
PROCESSES AND OPERATING 

SYSTEMS 



PROCESSES 

 A process is a unique execution of a program. 

 Several copies of a program may run 

simultaneously or at different times. 

 A process has its own state: 

Registers; 

Memory; 

Open files, etc. 

 The operating system manages processes. 



TERMS 

 Thread = lightweight process 
 The entity within a process that can share many system 

resources with others. 
 Address space, executable code, global variables, etc. 

 How about stack ? 

 Each process has at least one thread, i.e., primary 
thread 

 Faster context switching among threads than processes 

 Reentrancy  
 a single copy of the program's instructions in memory 

can be safely shared by multiple, separate users, object 
classes, or processes 



EXAMPLE OF NON-REENTRANCY 

int var = 1;  

 

int f( ) {  

var = var + 2;  

return var; }  

 

int g( )  

{  

return f() + 2;  

}  



EXAMPLE OF REENTRANCY 

int f(int var) {  

var = var + 2;  

return var; }  

 

int g(int var)  

{  

return f(var) + 2;  

}  



MULTIPLE TASKING 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



CREATE PROCESSES IN POSIX 

• Create a process 

with fork: 

– Exact copy for 

parent and child 

except for the return 

value of fork().  

process a 

process a process b 

 



FORK() 

 The fork process creates child: 

 
childid = fork(); 

if (childid == 0) { 

 /* child operations */ 

} else { 

 /* parent operations */ 

} 



EXECV() 

 Overlays child code: 
childid = fork(); 

if (childid == 0) { 

 execv(“mychild”,childargs); 

 perror(“execv”); 

 exit(1); 

} 

file with child code 



MULTIPLE TASKING 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



CONTEXT SWITCHING 

 How 

 Copy all context (registers), keeping proper return 

value for PC. 

 Copy new context into CPU state. 

 Who in control of context switching 



CONTEXT SWITCHING IN ARM 

• Save old process: 

 
STMIA    r13,{r0-r13}^ 

MRS       r0,SPSR 

STMDB  r13,{r0, r15} 

 

; r14: contains the next 
instruction after return from 
sub-procedure 

; r15: program counter (pc) 

 

• Start new process: 
ADR        r0,NEXTPROC 

LDR        r13,[r0] 

LDMDB r13,{r0, r14} 

MSR      SPSR,r0 

LDMIA  r13,{r0-r13}^ 

MOV   pc, r14 
 

 

 

David Jaggar, e.d., Advanced RISC Machines Architectural  

Reference Manual, London: Prentice Hall, 1995. 



CONTEXT SWITCHING 

 How 

 Copy all context (registers), keeping proper return 

value for PC. 

 Copy new context into CPU state. 

 Who is in control of context switching 

 Co-operative multitasking  

 Preemptive multitasking 

 Co-routine  

 



CO-OPERATIVE MULTITASKING 

 What 

One process gives up the CPU to another voluntarily 

 Each process allows a context switch at cswitch() 

call. 

 Separate scheduler chooses which process runs 

next. 



COOPERATIVELY MULTITASKING EXAMPLE 

If(x>2)  

  sub1(y); 

else 

  sub2(y); 

cswitch(); 

…. 

Proc_data(r,s);  

cswitch(); 

if (val = 3)   

  foo1(r); 

foo2(s); 

…. 

Process 1 Process 2 

Save_state(current);  

p=choose_next(); 

Load_state(p); 

Scheduler 



CO-OPERATIVE MULTITASKING 

 Hides context switching mechanism; 

 Relies on processes to give up CPU.  

 Programming errors can keep other processes 

out: 

 process never gives up CPU; 

 process waits too long to switch, missing input. 



PREEMPTIVE MULTITASKING 

 OS controls when contexts switches and 

determines what process runs next. 

 Interrupts (by timer, external events) cause 

OS to switch contexts: 

CPU 

ti
m

er
 

interrupt 



FLOW OF CONTROL WITH PREEMPTION 

time 

P1 OS P1 OS P2 

interrupt interrupt 



PREEMPTIVE CONTEXT SWITCHING 

 Interrupt gives control to OS, which saves 

interrupted process’s state in an activation 

record. 

