

 Hardware Description Language
◦ A high level programming language used to

describe the structural and behavioral of digital
circuits or electronic hardware systems

 Two commonly used HDLs
◦ VHDL
◦ Verilog

 VHSIC Hardware Description Language
◦ VHSIC: Very High Speed Integrated Circuit

 IEEE Standard in 1987
◦ Revised in 1993

 A language for modeling and developing a
digital system
◦ documentation
◦ requirements specification
◦ testing
◦ formal verification
◦ synthesis

d0
d1
d2

en

d3

clk

q0

q1

q2

q3

library ieee;
use ieee.std_logic_1164.all;

-- here is the declaration of entity
entity reg4 is
 port (d0, d1, d2, d3, en, clk : in bit;
 q0, q1, q2, q3 : out bit);
end entity reg4;

-- here is the body of the architecture
architecture behav of reg4 is
begin
 storage : process is
 variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;
 begin
 if en = '1' and clk = '1' then
 stored_d0 := d0;
 stored_d1 := d1;
 stored_d2 := d2;
 stored_d3 := d3;
 end if;
 q0 <= stored_d0 after 5 ns;
 q1 <= stored_d1 after 5 ns;
 q2 <= stored_d2 after 5 ns;
 q3 <= stored_d3 after 5 ns;
 wait on d0, d1, d2, d3, en, clk;
 end process storage;
end architecture behav;

Library and package declaration

Entity declaration

Architecture body

 Describing the component
◦ Entity declaration
 Name, Input/output ports and their types
◦ Architecture body
 Describe the functions or behaviors of the component

 Packages are repositories for type definitions, procedures,
and functions
◦ User defined vs. system packages
◦ Standardized packages
 IEEE 1164 (data types)
 IEEE 1076.3 (numeric)
 IEEE 1076.4 (timing)

 Libraries are design units stored in the physical directories
◦ When a design is analyzed, it is stored in the working library
◦ If we need to access units stored in other libraries, they are

called as the resource library
◦ We use “use” clause to avoid having to write the library name

each time.

 Describes the input/output ports of a
module

entity reg4 is
 port (d0, d1, d2, d3, en, clk : in bit;
 q0, q1, q2, q3 : out bit);
end entity reg4;

entity name port names port mode (direction)

port type reserved words

punctuation

 Describes an implementation/function of an
entity
◦ may be several per entity

 Behavioral architecture
◦ describes the algorithm performed by the module
◦ contains
 process statements, each containing
 sequential statements, including
 signal assignment statements and
 wait statements

architecture behav of reg4 is
begin
 process (d0, d1, d2, d3, en, clk)
 variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;
 begin
 if en = '1' and clk = '1' then
 stored_d0 := d0;
 stored_d1 := d1;
 stored_d2 := d2;
 stored_d3 := d3;
 end if;
 q0 <= stored_d0 after 5 ns;
 q1 <= stored_d1 after 5 ns;
 q2 <= stored_d2 after 5 ns;
 q3 <= stored_d3 after 5 ns;
 end process;
end behav;

simulates real-world
propagation delays.

notice := syntax
used for equating values
from signals...

sensitivity list

 Implements the module as a composition of
subsystems

 Contains
◦ signal declarations, for internal interconnections
 the entity ports are also treated as signals
◦ component instances
 instances of previously declared entity/architecture

pairs
◦ port maps in component instances
 connect signals to component ports

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

 First declare D-latch and and-gate entities and architectures

entity d_latch is
 port (d, clk : in bit; q : out bit);
end entity d_latch;

architecture basic of d_latch is
begin
 process (clk, d)
 begin
 if clk = ‘1’ then
 q <= d after 2 ns;
 end if;
 end process;
end basic;

entity and2 is
 port (a, b : in bit; y : out bit);
end entity and2;

architecture basic of and2 is
begin
 process (a, b)
 begin
 y <= a and b after 2 ns;
 end process ;
end basic;

notice semicolon placements -- odd as it is, omit from last statement

 Declare corresponding components in register architecture body

architecture struct of reg4 is
 component d_latch
 port (d, clk : in bit; q : out bit);
 end component;
 component and2
 port (a, b : in bit; y : out bit);
 end component;
 signal int_clk : bit;
...

