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Abstract: We propose an approach for discriminating fibrillar collagen fibers from elastic
fibers in the mouse cervix in Mueller matrix microscopy using convolutional neural networks
(CNN) and K-nearest neighbor (K-NN) for classification. Second harmonic generation (SHG),
two-photon excitation fluorescence (TPEF), and Mueller matrix polarimetry images of the mice
cervix were collected with a self-validating Mueller matrix micro-mesoscope (SAMMM) system.
The components and decompositions of each Mueller matrix were arranged as individual channels
of information, forming one 3-D voxel per cervical slice. The classification algorithms analyzed
each voxel and determined the amount of collagen and elastin, pixel by pixel, on each slice. SHG
and TPEF were used as ground truths. To assess the accuracy of the results, mean-square error
(MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used. Although
the training and testing is limited to 11 and 5 cervical slices, respectively, MSE accuracy was
above 85%, SNR was greater than 40 dB, and SSIM was larger than 90%.
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1. Introduction

Preterm birth (PTB), defined as any birth prior to 37 completed weeks of gestation, is responsible
for 35% of the annual 3.1 million global neonatal deaths [1–3]. Many survivors will face life-long
challenges including neurological disorders, long-term cognitive impairment, defects in hearing,
vision, and digestion, as well as respiratory disease.

Unfortunately, there is an absence of clinical tools for early and accurate detection of
spontaneous preterm birth risk, in part due to a lack in understanding of the molecular events
that drive a term or preterm birth. Understanding the cervical remodeling process in a term or
preterm pregnancy is critical to define therapeutic targets and to develop clinical tools. Given the
demonstrated reorganization of the cervical extracellular matrix through pregnancy [4] and its
direct correlation with mechanical function of the cervix [5], we aim in this study to develop
improved methodology to characterize collagen and elastic fibers in the mouse cervix.

An extracellular matrix (ECM) lies under the epithelium of the cervix and consists of roughly
70% collagen fibers [6–8]. Numerous researchers have studied cervical collagen [9–16] and
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its anisotropic alignment surrounding the cervical canal [5,8,17–20] through second harmonic
generation and transmission electron microscopy (TEM) [21]. Collagen is the main load bearing
component of the cervical stroma which undergoes substantial remodeling during pregnancy [5].
Collagen molecules are organized into fibrils through enzymatic cross-links. Mature cross-links
density has been shown to decrease substantially in the mouse model between day 12 and day 18
of gestation resulting in increased collagen solubility and reduced tissue stiffness as pregnancy
progresses [22].

Elastic fibers are also important components of the cervix ECM [5] and consist of elastin
polymer cross-linked into microfibrils. In the cervix, elastin fibers are intertwined with collagen
fibers and are primarily located in the subepithelial stroma. Elastic fibers are modified during
pregnancy [21] becoming more dispersed and less ordered. While not well studied at the
molecular level, a reduction in cross-link density of elastic fibers is correlated with preterm
birth due to cervical insufficiency [23]. Assessment of elastin is complicated by its paucity
compared to collagen in the cervix. TPEF, TEM, and fluorescence confocal microscopy with
immunofluorescence [24] are among the most effective modalities for elastin assessment in the
cervical environment.

Previous studies have shown that polarization-based microscopy techniques enhanced by Sirius
Red staining offer similar imaging capability of cervical collagen [12] as compared to SHG based
modalities. Mueller matrix polarimetry has also been used extensively to image the cervix and
its collagen arrangement [20,24],–27. To our knowledge polarization optical modalities have
not been explored in the assessment of the cervical elastic fibers. The use of the Mueller matrix
modality, that does not require complex instrumentation, or specialized staining could accelerate
the development of clinical tools for assessment of cervical function and risk of malfunction.
This study utilizes machine learning and a Self-validating Mueller matrix Micro–Mesoscope
(SAMMM) for the characterization of elastic fibers in the mouse cervix.

Analyzing and diagnosing large numbers of samples require the use of machine learning
techniques. Although different classification methods have been applied to Mueller matrix
imaging [28–30], these methods have not been used to visually separate elastin from collagen in
the cervix. We propose two frequently used machine vision methods [31] to detect and classify
collagen and elastin fibers, based on the Mueller matrix components: one method is the use
of a supervised K-nearest neighbor (K-NN) algorithm [32–34] to associate pixels with similar
characteristics into defined groups using the Mueller matrix components as features, the other
one is a deep learning semantic segmentation neural network that assigns pixels into different
layers depending on their intensity. Deep learning segmentation is commonly used in biomedical
imaging for a wide variety of diagnostics [35–39]. Such networks usually have higher accuracy
and are more robust than other classifiers but require more time and samples for training [40]. To
reduce training time, a knowledge transfer from a well-tested CNN (Resnet18) is used.