 OS chooses next process to run. 

 OS installs desired context as current CPU 

state.  



CO-ROUTINE FOR MULTIPLE TASKING 

• Rooted in assembly programming 

• Rarely used today 

• Generalize subroutines to allow multiple entry points 
and suspending and resuming of execution at certain 
locations 

• An example  

 



CO-ROUTINES 

 ADR r14,co2a 

co1a … 

 ADR r13,co1b 

 MOV r15,r14 

co1b … 

 ADR r13,co1c 

 MOV r15,r14 

co1c ... 

co2a … 

 ADR r14,co2b 

 MOV r15,r13 

co2b … 

 ADR r14,co2c 

 MOV r15,r13 

co2c … 

 

Co-routine 1 Co-routine 2 

r15: the program counter register 



MULTITASKING WITH CO-ROUTINE 

 Like subroutine, but caller determines the 

return address. 

 Co-routines voluntarily give up control to other 

co-routines. 

 Pattern of control transfers is embedded in the 

code. 



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



PROCESS STATE 

• A process can be in 

one of three states: 

– executing on the 

CPU; 

– ready to run; 

– waiting for data. 

executing 

ready waiting 

gets data 

and CPU 

needs 

data 

gets data 

needs data 

preempted 
gets 

CPU 

 



SCHEDULING 

 The CPU is often shared among several processes. 

 Cost. 

 Energy/power. 

 Physical constraints. 

 Someone must be responsible for giving the CPU to processes. 

 Co-operation between processes. 

 RTOS. 



EMBEDDED VS. GENERAL-PURPOSE 

SCHEDULING 

 Workstations try to improve the throughput and 

fairness CPU access. 

 

 Embedded systems must meet deadlines and 

other constraints. 

 Low-priority processes may not run for a long time. 



TIMING REQUIREMENTS ON PROCESSES 

 Period: interval between process activations. 

 Rate: reciprocal of period. 

 Initiation time: time at which process becomes 

ready. 

 Deadline: time at which process must finish. 

 Execution time: execution time without 

preemption 



SCHEDULING METRICS 

 CPU utilization: 

 Fraction of the CPU that is doing useful work. 

Often calculated assuming no scheduling overhead. 

 Utilization: 

U = [ S t1 ≤ t ≤ t2 T(t) ] / [t2 – t1] 
 

 T(t): useful execution time.  

 Response time 

 Time from when the task is ready to the task being 
finished 

 



SCHEDULING METHODS 

 Cyclic scheduling 

 Round robin scheduling 

 Preemptive scheduling 



CYCLIC SCHEDULING 

 Schedule task according pre-
determined schedule 

 Schedule in time slots. 
 Same process activation irrespective 

of workload. 

 Time slots may be equal size or 
unequal. 

T1 T2 T3 

P 

T1 T2 T3 

P 



THE ASSUMPTIONS 

 Trivial scheduler -> 
very small 
scheduling 
overhead.  

 Can’t handle 
unexpected loads. 
 Must schedule a 

time slot for 
aperiodic events. 

 Schedule based on 
the hyperperiod of 
the process periods. 

 

P1 P1 P1 

P2 P2 

PLCM 



HYPERPERIOD 

 Hyperperiod: least common multiple (LCM) of 

the task periods. 

 Hyperperiod can be very long if task periods are 

not chosen carefully. 

 Larger scheduling table 

More scheduling overhead 



HYPERPERIOD EXAMPLE 

 Long hyperperiod: 

 P1 7 ms. 

 P2 11 ms. 

 P3 15 ms. 

 LCM = 1155 ms. 

 Shorter hyperperiod: 

 P1 8 ms. 

 P2 12 ms. 

 P3 16 ms. 

 LCM = 96 ms. 



ROUND-ROBIN 

 Schedule process only if ready. 
 Always test processes in the same order. 

 Variations: 
 Constant/weighted time slots 
 Start round-robin again after finishing a round. 

