2019, Oulhaj et al.32 reported a GPU-accelerated MC algorithm to efficiently compute the
sensitivity profile for polarized light inside homogeneous media. The reported GPU implemen-
tation was verified against a widely used CPU-based code developed by Ramella-Roman et al.24

and reported over 150× speedup.
Although these studies have demonstrated significantly improved simulation speed, most of

these simulators only support layered domains and can not address the needs in modeling
increasingly complex media.4 In the simulation of biological tissues with irregular-shaped struc-
tures, employing simplifications in domain geometries could introduce significant errors. For
example, in the MC modeling of human brains, noticeable differences have been observed
between layered-slab models and more anatomically realistic models such as voxel-based and
mesh-based brain models.33

In this work, we present an open-source and GPU-accelerated MC simulator to model polar-
ized light inside 3D heterogeneous media. This MC algorithm utilizes a 3D voxelated grid to
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represent spatially varying distributions of spherical scatterers, characterized by their radii and
densities. We use Muller calculus to update the Stokes vectors of simulated photon packets, from
which we can compute various polarimetry related measurements along the surface of the
domain. In the remainder of this paper, we first briefly review the steps of the meridian-plane
MC algorithm.24 Then we detail our GPU-implementation of this algorithm, as part of our
enhanced open-source MC software—Monte Carlo eXtreme (MCX),34 including the preprocess-
ing steps to encode the distribution of particles into a 3D array data structure and optimization
strategies to better use GPU resources. In Sec. 3, we validate the proposed GPU-based polari-
zation-enabled MCX (pMCX) against the widely used CPU MC simulator “meridianMC” writ-
ten by Ramella-Roman et al.35 and quantify the speed improvement using several benchmarks of
homogeneous and heterogeneous domains. Finally, we summarize the key findings and discuss
future directions.

2 Methods

2.1 Meridian-Plane Polarized Light MC

The meridian-plane polarized light MC algorithm35 largely follows the standard MC photon
transport simulation steps,36 including “launch,” “move,” “absorb,” “scatter,” and “detection.”
At the “launch” stage, the initial weight, position, and direction vector are defined for each pho-
ton packet depending on the profile of the incident beam. To describe the polarization state, the
Stokes vector is defined with respect to the initial meridian plane for every simulated photon
packet.24 The meridian plane is defined by the plane spanned by the photon propagation direc-

tion and the z axis, as shown in Fig. 2 in Ref. 24. The Stokes vector ~S consists of four quantities
[I; Q; U; V], where I (I ≥ 0) describes the total light intensity, Q (−1 ≤ Q ≤ 1) controls
the mixing between horizontally (Q ¼ 1) and vertically (Q ¼ −1) linearly polarized light,
U (−1 ≤ U ≤ 1) controls the mixing between þ45 deg (U ¼ 1) and −45 deg (U ¼ −1)
linearly polarized light, and V (−1 ≤ V ≤ 1) controls the mixing between right (V ¼ 1) and
left (V ¼ −1) circularly polarized light.1

After the “launch” step, the photon packet starts propagating inside the simulation domain. In
lossy media, the packet weight is monotonically reduced along the photon’s paths and the weight
loss is accumulated into the local grid element (such as a voxel or tetrahedral element37). When
arriving at an interaction site, the photon packet changes direction due to scattering. To compute
the new direction cosines, the scattering zenith angle θ ð0 ≤ θ ≤ πÞ and azimuth angle ϕ ð0 ≤
ϕ < 2πÞ are statistically sampled. Compared to the standard MC, the scattering step in a polar-

ized light simulation requires additional computation to properly update ~S. First, the probability
density function (also known as the scattering phase function) of polarized light has a bivariate

dependence on both θ and ϕ. For incident light with a Stokes vector ~Sin ¼ ½Iin; Qin; Uin; Vin&,
the phase function Pðθ; ϕÞ24 is

EQ-TARGET;temp:intralink-;e001;116;252Pðθ;ϕÞ ¼ s11ðθÞIin þ s12ðθÞ½Qin cosð2ϕÞ þ Uin sinð2ϕÞ&; (1)

where s11ðθÞ and s12ðθÞ are elements from the scattering matrix MðθÞ from a homogeneous
spherical particle, computed via the Mie theory38

EQ-TARGET;temp:intralink-;e002;116;197MðθÞ ¼

2

6664

s11ðθÞ s12ðθÞ 0 0
s12ðθÞ s11ðθÞ 0 0
0 0 s33ðθÞ s34ðθÞ
0 0 −s34ðθÞ s33ðθÞ

3

7775: (2)

A rejection method24 is employed to select both angles θ and ϕ. Once θ and ϕ are determined,
the Stokes vector must be rotated relative to the new meridian plane using MðθÞ to update
the polarization states.