2. Material and methods

2.1. Self-validating Mueller matrix micro-mesoscope (SAMMM) system

In this study, the reflectance measurements of SHG, TPEF, and near-infrared total reflectance
images are performed using the SAMMM system described in [41,42]. Note that only total
reflectance was used to study polarimetry in this work. The excitation source is a pre-compensated
mode locked laser beam from a Ti-Sapphire broadband femtosecond laser with the central
wavelength at 800 nm (FWHM=100 nm). SHG signal at 400 (FWHM=30 nm) and TPEF at 500
(FWHM=20 nm), and total reflectance images are collected by appropriated photo-multiplier
tube detectors and a single data acquisition board sampled up to 125MHz (Vidrio Technologies
LLC, VA). Each Mueller matrix is constructed utilizing a polarization state analyzer (PSA of four
polarization states) and a polarization state generator (PSG of six polarization states), resulting in
a set of 24 images in each of the three channels (SHG, TPEF and total reflectance). All SAMMM
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raw images of the mice cervix had a resolution of 1000× 1000 pixels and were taken with a 5X
objective.

2.2. Image decomposition

The Mueller matrix M of the medium were decomposed using the Lu-Chipman decomposition
method in which M can be expressed as the product of three basic matrices [43]:

M = M∆MRMD (1)

M∆, MR and MD are depolarization, retardance and diattenuation Mueller matrices, respectively.
Following the decomposition, scalar terms such as diattenuation (d), depolarization coefficient
(∆), linear retardation (δ) of the medium are determined:

d =

√︂
M2

D(1, 2) +M2
D(1, 3) +M2

D(1, 4)

MD(1, 1)
(2)

∆ = 1 −
|Tr M

∆
− 1|

3
(3)

δ = cos−1
(︃√︂

(M2
R(2, 2) +M2

R(3, 3))2 + (M2
R(3, 2) − M2

R(2, 3))2 − 1
)︃

(4)

In addition to polar decomposition, differential matrix formalism of the Mueller calculus was
used to retrieve total retardance (linear and circular) [44]. In this case, the medium polarization
properties are contained in a single differential matrix m which relates the Mueller matrix M and
its spatial derivative along the propagation of light [45,46]:

dM
dz
= mM (5)

Applying Lorentz symmetric matrices, Lm and Lorentz antisymmetric matrices, Lu to Eq. (5),
we have:

ln M = mz = L = Lu + Lm (6)

where
Lm =

1
2
(L − GLTG) (7)

Lu =
1
2
(L + GLTG) (8)

In Eqs. (7–8), G is Minkowski metric tensor. For a depolarizing medium, the off-diagonal
elements of Lm represents mean values of the elementary medium polarization properties over
the path-length z and the off-diagonal elements of Lu express their respective uncertainties.
Lorentz components of the matrices is used to retrieve both linear (δL), circular (δC) and total (R)
retardation, and angle of orientation (θ)
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2
(9)
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2.3. Section preparation for SAMMM imaging

In this paper, a total of 16 cervical slices were obtained from 5 mice, including one non-pregnant
mice, two pregnant mice at gestation day 6 and two at gestation day 18 samples in accordance
with the Institutional Animal Care and Use Committee protocol. The tissue was snapped frozen
at -80° C in optimal cutting temperature (O.C.T.) compound (Tissue Tek, Elkhart, Indiana).
The entire length of the cervix was cryosectioned transversely at -20° C using a cryostat (Leica
CM3050). Sections were mounted on glass slides and left dry for 1 hour at room temperature.
Unwanted residues were washed away with phosphate buffered saline (PBS).

2.4. Confirmation of elastin on TPEF images with immunofluorescence

While SHG of collagen in the cervix is optimal at wavelength region of 400 nm region [47,48]
with the excitation at 800 nm, elastin and NADH has an overlapping fluorescence emission at
500 nm region. Other glycosaminoglycans (GAGs) and proteoglycans could also contribute to
the TPEF signal. Therefore, in order to confirm that cervical elastin is responsible for TPEF
signal in our samples, we performed indirect immunofluorescence of a selected slice using rabbit
anti-mouse tropoelastin antibody (Elastin Products Company, PR385) as the primary antibody
and Alexa Fluor 546–conjugated antibody (Life Technologies, A11035) as the secondary antibody.
Slides were washed with 20mM Tris (pH= 8.0) for 15 minutes followed by treating the section
with 100 mM iodoacetamide (Sigma-Aldrich Inc., I5161) in the dark for 15 minutes.

