
EMBEDDED SOFTWARE DEVELOPMENT

HARDWARE AND SOFTWARE
ARCHITECTURES

Hardware and software are intimately related:
 software doesn’t run without hardware;
 how much hardware you need can be largely

determined by the software requirements:
 Speed;
 Memory size;
 Interconnection bandwidth.

SOFTWARE DESIGN TECHNIQUES

 Want to develop as much code as possible on a
standard platform:
 friendlier programming environment;
 easier debugging.

 May need to devise software stubs to allow testing
of software elements without the full
hardware/software platform.

HOST/TARGET DESIGN

 Use a host system to prepare software for target
system:

target
system

host system

CROSS-PLATFORM DEVELOPMENT
ENVIRONMENT
 The embedded computing system is usually

tightly resource constrained.
 A PC or workstation is commonly used for

development purpose
 Cross compiler:

 compiles code on host for target system.
 Cross debugger:

 displays target state, allows target system to be
controlled.

EMBEDDED SOFTWARE COMPILATION

HLL compile assembly assemble HLL HLL assembly assembly

link executable load

THE COMPILER
 Compilation = translation + optimization
 Compiler determines quality of code:

 use of CPU resources;
 memory access scheduling;
 code size.

BASIC COMPILATION PHASES

HLL

parsing, symbol table

machine-independent
optimizations

machine-dependent
optimizations

assembly

MODELS OF PROGRAMS

 Source code is not a good representation
for programs:
 clumsy;
 leaves much information implicit.

 Compilers derive intermediate
representations to manipulate and
optimize the program.
 Data flow graph
 Control data flow graph

DATA FLOW GRAPH
 Definition

 A directed graph that shows the data
dependencies between a number of functions
 Nodes

 Representing operation
 Each node having input/output data ports

 Arces:
 connections between the output ports and input ports

DATA FLOW GRAPH CONSTRUCTION

single-assignment form:
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

a b c d

+ *

+

+
y

x3

z

x1

-

x2

CONTROL-DATA FLOW GRAPH
 CDFG: represents control and data.
 Uses data flow graphs as components.
 Two types of nodes:

 decision;
 data flow.

DATA FLOW NODE

Encapsulates a data flow graph:

Write operations in basic block form for simplicity.

x = a + b;
y = c + d

CONTROL

cond
T

F

Equivalent forms

value
v1

v2 v3

v4

CDFG EXAMPLE

if (cond1) bb1();
 else bb2();
bb3();
switch (test1) {
 case c1: bb4(); break;
 case c2: bb5(); break;
 case c3: bb6(); break;
}

cond1 bb1()

bb2()

bb3()

bb4()

test1

bb5() bb6()

T

F

c1
c2

c3

FOR LOOP

for (i=0; i<N; i++)
 loop_body();
for loop

i=0;
while (i<N) {
 loop_body(); i++;

}

i<N

loop_body()
i++

 T

F

i=0

TRANSLATION AND OPTIMIZATION
 Source code is translated into intermediate form

such as CDFG.
 CDFG is transformed/optimized.
 CDFG is translated into instructions with

optimization decisions.
 Instructions are further optimized.

ARITHMETIC EXPRESSIONS

a*b + 5*(c-d)

expression

DFG

* -

*

+

a b c d

5

2

3

4

1

ARITHMETIC EXPRESSIONS, CONT’D.

ADR r4,a
MOV r1,[r4]
ADR r4,b
MOV r2,[r4]
MUL r3,r1,r2

DFG

* -

*

+

a b c d

5
ADR r4,c
MOV r1,[r4]
ADR r4,d
MOV r5,[r4]
SUB r6,r4,r5
MUL r7,r6,#5
ADD r8,r7,r3

code

CONTROL CODE GENERATION

if (a+b > 0)
 x = 5;
else
 x = 7;

a+b>0 x=5

x=7

3

2 1

CONTROL CODE GENERATION, CONT’D.
 ADR r5,a
 LDR r1,[r5]
 ADR r5,b
 LDR r2,b
 ADD r3,r1,r2
 BLE label3

a+b>0 x=5

x=7
 LDR r3,#5
 ADR r5,x
 STR r3,[r5]

 B stmtent
 label3 LDR r3,#7
 ADR r5,x
 STR r3,[r5]
 stmtent ...

