


 Hardware Description Language 
◦ A high level programming language used to 

describe the structural and behavioral of digital 
circuits or electronic hardware systems 
 

 Two commonly used HDLs 
◦ VHDL 
◦ Verilog  



 VHSIC Hardware Description Language 
◦ VHSIC: Very High Speed Integrated Circuit 

 IEEE Standard in 1987 
◦ Revised in 1993 

 A language for modeling and developing a 
digital system 
◦ documentation 
◦ requirements specification 
◦ testing 
◦ formal verification 
◦ synthesis 
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library ieee;  
use ieee.std_logic_1164.all; 
 
-- here is the declaration of entity 
entity reg4 is 
  port ( d0, d1, d2, d3, en, clk : in bit; 
         q0, q1, q2, q3 : out  bit ); 
end entity reg4; 
 
-- here is the body of the architecture 
architecture behav of reg4 is 
begin 
  storage : process is 
    variable stored_d0, stored_d1, stored_d2, stored_d3 : bit; 
  begin  
    if en = '1' and clk = '1' then 
      stored_d0 := d0; 
      stored_d1 := d1; 
      stored_d2 := d2; 
      stored_d3 := d3; 
    end if; 
    q0 <= stored_d0 after 5 ns; 
    q1 <= stored_d1 after 5 ns; 
    q2 <= stored_d2 after 5 ns; 
    q3 <= stored_d3 after 5 ns; 
    wait on d0, d1, d2, d3, en, clk; 
  end process storage; 
end architecture behav; 

Library and package declaration 

Entity declaration 

Architecture body 



 Describing the component 
◦ Entity declaration 
 Name, Input/output ports and their types 
◦ Architecture body 
 Describe the functions or behaviors of the component  



 Packages are repositories for type definitions, procedures, 
and functions 
◦ User defined vs. system packages 
◦ Standardized packages 
 IEEE 1164 (data types) 
 IEEE 1076.3 (numeric) 
 IEEE 1076.4 (timing) 
 

 Libraries are design units stored in the physical directories 
◦ When a design is analyzed, it is stored in the working library 
◦ If we need to access units stored in other libraries, they are 

called as the resource library 
◦ We use “use” clause to avoid having to write the library name 

each time. 



 Describes the input/output ports of a 
module 

entity reg4 is 
 port ( d0, d1, d2, d3, en, clk : in bit; 
    q0, q1, q2, q3 : out bit ); 
end entity reg4; 

entity name port names port mode (direction) 

port type reserved words 

punctuation 



 Describes an implementation/function of an 
entity 
◦ may be several per entity 

 Behavioral architecture 
◦ describes the algorithm performed by the module 
◦ contains 
 process statements, each containing 
 sequential statements, including 
 signal assignment statements and 
 wait statements 



architecture behav of reg4 is 
begin 
 process (d0, d1, d2, d3, en, clk) 
   variable stored_d0, stored_d1, stored_d2, stored_d3 : bit; 
 begin 
  if en = '1' and clk = '1' then 
   stored_d0 := d0; 
    stored_d1 := d1; 
    stored_d2 := d2; 
    stored_d3 := d3; 
  end if; 
  q0 <= stored_d0 after 5 ns; 
   q1 <= stored_d1 after 5 ns; 
   q2 <= stored_d2 after 5 ns; 
   q3 <= stored_d3 after 5 ns; 
 end process; 
end behav; 

simulates real-world  
propagation delays. 

notice  :=    syntax 
used for equating values 
from signals...   

sensitivity list 



 Implements the module as a composition of 
subsystems 

 Contains 
◦ signal declarations, for internal interconnections 
 the entity ports are also treated as signals 
◦ component instances 
 instances of previously declared entity/architecture 

pairs 
◦ port maps in component instances 
 connect signals to component ports 
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 First declare D-latch and and-gate entities and architectures 

entity d_latch is 
 port ( d, clk : in bit;  q : out bit ); 
end entity d_latch; 
 
architecture basic of d_latch is 
begin 
 process (clk, d) 
 begin 
  if clk = ‘1’ then 
   q <= d after 2 ns; 
  end if; 
 end process; 
end basic; 

entity and2 is 
 port ( a, b : in bit;  y : out bit ); 
end entity and2; 
 
architecture basic of and2 is 
begin 
 process (a, b) 
 begin 
  y <= a and b after 2 ns; 
 end process ; 
end basic; 

notice semicolon placements -- odd as it is, omit from last statement 



 Declare corresponding components in register architecture body 

architecture struct of reg4 is 
 component d_latch 
  port ( d, clk : in bit;  q : out bit ); 
 end component; 
 component and2 
  port ( a, b : in bit;  y : out bit ); 
 end component; 
 signal int_clk : bit; 
... 