Diluted goat serum at 10% (ThermoFisher Scientific, 31872) was used to block the section for 1
hour at room temperature. The section was then incubated with 1:250 dilution of primary antibody
in 1% goat serum overnight at 4°C. Finally, the section was washed with PBS and incubated in
1:500 dilution of secondary antibody in 1% goat serum for 30 minutes at room temperature. The
section was imaged using a commercial linear microscope (Olympus BX61) with laser at 550 nm
and a 10X objective. As shown in Fig. 1, TPEF signal (Fig. 1(a)) obtained with SAMMM shows
strong correlation to the immunofluorescence images of elastin (Fig. 1(b)-(e)). Following this
study, TPEF images of the mice cervix in this study were used as ground truth for elastin.

Fig. 1. Immunofluorescence confirms elastin on TPEF image: (a) TPEF image of an
unstained mice cervix at day 18 pregnancy using SAMMM, (b-e) immunofluorescent images
of the same slice using a commercial linear microscope.

2.5. Data processing

In Fig. 2, the process to detect collagen or elastin from Mueller matrix data and its decompositions
is presented. The process extracts the ground truth (GTruth), reduces the cervix images
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to a 200× 200 pixels images, normalizes them, extracts features, applies two classification
methodologies, and compares the results for accuracy. Two commonly used machine vision
classifiers [31] were chosen: K-NN and semantic segmentation neural networks. Both methods
are extensively used to classify images [32,49], being neural networks especially useful for
imaging diagnostics [35,36,39].

Fig. 2. Block diagram of an algorithm to detect and classify collagen/elastin samples.

2.5.1. Preprocessing

For each data sample, the corresponding SHG, and TPEF are obtained. SHG data corresponds to
the ground truth of collagen, while TPEF corresponds to the one of elastin. Each ground truth is
represented by one image in which the intensity is related with the density of its respective tissue.

The Mueller matrix elements (M11, M12, . . . , M44) of data samples, along with its decomposi-
tion values, are arranged as a voxel were the channels of information correspond to the elements
or the decompositions. All elements and decompositions are aligned so a specific pixel has 26
initial channels of information. Some of the voxel’s channels do not bring useful discriminating
information. Channels with very low standard deviation are removed since they are mostly
noise. Additionally, information on some channels is very similar to others; redundant channels
were also removed after comparing them with each other using structural similarity index [50]
(Fig. 3). The following variables were used as data channels of the voxel: diattenuation (Eq. (2)),
depolarization coefficient (Eq. (3)), linear retardation (Eq. (4)), total retardation (Eq. (11)),
orientation (Eq. (12)), and all Mueller matrix elements except M22, M33, and M44.

SHG, TPEF, and data voxels are reduced in resolution to 200× 200 pixels images, so the
computation is more efficient. Due to errors in the sampling process or data gathering, outlier
pixels are present. Pixels with very high values compared to their neighbors can skew the
classification process. Outliers were removed from the voxel, the SHG, and the TPEF data using
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Fig. 3. From Mueller matrix and decompositions to voxel with data channels.

the Grubbs method. The outlier pixels were replaced by the mean of their neighbors. Raw
values among images varied greatly, so, to make them comparable to each other, all images were
normalized independently, based on the maximum and minimum values of each one. The value
of any pixel within an image was then between 0 and 1.

2.5.2. Ground truth processing

Although a binary (0 or 1) classification is possible, the SHG and TPEF were quantized into
10 relative discrete levels representing degrees of density of collagen or elastin. These levels
were associated to normalized values between [0-1] and can be scaled to fit any range. High
levels (from 6 to 10) were associated with a detection of collagen or elastin at different densities.
Maintaining this resolution was important to preserve image details. In addition, background,
or pixels from other tissues are associated to low levels (from 1-4). All values of SHG and
TPEF were rounded to one of the10 discrete values to obtain an appropriate ground truth for
classification (Fig. 4). A non-uniform quantization was used to account for the imbalance between
the number of low intensity pixels and the number of high intensity pixels and to introduce bias
to the classifiers. The 10-level quantization grid favored high intensity pixels by starting high
levels at lower intensity values. The grid’s thresholds were [0, 0.05, 0.11, 0.19, 0.29, 0.36] for
low levels and [0.47, 0.60, 0.85, 0.96, 1] for high levels.