To efficiently perform the rejection method and Stokes vector rotation, the elements of the
scattering matrix MðθÞ of all user-specified spherical scatter species are pre-computed over a
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discreteized set of θ. A photon packet is terminated when it escapes from the simulation domain
or, if enabled, fails to survive a Russian roulette.36 It is noteworthy that the original meridian-
plane polarized light MC assumes refractive-index matched domain boundaries.24 The Stokes
vector of the escaping photon is rotated relative to the meridian plane of the detector placed
immediately outside the domain boundaries, before being accumulated to generate desired out-
put quantities. A detailed description of the formulas used in the meridian plane MC algorithm
can be found in the literature.24

2.2 Implementing Meridian Plane MC in MCX

The original CPU-based meridian-plane MC program,35 referred to as “mcMeridian” (stok1.c)
hereinafter, is dedicated to modeling homogeneous infinite slab geometries. In contrast, the
CUDA-based MCX is capable of modeling arbitrarily heterogeneous media represented by a
3D voxelated domain.34 In a non-polarization MCX simulation, the domain is represented
by a 3D integer array with each number representing the index or label of the tissue at each
voxel. The actual optical properties of the tissue label are stored in a look-up table, with four
element per tissue type: absorption coefficient μa (1/mm), scattering coefficient μs (1/mm),
anisotropy g, and refractive index n. To simulate polarized light, the scattering properties of
each type of scatterer must be included in addition. To simply the computation, here we only
consider spherical scatterers. The radius r ( μm), refractive index nsph, and volumetric number
density ρ (1∕ μm3) of the spherical particle scatters can be specified for each tissue type. When
spherical particle properties are specified, the corresponding μs, g, and elements of the scattering
matrix MðθÞ are pre-computed using the Mie theory39 on the host (i.e., CPU). As shown in
Eq. (2), the scattering matrix of homogeneous spherical scatterers consists of four independent
floating-point numbers s11ðθÞ; s12ðθÞ; s33ðθÞ, and s34ðθÞ. In our implementation, the scattering
parameters are sampled at 1000 evenly spaced points between 0 and π, as done in mcMeridian.35

The pre-computed optical properties and scattering matrix data are then transferred to the device
(i.e., GPU), as shown in Fig. 1.

Device (GPU)

Mie 
Scattering

s11(0)  s12(0)  s33(0)  s34(0)

s11( )  s12( )  s33( )  s34( )

12

Label-based 
segmented volume

Host (CPU)

Type Properties

1 µa    r        nsph    n 

2 µa r nsph n

Type Optical properties

1 µa     µs     g      n 

2 µa     µs     g      n 

1

Type Scattering matrices

2

s11(0)  s12(0)  s33(0)  s34(0)

s11( )  s12( )  s33( )  s34( )

Fig. 1 Media representation and media data preprocessing in a polarization-enabled Monte Carlo
simulation.
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3 Results and Discussions

In this section, we first validate the aforementioned pMCX in a homogeneous slab using the
single-threaded CPU-based implementation (mcMeridian24) as a reference, which has been
extensively used by the community and validated by experimental studies.25 The speed improve-
ment is also quantified. It is noteworthy that mcMeridian35 simulates an infinite slab media
geometry in the x∕y directions, whereas in an MCX simulation, a photon is confined inside
a bounding box with user-specified dimensions.34 To ensure that our speed comparison is valid,
we modified the source code of mcMeridian and added an implicit bounding box to match
the dimension settings in pMCX. In the first benchmark, the simulation domain is a 20 × 20 ×
10 mm3 homogeneous slab, the Mie scattering parameters of the embedded spherical scatterer
are μa ¼ 0 mm−1, r ¼ 1.015 μm, ρ ¼ 1.152 × 10−4 μm−3, and nsph ¼ 1.59. The refractive
index of the background medium is n ¼ 1.33. A monochromatic pencil beam source is posi-
tioned at the bottom center ð10;10; 0Þ mm of the domain, pointing toward the þz axis and emit-
ting horizontally polarized light at wavelength λ ¼ 632.8 nm. The initial Stokes vector of the

incident beam is ~S ¼ ½1;1; 0;0&. The backscattered photons are collected by a square-shaped area
detector (20 × 20 mm2) placed on the boundary at z ¼ 0 mm. In this benchmark, 108 photon
packets are simulated on a desktop running Ubuntu 18.04 with an Intel i7-6700K CPU and an
NVIDIA RTX 2080 GPU.