 Better adaptivity 
 Can be adapted to handle unexpected load. 

T1 T2 T3 

P 

T2 T3 

P 



PRIORITY-DRIVEN SCHEDULING 

 Each process has a priority. 

 CPU runs the highest-priority process that is 

ready. 

 Priorities determine scheduling policy: 

 fixed priority; 

 time-varying priorities. 



PRIORITY-DRIVEN SCHEDULING EXAMPLE 

 Rules: 

 each process has a fixed priority (1 highest); 

 highest-priority ready process gets CPU; 

 process continues until done. 

 Processes 

 P1: priority 1, execution time 10 

 P2: priority 2, execution time 30 

 P3: priority 3, execution time 20 



PRIORITY-DRIVEN SCHEDULING 

EXAMPLE 

time 

P2 ready t=0 P1 ready t=15 

P3 ready t=18 

0 30 10 20 60 40 50 

P2 P2 P1 P3 



TWO PRIORITY-BASED PREEMPTIVE SCHEDULING 

 Rate Monotonic Scheduling (RMS) 

 Shortest-period process gets highest priority, i.e. 
priority inversely proportional to period; 

Higher the rate (smaller the period), higher the priority 

 Schedulability analysis 

 

 Earliest Deadline First (EDF) 

 Process closest to its (absolute) deadline has 
highest priority. 

 Schedulability analysis 

 

 



RMS EXAMPLE 

P1=D1=4 C1=1 

P2=D2=6 C2=2 

P3=D3=11 D3=4 

4 8 12 

6 12 

11 



RMS SCHEDULABILITY ANALYSIS 

 Can all tasks meet their deadlines? 

 A simple RMS model  

 All processes are periodic (with period Pi) and run on a single CPU. 

 Process execution time (Ci) is constant (worst case). 

 Deadline is at end of period (Di=Pi). 

 Zero context switch time. 

 Utilization bound analysis 

 

 Worst Case Response Time Analysis 

 If the longest response time is less than the deadline, it is schedulable 

 When a task will have the longest response time 

 Critical instant: scheduling state that gives worst response time. 

 Critical instant occurs when all higher-priority processes are 
ready to execute simultaneously. 



UTILIZATION BOUND 

 Utilization factor 

 

 

 Theorem: For a set of m tasks with fixed priority order, the least upper bound to 

processor utilization is 

 

 

 In another word, for a given task set, if the utilization factor is no more than the 

corresponding bound, then the task set is schedulable, i.e., all tasks can meet their 

deadlines.  

 E.g. m=2, Ub=0.83; m= 3, Ub=0.78; for large m, Ubln2=0.69 

=
i i

i
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C
U
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UTILIZATION BOUND (CONT’D) 

 A sufficient condition  

 Many feasible task can have higher utilization 

 

 Many feasible fixed-priority task sets cannot 100% utilize the processor 



RMS SCHEDULABILITY ANALYSIS 

 Can all tasks meet their deadlines? 

 A simple RMA model  

 All processes are periodic (with period Pi) and run on a single CPU. 

 Process execution time (Ci) is constant (worst case). 

 Deadline is at end of period (Di=Pi). 

 Zero context switch time. 

 Utilization bound analysis 

 

 Worst Case Response Time Analysis 

 If the longest response time is less than the deadline, it is schedulable 

 When a task has the longest response time 

 Critical instant: scheduling state that gives worst response time. 

 Critical instant occurs when all higher-priority processes are 
ready to execute simultaneously. 



CRITICAL INSTANT 

P4 

P3 

P2 

P1 

critical 

instant 

P1 P1 P1 P1 

P2 P2 

P3 

interfering processes 



WORST CASE RESPONSE TIME ANALYSIS 

 Mathematic formulation of the worst case 
response time for each task is possible  
 For more details, see the following reference 

 Lehoczky, J.; Sha, L.; Ding, Y. (1989), "The rate monotonic 
scheduling algorithm: exact characterization and average case 
behavior", IEEE Real-Time Systems Symposium, pp. 166–171  

 Key points of RMS 
 A fixed priority scheduling method 
 The optimal (fixed) priority assignment 

 If a task set is schedulable with any other fixed priority 
assignment, it is schedulable with RMS. 