Fig. 4. Cervical cross-section from a mouse gestation on day 18. Images for a) collagen
ground truth (SHG), b) elastin ground truth (TPEF), and c) normalized total reflectance
intensity M11. Ground truth densities are represented on a 10-level heat scale; normalized
M11 values, that are between [0-1], are represented on the same 10-level scale for comparison
purposes.

For the K-NN case, the ground truth image was arranged as a vector of GTruth levels, the
vector position’s index was associated with the position of a pixel in the ground truth image
(Fig. 5).

For the semantic segmentation case, each level of the ground truth acted as a layer superimposed
on the sample data. The ground truth was an image of the same size as the input data with
categorical values (levels) for each pixel, in essence, equal to the ground truth of the K-NN
classifier.
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Fig. 5. Transform ground truth image to GTruth-vector. Collagen data sample.

2.5.3. Feature extraction

K-NN classifiers take several observations and try to group them together based on the similarity of
their features. A standard input for a K-NN classifier is a single matrix in which the rows represent
independent observations, and the columns are features associated with those observations. The
voxel was arranged into a matrix of features where a row of the matrix was linked to a pixel and
the columns were its corresponding channels (features). The number of features was reduced
further using principal component analysis (PCA). By taking the features that compose 95% of
the discrimination information the number of the features reduced to 4 (Fig. 6).

Fig. 6. Transformation from voxel to feature-matrix for K-NN classifier.

For the semantic segmentation classifier, data channels were reduced to only Linear retardation,
and Mueller matrix elements M34 and M43 since they were the most dissimilar among channels
and carried more discriminant (classification) information. Thousands of features were extracted
based on the pretrained Resnet18 and DeepLab v3+ [51] architectures (Fig. 7).

2.5.4. Classification training

There was a total of 16 mice cervical slices, 11 slices were used for training and the remaining
for testing. However, since the classifiers take each pixel vector (pixels at the same coordinate
position in all channels) as one observation and there are 40,000 pixel vectors per cervical slice,
the set of observations for the classifiers to train and test on was close to 320,000 and 120,000,
respectively. Those two sets were independent from each other.

Two K-NN (k=5 neighbors) classifiers were trained based on the collagen and elastin ground
truths, respectively. The algorithm produced two independent models, one to detect collagen and
one to detect elastin.
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Fig. 7. Transformation from voxel to RGB for Semantic Segmentation CNN classifier.

To save computational time and reduce the amount of training data in the semantic segmentation
case, transfer information from a pre-trained Resnet18 into a DeepLab v3+ [51] semantic
segmentation architecture was done. Two models, one to detect collagen and the other elastin, were
trained interpedently with 11 cervical slices. The networks used encoder-decoder architectures,
dilated convolutions, and skip connections to segment images. Data was artificially augmented
to increase the number of samples (images) to a similar number than in the K-NN case; random
left/right reflection, and random X/Y translation of +/- 10 pixels were applied.

2.6. Collagen and elastin predictions

The two classifying methodologies were applied to each of the cervical slices. Intensity levels
from 1-10 represent the amount of tissue predicted, where 1 is no amount and 10 is a high amount.
The outputs of both, the K-NN model and the semantic segmentation model, were a predicted
pixel-level image of the same dimensions than the original inputs. Some classification errors
were seen as static noise (salt and pepper noise).

A median filter was used to smooth the noise on the K-NN prediction in postprocessing. The
image was more or less granular depending on the size of the filtering window. Two window
sizes of [3× 3] and [10× 10] pixels were chosen. For the semantic segmentation case, no filter
was used due to low noise level in the output images.

2.7. Accuracy

The original ground truth and the predicted image were compared for measuring image quality,
using three different methods: mean-squared error (MSE), peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) index [50]. MSE and PSNR are purely mathematical metrics
and may not agree with human perception of the image quality. SSIM considers local contrast
and luminance and agrees more closely with a subjective metric.

Utilizing the MATLAB built-in function “immse.m”, MSE metric compared the data matrices
of the original and predicted images, pixel by pixel, then calculated the mean-squared errors for
each pixel pair, averaged them, and subtracted the value from 1. Meanwhile, function “psnr.m”
was used to find the peak signal-to-noise ratio which indicates the ratio of the maximum pixel
intensity to the power of the distortion. It compares the original and predicted images as if the
classifier were a transmission system introducing noise, the original images were a transmitted
signal, and the predicted images were a received signal. An SNR > 40 dB is considered good,
SNR <10 dB is considered poor.