In Fig. 2, we compare the distribution of backscattered [I; Q; U; V] components using con-
tour plots in MATLAB (MathWorks, Inc., Natick, Massachusetts, United States) and observed
excellent agreement between mcMeridian and pMCX solutions. For further quantitative analy-
sis, the root-mean-square errors of I; Q; U; V (in log10 scale) between mcMeridian and pMCX
are computed on the matching detector area (20 × 20mm2), reporting 0.0076, 0.0881, 0.1015,
and 0.0938, respectively. We measure the total runtimes, including input data preprocessing,
photon transport simulation, and output image generation, with mcMeridian reporting
18111.44 s using the Intel CPU and pMCX reporting 19.45 s on the NVIDIA RTX 2080
GPU, suggesting a 931× speedup. In addition, we also benchmark simulation speeds when stor-
ing the scattering matrix data over different GPU memory locations, including global, shared,
and constant memories.30 The global memory implementation reports the fastest speed at
8401 photons/ms, followed by the shared memory (4965 photons/ms) and constant memory
(2182 photons/ms) implementations. Although the shared memory is known to be the fastest
among the three memory types, its has a very small size, up to 48 KB per block.30 For storing
the scattering matrix of a single species of scatterer at 1000 angular steps, a total of 16 KB
memory is needed. Allocating a large amount of shared memory can lead to drastically reduced
active block number, which explains the lower speed compared to the global memory case.
On the other hand, constant memory also has a small size (64 KB).30 It is most efficient when
a memory value is being reused many times after a single read. However, the use of the rejection
method requires random access to the buffer which fails to be accelerated by the constant
memory due to high “cache-miss.”30

In the next benchmark, we further validate our pMCX simulator by comparing with an
extended mcMeridian (with added support of layered media) in a two-layer domain. The slab-
shaped simulation domain has a size of 100 × 100 × 50 mm3 with the thickness of the superficial
layer, de, ranging between 0 and 10 mm. The Mie scattering parameters are λ ¼ 632.8 nm,
μa ¼ 0.001 mm−1, sphere radius r ¼ 0.05 μm, number density ρ ¼ 19.11 μm−3, nsph ¼ 1.59,
and n ¼ 1.33 for the superficial layer. The bottom layer has r ¼ 0.3 μm, ρ ¼ 2.198 × 10−2 μm−3,
and the other parameters are the same as the superficial layer. These choices of r and ρ yield a
reduced scattering coefficient μ 0

s ¼ μs · ð1 − gÞ ¼ 1 mm−1 for both layers, along with the same
absorption μa and hence approximately the same reflected intensity I for all de. A pencil beam is
located on the surface of the slab at ð50;50; 0Þ mm, pointing toward the þz axis and emitting

horizontally polarized light, with the initial Stokes vector ~S ¼ ½1;1; 0;0&. A total of 107 photon
packets are simulated for both mcMeridian and pMCX.

In Fig. 3, we plot the total reflected I and Q components as a function of the superficial layer
thickness de. We do not include total U and V plots because they are nearly zeros across all de
values, this is expected as U and V distributions sum to zeros due to symmetric positive and
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negative components. The outputs from mcMeridian (black solid lines) and those from pMCX
(red circles) once again show excellent agreements. The plot ofQ increases with the thickness de
of the superficial layer, which contains smaller spherical scatters and hence stronger back-
scattering than the deeper layer. With thickness de growing from 0 to 1 cm, the total I value
shows a minuscule increase by 0.17% (from 0.9080 to 0.9095), as shown in the inset in Fig. 3(a),
as a result of sub-diffusive scattering. The two-phase transition of Q matches our expectations:
when the superficial layer is very thin, the reflectance values are close to the value as if the
domain is entirely filled with the bottom medium (green dashed line); as we increase de, the
reflectance values asymptotically approach those determined by the media in the superficial layer
(blue dashed line).