OPTIMIZATIONS

 Machine independent
 Expression simplification, Loop optimization

 Machine dependent
 Register allocation
 Instruction scheduling
 Instruction selection

EXPRESSION SIMPLIFICATION
Constant folding:

 8+1 = 9
Algebraic:

 a*b + a*c = a*(b+c)
Strength reduction:

 a*2 = a<<1
Common sub-expression reduction

 x = (a+b*c) * d; y = (a+b*c)/d;
 t = (a+b*c); x = t * d; y = t/d;

REGISTER ALLOCATION
 Goals:

 choose register to hold each variable;
 determine lifespan of variable in the register.
 reduce memory spills

 Memory spills: temporary data has to be stored in
memory due to register shortage

REGISTER LIFETIME GRAPH

w = a + b;
x = c + w;
y = c + d;
(assume x, y are

the output
variables for
later use)

time

a
b
c
d
w
x
y

1 2 3

INSTRUCTION SCHEDULING
 Non-pipelined machines do not need instruction

scheduling: any order of instructions that
satisfies data dependencies runs equally fast.

 In pipelined machines, execution time of one
instruction depends on the nearby instructions:
opcode, operands.

INSTRUCTION SELECTION

 May be several ways to implement an operation or
sequence of operations.

 Represent operations as graphs, match possible
instruction sequences onto graph.

*

+

expression templates

* +
*

+

MUL ADD

MADD

EMBEDDED SOFTWARE COMPILATION

HLL compile assembly assemble HLL HLL assembly assembly

link executable load

ASSEMBLERS
 Major tasks:

 generate binary for symbolic instructions;
 translate labels into addresses;
 handle pseudo-ops (data, etc.).

 Generally one-to-one translation.
 Assembly labels:

 ORG 100
label1 ADR r4,c

TWO-PASS ASSEMBLY
 Pass 1:

 generate symbol table
 Pass 2:

 generate binary instructions

SYMBOL TABLE EXAMPLE

 ADD r0,r1,r2
xx ADD r3,r4,r5
 CMP r0,r3
yy SUB r5,r6,r7

xx 0x8

yy 0x16

PLC=0x4

PLC=0x8

PLC=0x12

PLC=0x16

Symbol Table

PSEUDO-OPERATIONS
 Pseudo-ops do not generate instructions:

 ORG sets program location.
 EQU generates symbol table entry without

advancing PLC.
 Data statements define data blocks.

EMBEDDED SOFTWARE COMPILATION

HLL compile assembly assemble HLL HLL assembly assembly

link executable load

LINKER
 Combines several object modules into a single

executable module.
 Jobs:

 put modules in order;
 resolve labels across modules.

external reference

entry point

EXTERNALS AND ENTRY POINTS

xxx ADD r1,r2,r3
 B a
yyy %1

a ADR r4,yyy
 ADD r3,r4,r5

DYNAMIC LINKING
 Some operating systems link modules

dynamically at run time:
 shares one copy of library among all executing

programs;
 allows programs to be updated with new versions of

libraries.

GNU TOOLS: GCC

 GCC translates C source code into
assembly language

 GCC also functions as the user interface
to the GNU assembler and to the GNU linker,
calling the assembler and the linker with
the appropriate parameters

 Supported cross-compilers:
 PowerPC processor compiler

 GNU GCC (powerpc-eabi-gcc)
 MicroBlaze processor compiler

 GNU GCC (mb-gcc)

C files

Cross-compiler

Assembly
files

GNU TOOLS

 Calls four different executables
 Preprocessor (cpp0)
 Language specific c-compiler

 cc1 C-programming language
 cc1plus C++ language

 Assembler
 mb-as (MicroBlaze processor)
 powerpc-eabi-as (PowerPC

processor)
 Linker and loader

 mb-ld (MicroBlaze processor)
 powerpc-eabi-ld (PowerPC

processor)

GNU TOOLS: AS

 Input: Assembly language files
 File extension: .s

 Output: Object code
 File extension: .o
 Contains

 Assembled piece of code
 Constant data
 External references
 Debugging information

 Typically, the compiler automatically
calls the assembler

Assembly files

Cross-assembler

Object files

OBJECT FILE SECTIONS

What is an object file?
 An object file is an assembled piece of code

Machine language:
li r31,0 = 0x3BE0 0000

 Constant data
 There may be references to external objects that

are defined elsewhere
 This file may contain debugging information

OBJECT FILE SECTIONS

 .text

 .rodata

 .sdata2

 .data

 .sdata

 .sbss

 .bss

Text section

Read-only data section

Small read-only data section (less than eight bytes)