 The worst case response time of a task occurs when it 
starts at the same time when all higher priority tasks 
start 



EXAMPLES 

• Example 1: A task set contains three tasks. Let 
– P1=D1=100, P2=D2=150, P3=D3=300 

– C1=40, C2=40, C3=20 

 
– Since U = 40/100 + 40/150 + 20/300 = 0.733 < 3 ( 2 1/3 – 1) = 0.78 

– The task set is schedulable 

 

• Example 2: A task set contains two tasks. Let 
– P1=D1=100, P2=D2=200 

– C1=50, C2=100 

 
– U = 50/100 + 100/200 = 1.0 > 2 ( 2 1/2 – 1) = 0.83 

• Cannot be sure if the task set is schedulable or not 

– It is in fact schedulable according to the worst case response time analysis 
• Since there is no task with higher priority, its longest response time is 50 <= D1 

• The longest response time for task 2 is the response time of its first job (the critical 
instant since all tasks start at the same time t=0). Its response time is (if you draw 
the timing diagram) 200 <= D2.  



TWO PRIORITY-BASED PREEMPTIVE SCHEDULING 

 Rate Monotonic Scheduling (RMS) 

 Shortest-period process gets highest priority, i.e. 

priority inversely proportional to period; 

 Schedulability analysis 

 

 Earliest Deadline First (EDF) 

 Process closest to its (absolute) deadline has 

highest priority. 

 Schedulability analysis 

 

 



EDF EXAMPLE 

P1=D1=4 C1=1 

P2=D2=6 C2=2 

P3=D3=11 D3=4 

4 8 12 

6 12 

11 



EARLIEST-DEADLINE-FIRST 

SCHEDULING 

• EDF 
– dynamic priority scheduling scheme. 

– Requires recalculating processes at every timer 
interrupt. 

 

• Schedulability analysis  
– Theorem: A given task set is feasible by EDF if 

and only if the total utilization factor U <=1, i.e. 

 

 

– Can fully utilize the processor 

 

1= 
i i

i

P

C
U



EXAMPLE 

T1=D1=4 C1=1 

T2=D2=7 C2=3 

T3=D3=13 C3=3 

4 8 12 

7 14 

13 

Since U= 1/4 + 3/7 + 3/13 = 0.91 < 1, 

therefore, the above task set is schedulable. 



PRIORITY INVERSION 

 Priority inversion: low-priority process keeps high-
priority process from running. 

 Improper use of system resources can cause 
scheduling problems: 

 Low-priority process grabs I/O device. 

 High-priority device needs I/O device, but can’t get it 
until low-priority process is done. 

 Can cause deadlock. 

 Deadlock: two or more processes are waiting for each 
other to finish but neither can do.  



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



INTERPROCESS COMMUNICATION 

 Interprocess communication (IPC): OS provides 
mechanisms so that processes can pass data. 

 Two schemes 

 Shared memory: 

processes have some memory in common; 

must cooperate to avoid destroying/missing messages. 

Message passing: 
processes send messages along a communication 

channel, i.e. message queue 

no common address space. 



RACE CONDITION IN SHARED MEMORY 

 Race condition 

Output dependent on the sequence of events 

 Example  

Event 1:  CPU 1 reads flag. 

Event 2: CPU 2 reads flag. 

Event 3: CPU 1 sets flag to one. 

Event 4: CPU 2 sets flag to two. 

 

 The producer/consumer problem 



EXAMPLE: PRODUCER/CONSUMER 

 Share buffer[N], count 

 count = # of valid data items in buffer 

 processA produces data items and stores in buffer 

 If buffer is full, must wait 

 processB consumes data items from buffer 

 If buffer is empty, must wait 

 Error when both processes try to update count 
concurrently (lines 10 and 19) and the following execution 
sequence occurs. Say “count” is 3. 