Finally, we show simulation of a slab-shaped medium embedded with a spherical inclusion,
showcasing pMCX’s capability of modeling heterogeneous domains. In this benchmark (Fig. 4),
the simulation domain is a 10 × 10 × 1.2 mm3 slab with a spherical inclusion of radius
0.5 mm centered at ð6;6; 0.6Þ mm. The inclusion and the slab share identical absorption
coefficient μa ¼ 0.005 mm−1, reduced scattering coefficient μ 0

s ¼ 1 mm−1, and refractive index
n ¼ 1.33. However, the Mie scatters inside both domains are different. The background medium
is filled with scatterers of radius r ¼ 0.05 μm and volume density ρ ¼ 19.11 μm−3; the inclusion
is filled with scatterers of radius r ¼ 1 μm and volume density ρ ¼ 1.11 × 10−3 μm−3.
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Fig. 2 Contour plots of the absolute backscattered (a) I, (b) Q, (c) U and (d) V (in log10 scale)
generated by mcMeridian (black solid lines) and pMCX (white dashed lines).
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Fig. 4 Distributions of (a) I, (b) Q, (c) U and (d) V backscattered from a 10 × 10 × 1.2 mm3 slab.
A spherical inclusion of radius 0.5 mm is centered at (6,6,0.6) mm.
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Fig. 3 Validation of pMCX in a two-layer domain. We plot the backscattered (a) I and (b) Q com-
ponents computed by pMCX andmcMeridian as the superficial layer thickness (de) increases from
0 to 10 mm. Two dashed lines in (b) indicate back-scattered Q values computed from a homo-
geneous slab filled only with the medium of the bottom layer (green) and that of the superficial layer
(blue). The inset in (a) shows a zoom-in view of the y axis of the I component obtained by pMCX to
demonstrate subtle variations due to sub-diffusive scattering effect.
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The choices of r and ρ values in either domain was computed based on the Mie theory to ensure
their reduced scattering coefficients are the same. All spherical scatterings have a refractive index
of, nsph ¼ 1.59. A 10 × 10 mm2 uniform planar light source is placed at the bottom (z ¼ 0 mm)
surface, pointing toward the þz axis and emitting horizontally polarized light with the wave-
length λ ¼ 632.8 nm. A cyclic boundary condition is applied to the four bounding box facets at
'x∕' y directions to approximate an infinite slab and infinite-plane source. The incident Stokes

vector is ~S ¼ ½1;1; 0;0&. A total of 2 × 108 photons are simulated on an NVIDIA RTX 2080 GPU.
We compare the distributions of backscattered ½I; Q;U; V& at z ¼ 0mm, as shown in Fig. 4.
Because the inclusion and background slab share the same μa, μ

0
s, and n, a regular diffuse optics

forward model without polarization capability would generate no contrast to the inclusion.
However, our pMCX simulation has revealed distinct image contrasts in I, Q, and V images
at the correct inclusion locations, suggesting the potential to detect tissue microstructure
differences using polarized light. It is noteworthy that the noise level in each of the images
is partially related to the anisotropy g determined based on the background scatterer parame-
ters—a larger spherical radius results in a higher g value and less back-scattered photons. The
significantly higher amplitude of inclusion contrast in Q image compared to that in I further
demonstrates the advantages of using polarized imaging in detecting scattering differences com-
pared to traditional diffuse optics where only I is typically measured.

4 Conclusion

In summary, we report a massively parallel implementation of polarized MC algorithm in our
MCX simulator for modeling the propagation of polarized light inside complex media filled with
spherical scatterers. Enabled by its built-in voxel-based geometric representation, the pMCX can
handle arbitrarily heterogeneous media. We have described the preprocessing steps to encode the
scattering properties of spherical particles with various radii and volume densities into a 3D
voxel-based data structure. We provide validation and speed benchmarks ranging from simple
homogeneous to complex heterogeneous domains. In all benchmarks, our pMCX solver reports
excellent match with the widely used reference solver mcMeridian, while providing a speedup
nearly three orders of magnitude. In addition, we observed different GPU memory utilization
efficiency among global, constant, and shared memories, with the global memory implementa-
tion yielding the highest speed and least restriction. It is noteworthy that a limitation in both
mcMeridian and pMCX simulations is that all media boundaries are assumed to have matched
refractive indices. We plan to further extend this work to update the Stokes vector across mis-
matched boundaries.
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