Read-write data section

Small read-write data section

Small uninitialized data section

Uninitialized data section

OBJECT FILE SECTIONS

 .init

 .fini

 .ctors

 .dtors

 .got2

 .got

 .eh_frame

Language initialization code

Language cleanup code

List of functions to be invoked at program startup

List of functions to be invoked at program end

Pointers to program data

Pointers to program data

Frame unwind information for exception handling

SECTIONS EXAMPLE
int ram_data[10] = {0,1,2,3,4,5,6,7,8,9}; /* DATA */

const int rom_data[10] = {9,8,7,6,5,4,3,2,1}; /* RODATA */

int I; /* BSS */

main(){

...
I = I + 10; /* TEXT */
...

}

GNU TOOLS: LD
 Linker
 Inputs:

 Several object files
 Archived object files (library)
 Linker script: how different sections of input

should be put in output files
 Outputs:

 Executable image (.ELF)
 Executable and linking format

 a common standard file format for executables,
object code, shared libraries, etc.

 Mapfile
 the memory layout

Object
files Linker

script

Linker/Locator

Executable Map

LINKER SCRIPTS
 Linker scripts

 Control the linking process
 Map the code and data to a specified memory space
 Set the entry point to the executable
 Reserve space for the stack

 Required if the design contains a discontinuous
memory space

LINKER AND LOCATOR FLOWS

.text1

.data1

.bss1

.bss2

.data2

.text2

foo1.o

foo2.o

Link

.text

.data

.bss

0xFFFF

0xF000
0xEFFF

0xEF00

0x0000

0x1FFF
0x2000

0xEEFF

Locate

Merged
Output

Sections

Unused

Executable
Image

Code

uninitialized data

Initialized data

POWERPC PROCESSOR SCRIPT EXAMPLE
STACKSIZE = 4k;
MEMORY
{
 ddr : ORIGIN = 0x00000000, LENGTH = 32m
 sram : ORIGIN = 0x10000000, LENGTH = 2m
 flash : ORIGIN = 0x18000000, LENGTH = 32m
 bram : ORIGIN = 0xffff8000, LENGTH = 32k - 4
 boot : ORIGIN = 0xfffffffc, LENGTH = 4
}
SECTIONS
{
 .text : { *(.text) } > bram
 .boot : { *(.boot) } > boot
 .data : { *(.data) *(.got2) *(.rodata) *(.fixup)} > bram
 .bss : { *(.bss) } > bram
 __bss_start = ADDR(.bss);
 __bss_end = ADDR(.bss) + SIZEOF(.bss);
}

BINUTILS: BINARY UTILITIES
 AR Archiver

 Create, modify, and extract from libraries
 Used in EDK to combine the object files of the Board

Support Package (BSP) in a library
 Used in EDK to extract object files from different

libraries
 OBJDUMP

 Display information from object files and executables
 Header information, memory map
 Data
 Disassemble code

 GNU executables
 powerpc-eabi-objdump
 mb-objdump

SUMMARY
 Cross-platform design environment
 Cross-platform Compilation

 Compiling and optimization
 Assembling and Linking

 GNU Tools

	Embedded Software Development
	Hardware and software architectures
	Software design techniques
	Host/target design
	Cross-platform development environment
	Embedded Software Compilation
	The Compiler
	Basic compilation phases
	Models of programs
	Data Flow Graph
	Data flow graph construction
	Control-data flow graph
	Data flow node
	Control
	CDFG example
	for loop
	Translation and optimization
	Arithmetic expressions
	Arithmetic expressions, cont’d.
	Control code generation
	Control code generation, cont’d.
	Optimizations
	Expression simplification
	Register allocation
	Register lifetime graph
	Instruction scheduling
	Instruction selection
	Embedded Software Compilation
	Assemblers
	Two-pass assembly
	Symbol table example
	Pseudo-operations
	Embedded Software Compilation
	Linker
	Externals and entry points
	Dynamic linking
	GNU Tools: GCC
	GNU Tools
	GNU Tools: AS
	Object File Sections
	Object File Sections
	Object File Sections
	Sections Example
	GNU Tools: LD
	Linker Scripts
	Linker and Locator Flows
	PowerPC Processor Script Example
	Binutils: Binary Utilities
	Summary