 A loads count (count = 3) from memory into register R1 (R1 
= 3) 

 A increments R1 (R1 = 4) 

 B loads count (count = 3) from memory into register R2 (R2 
= 3) 

 B decrements R2 (R2 = 2) 

 A stores R1 back to count in memory (count = 4) 

 B stores R2 back to count in memory (count = 2) 

 count now has incorrect value of 2 

01: data_type buffer[N]; 

02: int count = 0; 

03: void processA() { 

04:   int i; 

05:   while( 1 ) { 

06:     produce(&data); 

07:     while( count == N );/*loop*/ 

08:     buffer[i] = data; 

09:     i = (i + 1) % N; 

10:     count = count + 1; 

11:   } 

12: } 

13: void processB() { 

14:   int i; 

15:   while( 1 ) { 

16:     while( count == 0 );/*loop*/ 

17:     data = buffer[i]; 

18:     i = (i + 1) % N; 

19:     count = count - 1; 

20:     consume(&data); 

21:   } 

22: } 

23: void main() { 

24:   create_process(processA);  

25:   create_process(processB); 

26: } 



MUTUAL EXCLUSION 

 Certain sections of code should not be performed concurrently 
 Critical section 

 Possibly noncontiguous section of code where simultaneous updates, by 
multiple processes to a shared memory location, can occur 

 When a process enters the critical section, other processes must be 
locked out until it leaves the critical section 
 Mutex  

 A shared object used for locking and unlocking segment of shared data 

 Disallows read/write access to memory it guards 

 Multiple processes can perform lock operation simultaneously, but only one 
process will acquire lock 

 All other processes trying to obtain lock will be put in blocked state until 
unlock operation performed by acquiring process when it exits critical section 

 These processes will then be placed in runnable state and will compete for 
lock again 



USING MUTEX FOR THE CONSUMER-

PRODUCER PROBLEM 

 The primitive mutex is used to ensure critical sections are 

executed in mutual exclusion of each other 

 Following the same execution sequence as before: 

 A/B execute lock operation on count_mutex 

 Either A or B will acquire lock 

 Say B acquires it 

 A will be put in blocked state 

 B loads count (count = 3) from memory into register R2 (R2 = 3) 

 B decrements R2 (R2 = 2) 

 B stores R2 back to count in memory (count = 2) 

 B executes unlock operation 

 A is placed in runnable state again 

 A loads count (count = 2) from memory into register R1 (R1 = 2) 

 A increments R1 (R1 = 3) 

 A stores R1 back to count in memory (count = 3) 

 Count now has correct value of 3 

 Problems? 

01: data_type buffer[N]; 

02: int count = 0; 

03: mutex count_mutex; 

04: void processA() { 

05:   int i; 

06:   while( 1 ) { 

07:     produce(&data); 

08:     count_mutex.lock(); 

09:     while( count == N );/*loop*/ 

10:     buffer[i] = data; 

11:     i = (i + 1) % N; 

12:     count = count + 1; 

13:     count_mutex.unlock(); 

14:   } 

15: } 

16: void processB() { 

17:   int i; 

18:   while( 1 ) { 

19:     count_mutex.lock(); 

20:     while( count == 0 );/*loop*/ 

21:     data = buffer[i]; 

22:     i = (i + 1) % N; 

23:     count = count - 1; 

24:     count_mutex.unlock(); 

25:     consume(&data); 

26:   } 

27: } 

28: void main() { 

29:   create_process(processA);  

30:   create_process(processB); 

31: } 



CONDITION VARIABLES 

 Condition variable is an object that has 2 operations, signal and wait 

 When process performs a wait on a condition variable, the process is blocked 

until another process performs a signal on the same condition variable 

 How is this done? 