• Now use them to implement the register

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

...
begin
 bit0 : d_latch
 port map (d0, int_clk, q0);
 bit1 : d_latch
 port map (d1, int_clk, q1);
 bit2 : d_latch
 port map (d2, int_clk, q2);
 bit3 : d_latch
 port map (d3, int_clk, q3);
 gate : and2
 port map (en, clk, int_clk);
end struct;

entity d_latch is
 port (d, clk : in bit; q : out bit);
end d_latch;

architecture basic of d_latch is
begin
 latch_behavior : process is
 begin
 if clk = '1' then
 q <= d after 2 ns;
 end if;
 wait on clk, d;
 end process latch_behavior;
end basic;

entity and2 is
 port (a, b : in bit; y : out bit);
end and2;

architecture basic of and2 is
begin
 and2_behavior : process is
 begin
 y <= a and b after 2 ns;
 wait on a, b;
 end and2_behavior;
end basic;

architecture struct of reg4 is
 signal int_clk : bit;
begin
 bit0 : d_latch
 port map (d0, int_clk, q0);
 bit1 : d_latch
 port map (d1, int_clk, q1);
 bit2 : d_latch
 port map (d2, int_clk, q2);
 bit3 : d_latch
 port map (d3, int_clk, q3);
 gate : and2
 port map (en, clk, int_clk);
end architecture struct;

 An architecture can contain both behavioral
and structural parts
◦ process statements and component instances
 collectively called concurrent statements
◦ processes can read and assign signals

 Example: register-transfer-level (RTL) Model
◦ data path described structurally
◦ control section described behaviorally

shift_reg

reg

shift_
adder

control_
section

multiplier multiplicand

product

addend augend

sum

add_control

d

q

en

rst

d

q load clk

clk
rst

entity multiplier is
 port (clk, reset : in bit;
 multiplicand, multiplier : in integer;
 product : out integer);
end multiplier;

architecture mixed of mulitplier is
 signal partial_product, full_product : integer;
 signal arith_control, result_en, mult_bit, mult_load : bit;
begin
 arith_unit : entity work.shift_adder(behavior)
 port map (addend => multiplicand,
 augend => full_product,
 sum => partial_product,
 add_control => arith_control);
 result : entity work.reg(behavior)
 port map (d => partial_product,
 q => full_product,
 en => result_en,
 reset => reset);

 multiplier_sr : entity work.shift_reg(behavior)
 port map (d => multiplier,
 q => mult_bit,
 load => mult_load,
 clk => clk);
 product <= full_product;

 process (clk, reset)
-- variable declarations for control_section
-- …
 begin
-- sequential statements to assign values to control signals
 -- …
 end process;
end mixed;

 An enclosed model for testing a developed
VHDL model by simulation
◦ Simulating with “signal generators”
◦ Observing with “probes”

 Include
◦ An architecture body containing an instance of the

designed to be tested
◦ Test sequences with signals connected to the

design

entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is
 signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;
begin
 dut : entity reg4(behav)
 port map (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);

 stimulus : process is
 begin
 d0 <= '1'; d1 <= '1'; d2 <= '1'; d3 <= '1';
 en <= '0'; clk <= '0';
 wait for 20 ns;
 en <= '1'; wait for 20 ns;
 clk <= '1'; wait for 20 ns;
 d0 <= '0'; d1 <= '0'; d2 <= '0'; d3 <= '0'; wait for 20 ns;
 en <= '0'; wait for 20 ns;
 -- . . .
 wait;
 end process stimulus;
end architecture test_reg4;

Instance of
Reg4

Test
sequences

 Check for syntax and logic errors
◦ syntax: grammar of the language
◦ logic: how your model responds to stimuli

 Analyze each design unit separately
◦ entity declaration
◦ architecture body
◦ …
◦ put each design unit in a separate file -- helps a lot.

 Analyzed design units are placed in a library

 Discrete event simulation
◦ time advances in discrete steps
◦ when signal values change—events occur

 A processes is sensitive to events on input
signals
◦ specified in wait statements or the sensitive list
◦ resumes and schedules new values on output

signals
 schedules transactions
 event on a signal if value changes

 Lexical Elements
◦ Case insensitive
◦ Comments
 preceded by two consecutive dashes
 end at the end of current line

◦ Identifiers, reserved words, special symbols, numbers, characters,
strings, bit strings

 Syntax
◦ Simple data types, operators
 Integer, floating, arrays, records, …
 And, Or, >, <, +, -, shift, …

◦ Sequential statements
 if, case, while, for

◦ Entity declarations, architecture bodies, signal assignment,
process, wait, procedure

 Peter J. Ashenden, The Designer’s Guide to
VHDL, Morgan Kaufmann, 2002

 Sudhakar Yalamanchili, VHDL Starter’s Guide,
Prentice Hall, 2005

 J. Bkasker, A VHDL Primer, Prentice Hall, 1999
 www.google.com

	A Quick Introduction to VHDL
	HDL
	VHDL
	Example: A four-input register
	VHDL basic
	Packages and Libraries
	Entity Declaration
	Architecture Body
	The Behavior Representation
	The Structural Representation
	The Schematic of reg4
	Structural Architecture
	Structural Architecture (Cont’d)
	Structural Architecture (Cont’d)
	Structural Architecture (Cont’d)
	Mixed Behavior and Structure
	Mixed Example
	Mixed Example
	Test Benches
	Example
	Analysis
	Simulation
	Learning a New Language
	Reference

