
1

Introduction

 Processor designed for a variety of computation
tasks

 Carefully designed since higher NRE cost is
acceptable
 NRE: Non-recurring engineering
 Can yield good performance, size and power
 manufacturer spreads NRE over large numbers of

units
 Motorola sold half a billion 68HC05 microcontrollers in

1996 alone
 Low NRE cost, short time-to-market/prototype,

high flexibility
 User just writes software; no processor design

2

Processors

3

Processor Clock speed Periph. Bus Width MIPS Power Trans. Price
General Purpose Processors

Intel PIII 1GHz 2x16 K
L1, 256K
L2, MMX

32 ~900 97W ~7M $900

IBM
PowerPC
750X

550 MHz 2x32 K
L1, 256K
L2

32/64 ~1300 5W ~7M $900

MIPS
R5000

250 MHz 2x32 K
2 way set assoc.

32/64 NA NA 3.6M NA

StrongARM
SA-110

233 MHz None 32 268 1W 2.1M NA

Microcontroller
Intel
8051

12 MHz 4K ROM, 128 RAM,
32 I/O, Timer, UART

8 ~1 ~0.2W ~10K $7

Motorola
68HC811

3 MHz 4K ROM, 192 RAM,
32 I/O, Timer, WDT,
SPI

8 ~.5 ~0.1W ~10K $5

Digital Signal Processors
TI C5416 160 MHz 128K, SRAM, 3 T1

Ports, DMA, 13
ADC, 9 DAC

16/32 ~600 NA NA $34

Lucent
DSP32C

80 MHz 16K Inst., 2K Data,
Serial Ports, DMA

32 40 NA NA $75

Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Programming, Nov. 1998

von Neumann architecture

 Memory holds data,
instructions.

 Central processing unit
(CPU) fetches instructions
from memory.

 CPU registers
 program counter (PC),

instruction register (IR),
general-purpose
registers, etc.

4

Basic Architecture
 Control unit and

datapath
 Datapath

 The connection of
all the functional
units (ALU,
MUXes, Registers)
for each
arithmetic
operation

 Control units
 How datapath

should be
configured at
different
time/states

 Control unit
doesn’t store the
algorithm – the
algorithm is
“programmed”
into the memory

5

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

Memory

I/O

Control
/Status

Processor Design
 Data path design
 Analyze instruction set => datapath

requirements
 Select set of datapath components and

establish clocking methodology
 Assemble datapath meeting the requirements

 Control path design
 Analyze implementation of each instruction to

determine setting of control points that effects
the register transfer

 Assemble the control logic

6

Datapath Example

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

7

Datapath Components

8

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Register File

 Built using D flip-
flops

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

9

M
u
x

Register 0
Register 1

Register n – 1
Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Datapath with Control

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

10

Datapath Operations
 Load

 Read memory
location into
register

11

• ALU operation
– Input certain registers

through ALU, store
back in register

• Store
– Write register to

memory location

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

Control Unit
 Control unit: configures the

datapath operations
 Sequence of desired operations

(“instructions”) stored in memory
– “program”

 Determining the operations
(ALU, read/write, etc.)

 Controlling the flow of data
(multiplexer inputs)

 Instruction cycle – broken into
several sub-operations, each one
clock cycle, e.g.:
 Fetch: Get next instruction into

IR
 Decode: Determine what the

instruction means
 Fetch operands: Move data from

memory to datapath register
 Execute: Move data through the

ALU
 Store results: Write data from

register to memory

12

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1

Control Unit Sub-Operations
 Fetch

 Get next
instruction into IR

 PC: program
counter, always
points to next
instruction

 IR: holds the
fetched instruction

13

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1 100 load R0, M[500]

Control Unit Sub-Operations
 Decode

 Determine what
the instruction
means

14

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1 100 load R0, M[500]

Control Unit Sub-Operations
 Fetch operands

 Move data from
memory to
datapath
register

15

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1 100 load R0, M[500]

10

Control Unit Sub-Operations
 Execute

 Move data
through the
ALU

 This particular
instruction does
nothing during
this sub-
operation

16

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1 100 load R0, M[500]

10

Control Unit Sub-Operations
 Store results

 Write data from
register to
memory

 This particular
instruction does
nothing during
this sub-
operation

17

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1 100 load R0, M[500]

10

Instruction Cycles

18

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1

PC=100

10

Fetch
ops

Exec. Store
results

clk

Fetch

load R0, M[500]

Decode

100

Instruction Cycles

19

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1
10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101

inc R1, R0

Fetch Fetch
ops

+1

11

Exec. Store
results

clk

101

Decode

Instruction Cycles

20

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

 Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0 101

store M[501], R1 102

R0 R1
11 10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=102
store M[501], R1

Fetch Fetch
ops

Exec.

11

Store
results

clk

Decode

102

Architectural Considerations
 N-bit processor

 N-bit ALU, registers,
buses, memory data
interface

 Embedded: 8-bit,
16-bit, 32-bit
common

 Desktop/servers:
32-bit, even 64

 PC size determines
address space

21

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

Memory

I/O

Control
/Status

Architectural Considerations
 Clock frequency

 Inverse of clock
period

 Must be longer
than the longest
single stage

 Memory access is
often the longest

22

Processor

Control unit Datapath

ALU

Registers

IR PC

Controller

Memory

I/O

Control
/Status

Pipelining: Increasing
Instruction Throughput

23

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

Programmer’s View
 Programmer doesn’t need detailed understanding of

architecture
 Instead, needs to know what instructions can be executed

 Two levels of instructions:
 Assembly level
 Structured languages (C, C++, Java, etc.)

 Most development today done using structured languages
 But, some assembly level programming may still be necessary
 Drivers: portion of program that communicates with and/or

controls (drives) another device
 Often have detailed timing considerations, extensive bit

manipulation
 Assembly level may be best for these

24

Summary
 Processor architecture
 Datapath/Control path
 Instruction execution cycles
 Architectural considerations and pipelining

25

	Processor Basics
	Introduction
	Processors
	von Neumann architecture
	Basic Architecture
	Processor Design
	Datapath Example
	Datapath Components
	Register File
	Datapath with Control
	Datapath Operations
	Control Unit
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Control Unit Sub-Operations
	Instruction Cycles
	Instruction Cycles
	Instruction Cycles
	Architectural Considerations
	Architectural Considerations
	Pipelining: Increasing Instruction Throughput
	Programmer’s View
	Summary