MATLAB built-in function “ssim.m” was used to find the structural similarity index which
combines local image structure, luminance, and contrast into a single local quality score given
as a percentage. Structures are selected as patterns of pixel intensities, particularly among
neighboring pixels.



Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 2244

3. Results

Section 3.1 presents visual results for 2 tested slices from day 18 (D18) and day 6 (D6); for
collagen and elastin predictions; and for K-NN and Semantic Segmentation classifiers. Section
3.2 presents the average of all the test samples for each of the three metrics, for the semantic
segmentation and the K-NN classifiers with filters. Overall accuracies, involving all the samples,
have similar results but are not presented.

On an Intel Core i7, 3.40 GHz with 32 GB of RAM, the K-NN model took 5 minutes to train
and 30 minutes to predict a sample. On the contrary, semantic segmentation took substantially
more time to train (around 60 hours) but much faster prediction time (3 seconds per sample).

Data used for classification consisted of the normalized Mueller matrix component and the
decomposition described in section 2.5.1. Ground truths SHG and TPEF, for samples D18 and
D6, along with linear retardation, M11, M34 and M43 features are presented in Fig. 8. These
features carried the most discriminant information and are presented on a 10-level heat scale.

Fig. 8. Ground truth for collagen (SHG), ground truth for elastin (TPEF), normalized
linear retardation (LinRet), and normalized Mueller matrix component M11, M34, and M43,
for samples D18 and D6. Ground truth densities are represented on a 10-level heat scale.
Normalized LinRet, M11, M34, and M43 values, that are between [0-1], are represented on
the same 10-level scale for comparison.

3.1. Classifiers qualitative results

Classification results of two tested slices for collagen and elastin are presented in Fig. 9 and
Fig. 10, respectively. In each figure, the first column presents the image that was used as a ground
truth (SHG for collagen and TPEF for elastin); the second column presents the K-NN prediction
pixel-by-pixel where some classification errors are seen as salt-and-pepper noise. The following
two columns show the K-NN prediction after two different filters. The last column presents the
semantic segmentation prediction. All images were normalized, and pixels scaled from 1 to 10
levels, with 1 defined as low density of the tissue and 10 a high density of the tissue.

In general, structures on collagen predictions present less noise than structures on elastin
predictions. K-NN predictions had significant salt-and-pepper noise that was removed by a mean
[3× 3] filter. The K-NN prediction with mean filter of [10× 10] provides general areas in which
the tissue structures are contained, but lacks resolution. The semantic segmentation prediction
does not require filtering, presenting general areas containing the tissue while providing good
resolution.
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Fig. 9. Collagen classification of two samples (D18 and D6) using a K-NN algorithm and
semantic segmentation classification ground truth images (GTruth column), K-NN predicted
images (K-NN Predicted column), K-NN predicted images with a median filter [3× 3]
applied (K-NN Filt [3× 3] column), K-NN predicted images with a median filter [10× 10]
applied (K-NN Filt [10× 10] column) and semantic segmentation predicted images (SSeg
Predicted column) are presented. Intensity reflects the density of the respective tissue in the
sample and is presented on a 10-level heat scale.

Fig. 10. Elastin classification of two samples (D18 and D6) using a K-NN algorithm and
semantic segmentation classification ground truth images (GTruth column), K-NN predicted
images (K-NN Predicted column),K-NN predicted images with a median filter [3× 3] applied
(K-NN Filt [3× 3] column), K-NN predicted images with a median filter [10× 10] applied
(K-NN Filt [10× 10] column) and semantic segmentation predicted images (SSeg Predicted
column) are presented. Intensity reflects the density of the respective tissue in the sample
and is presented on a 10-level heat scale.
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3.2. Accuracy

Table 1 summarizes the classification results for independent classification of collagen and elastin
on the test set (6 cervical slices for testing). All accuracies are above 80% for collagen cases,
while elastin cases have accuracies close to 90%. In overall, semantic segmentation gives slightly
better results, especially for the SSIM metric.