• Now use them to implement the register 
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... 
begin 
 bit0 : d_latch 
  port map ( d0, int_clk, q0 ); 
 bit1 : d_latch 
  port map ( d1, int_clk, q1 ); 
 bit2 : d_latch 
  port map ( d2, int_clk, q2 ); 
 bit3 : d_latch 
  port map ( d3, int_clk, q3 ); 
 gate : and2 
  port map ( en, clk, int_clk ); 
end struct; 



entity d_latch is 
  port ( d, clk : in bit;  q : out bit ); 
end d_latch; 
 
architecture basic of d_latch is 
begin 
  latch_behavior : process is 
  begin 
    if clk = '1' then 
      q <= d after 2 ns; 
    end if; 
    wait on clk, d; 
  end process latch_behavior; 
end basic; 
 
entity and2 is 
  port ( a, b : in bit;  y : out bit ); 
end and2; 
 
 

architecture basic of and2 is 
begin 
  and2_behavior : process is 
  begin 
    y <= a and b after 2 ns; 
    wait on a, b; 
  end and2_behavior; 
end basic; 
 
architecture struct of reg4 is 
  signal int_clk : bit; 
begin 
  bit0 : d_latch 
    port map (d0, int_clk, q0); 
  bit1 : d_latch 
    port map (d1, int_clk, q1); 
  bit2 : d_latch 
    port map (d2, int_clk, q2); 
  bit3 : d_latch 
    port map (d3, int_clk, q3); 
  gate : and2 
    port map (en, clk, int_clk); 
end architecture struct; 
 



 An architecture can contain both behavioral 
and structural parts 
◦ process statements and component instances 
 collectively called concurrent statements 
◦ processes can read and assign signals 

 Example: register-transfer-level (RTL) Model 
◦ data path described structurally 
◦ control section described behaviorally 
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entity multiplier is 
 port ( clk, reset : in bit; 
  multiplicand, multiplier : in integer; 
  product : out integer ); 
end multiplier; 
 
architecture mixed of mulitplier is 
 signal partial_product, full_product : integer; 
 signal arith_control, result_en, mult_bit, mult_load : bit; 
begin 
 arith_unit : entity work.shift_adder(behavior) 
  port map ( addend => multiplicand,   
    augend => full_product, 
    sum => partial_product, 
    add_control => arith_control ); 
 result : entity work.reg(behavior) 
  port map ( d => partial_product,   
     q => full_product, 
     en => result_en,   
     reset => reset ); 

 
 multiplier_sr : entity work.shift_reg(behavior) 
  port map ( d => multiplier,   
     q => mult_bit, 
     load => mult_load,   
     clk => clk ); 
 product <= full_product; 

 process (clk, reset) 
-- variable declarations for control_section 
-- … 
 begin 
-- sequential statements to assign values to control signals 
 -- … 
 end process; 
end mixed; 
 
 
 
 



 An enclosed model for testing a developed 
VHDL model by simulation 
◦ Simulating with “signal generators” 
◦ Observing with “probes” 
 

 Include 
◦ An architecture body containing an instance of the 

designed to be tested 
◦ Test sequences with signals connected to the 

design 



entity test_bench is 
end entity test_bench; 
 
architecture test_reg4 of test_bench is 
  signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit; 
begin 
  dut : entity reg4(behav) 
    port map ( d0, d1, d2, d3, en, clk, q0, q1, q2, q3 ); 
 
  stimulus : process is 
  begin 
    d0 <= '1';  d1 <= '1';  d2 <= '1';  d3 <= '1'; 
    en <= '0';  clk <= '0'; 
    wait for 20 ns; 
    en <= '1';  wait for 20 ns; 
    clk <= '1';  wait for 20 ns; 
    d0 <= '0';  d1 <= '0';  d2 <= '0';  d3 <= '0';  wait for 20 ns; 
    en <= '0';  wait for 20 ns; 
    -- . . . 
    wait; 
  end process stimulus; 
end architecture test_reg4; 
 

Instance of 
Reg4 

Test 
sequences 



 Check for syntax and logic errors 
◦ syntax: grammar of the language 
◦ logic: how your model responds to stimuli 

 Analyze each design unit separately 
◦ entity declaration 
◦ architecture body 
◦ … 
◦ put each design unit in a separate file -- helps a lot. 

 Analyzed design units are placed in a library 



 Discrete event simulation 
◦ time advances in discrete steps 
◦ when signal values change—events occur 

 A processes is sensitive to events on input 
signals 
◦ specified in wait statements or the sensitive list 
◦ resumes and schedules new values on output 

signals 
 schedules transactions 
 event on a signal if value changes 
 



 Lexical Elements 
◦ Case insensitive  
◦ Comments  
 preceded by two consecutive dashes  
 end at the end of current line 

◦ Identifiers, reserved words, special symbols, numbers, characters, 
strings, bit strings 

 Syntax 
◦ Simple data types, operators 
 Integer, floating, arrays, records, … 
 And, Or, >, <, +, -, shift, … 

◦ Sequential statements 
  if, case, while, for 

◦ Entity declarations, architecture bodies, signal assignment, 
process, wait, procedure 
 



 Peter J. Ashenden, The Designer’s Guide to 
VHDL, Morgan Kaufmann, 2002 

 Sudhakar Yalamanchili, VHDL Starter’s Guide, 
Prentice Hall, 2005 

 J. Bkasker, A VHDL Primer, Prentice Hall, 1999 
 www.google.com 
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