Table 1. Accuracy of K-NN and semantic segmentation classifiers

Fiber Classifier method
Accuracy metrics

MSE (%) PSNR (dB) SSIM (%)
Co

lla
ge

n

K-NN 82.33 41.28 85.25

K-NN+ [3× 3] filter 84.56 41.84 83.95

K-NN+ [10× 10] filter 84.40 41.79 83.06

Semantic Seg. 87.60 42.93 92.89

El
as

tin

K-NN 91.08 44.05 87.34

K-NN+ [3× 3] filter 91.31 44.12 85.56

K-NN+ [10× 10] filter 91.48 43.68 83.84

Semantic Seg. 91.27 43.76 90.27

4. Discussion and conclusions

We proposed a methodology that integrates Mueller matrix polarimetry, and convolutional
neural networks (CNN) and K-nearest neighbor (K-NN) techniques for successfully detecting
and classifying cervical collagen and elastin. The methodology is reliable and low cost.

Original digitalized samples have a large size that can cause a significant increase in computing
time, especially for K-NN classifiers. We demonstrated that these images can be reduced to
200× 200 pixels images without sacrificing accuracy. The reduction makes processing, training,
and classification more manageable. Some Mueller matrix components or decompositions do
not provide relevant classification information (depolarization with differential method, total
retardation, and Mueller matrix components M22, M33 and M44). Simple feature reduction
techniques, like average standard deviation or PCA, can reduce the components used and the size
of the samples to no detriment in the accuracy. The K-NN model is quick to train but significantly
slower in making predictions. On the contrary, semantic segmentation takes substantially more
time to train but is very fast predicting. Depending on the problem, each method can be used
independently to mutually confirm their results. A CNN-K-NN hybrid is also proposed as a next
step. Additionally, with a larger sample size, a more complex neural network, like U-net [52],
can be trained.

The use of images of SHG and TPEF as ground truths proved to be effective. However, outlier
pixels from the initial sampling process can skew the quantization and introduce error to the
classification. In addition, the ratio of high-level pixels versus low-level pixels is very small,
even after normalization, representing a bias towards low-level pixels detections. A non-uniform
quantization grid was used to compensate for this bias. Further work can be focused on improving
the imbalance between high-level and low-level pixels by or applying class noise reduction
methodologies [53].

Predicted collagen images have greater qualitative similarity to the ground truth than elastic
fiber images. This is in part because there is more collagen protein in the samples than elastin,
rendering more pixels with higher concentration associated to collagen than ones associated
to elastin. In addition, collagen structures occupy a larger area making them easier to detect.
However, accuracies for collagen and elastin, based on independently detecting them on the
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same sample, are comparable. Each pixel of a sample would have a collagen and an elastin level
associated after classification; those levels are not mutually exclusive and sometimes overlap.
That means that there could be a discrepancy on the classification which would need a joint
classification approach (assigning likelyhood of collagen or elastin to each pixel), or it could
mean that both tissues are present at the same time since collagen and elastin fibers are frequently
intertwined. This is a limitation of independently classifiying collagen and elastic fibers and will
be addressed in future work.

Measuring image quality is difficult since some metrics do not match subjective perception.
Furthermore, the number of pixels representing collagen or elastin is significantly smaller
compared to the “background” pixels which is why some accuracy metrics are relatively high,
but the ground truth and predicted images do not look that similar. The classifiers are good at
detecting the low-intensity “background” pixels, which are the majority, but they are not as good
at properly classifying high-intensity pixels. Accuracy metrics that consider this imbalance or
that favor subjective quality (like SSIM) are better suited for this kind of classification assessment.

A larger number of cervix slices is strongly recommended, especially for the semantic
segmentation case, however, estimating the exact number of data samples needed to successfully
train a neural network is very difficult if not impossible. The minimum number of samples
depends directly on the characteristics of the problem and the chosen CNN architecture. Some
magnetic resonance imaging (MRI) diagnostic studies required more than 3,000 samples [52]
while others close to 300 [54,55]. Although a small number of samples is a limitation, the three
accuracy metrics used in this study show overall good results compared to other approaches [30].
Notably, comparing to K-NN, the semantic segmentation classifiers are more robust and less
sensitive to noise.

Mueller matrix microscopy presents several advantages compared to other modalities used for
the quantification of collagen and elastin such as nonlinear microscopy or SHG. The modality is
relatively low cost, easy to use, fast and can be designed with low encumbrance. Combined with
machine learning techniques, this modality could expand the toolkit for researchers studying the
reproductive system and particularly preterm labor. Training of the system with SHG and TPEF
is necessary with our proposed approach, yet beyond the training phase, classification of cervical
elastin and collagen can be achieved through a Mueller matrix system alone. Future work will
focus on expanding this approach to a standalone system, i.e. systems that are not co-registered
as the SAMMM.
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