 Process A acquires lock on a mutex 

 Process A performs wait, passing this mutex 

 Causes mutex to be unlocked 

 Process B can now acquire lock on same mutex 

 Process B enters critical section 

 Computes some value and/or make condition true 

 Process B performs signal when condition true 

 Causes process A to implicitly reacquire mutex lock 

 Process A becomes runnable 



CONDITION VARIABLE EXAMPLE: 

CONSUMER-PRODUCER 
 2 condition variables 

 buffer_empty 

 Signals at least 1 free location available in buffer 

 buffer_full 

 Signals at least 1 valid data item in buffer 

 processA:  

 produces data item 

 acquires lock (cs_mutex) for critical section 

 checks value of count 

 if count = N, buffer is full 

 performs wait operation on buffer_empty 

 this releases the lock on cs_mutex allowing processB to 

enter critical section, consume data item and free location 

in buffer 

 processB then performs signal 

 if count < N, buffer is not full 

 processA  inserts data into buffer  

 increments count 

 signals processB making it runnable if it has performed a 

wait operation on buffer_full 

01: data_type buffer[N]; 

02: int count = 0; 

03: mutex cs_mutex; 

04: condition buffer_empty, buffer_full; 

06: void processA() { 

07:   int i; 

08:   while( 1 ) { 

09:     produce(&data); 

10:     cs_mutex.lock(); 

11:     if( count == N ) buffer_empty.wait(cs_mutex); 

13:     buffer[i] = data; 

14:     i = (i + 1) % N; 

15:     count = count + 1; 

16:     cs_mutex.unlock(); 

17:     buffer_full.signal(); 

18:   } 

19: } 

20: void processB() { 

21:   int i; 

22:   while( 1 ) { 

23:     cs_mutex.lock(); 

24:     if( count == 0 ) buffer_full.wait(cs_mutex); 

26:     data = buffer[i]; 

27:     i = (i + 1) % N; 

28:     count = count - 1; 

29:     cs_mutex.unlock(); 

30:     buffer_empty.signal(); 

31:     consume(&data); 

32:   } 

33: } 

34: void main() { 

35:   create_process(processA); create_process(processB); 

37: } 

 

Consumer-producer using condition variables 



SEMAPHORE VS MUTEX 

 Mutex 
 Lock/unlock operation 

 At any time, only one process can enter the critical section 
 A bathroom with one stall 

 Semaphore 
 A semaphore has a non-negative integer value (S >=0) 

 Wait/post operation (atomic operation, i.e. only one operation can be 
executed at one time) 
 Wait (DOWN)  

 Decrease semaphore value by 1. If  S = 0, blocks. 
 Post (UP) 

 Increase semaphore value by 1. 

 

 Multiple processes can enter a critical section concurrently 
 A bathroom with multiple stalls 

 Mutex is a binary semaphore (max S = 1) 



USING SEMAPHORES FOR 

CONSUMER-PRODUCER PROBLEM 
 Mutex is similar to a binary semaphore 
 processA:  

 produces data item 
 If the buffer is not full (empty > 0)  and is 

allowed to access the critical section 
(cs_sem>0)  

 Increments count 
 exit critical section 
 Signal processes waiting on due to the 

empty buffer 

 processB:  
 If the buffer is not empty (occupied > 0)  

and is allowed to access the critical 
section (cs_sem>0)  

 decrements count 
 exit critical section 
 Signal processes waiting on due to the 

full buffer 
 consumes data item 

 

01: data_type buffer[N]; 

02: int count = 0;  

03: sem_t occupied, empty, cs_sem; 

04: void processA() { 

05:   int i = 0; 

06:   while( 1 ) { 

07:     produce(&data); 

08:     sem_wait (&empty); //decrease empty 

09:     sem_wait (&cs_sem); //decrease cs_sem 

10:     buffer[i] = data; 

11:     i = (i + 1) % N; 

12:     count = count + 1; 

13:     sem_post (&cs_sem); //increase cs_sem 

14:     sem_post (&occupied); //increase occupied 

15:   } 

16: } 

17: void processB() { 

18:   int i = 0; 

19:   while( 1 ) { 

20:     sem_wait(&occupied); //decrease occupied 

21:     sem-wait(&cs_sem);   //decrease cs_sem 

22:     data = buffer[i]; 

23:     i = (i + 1) % N; 

24:     count = count - 1; 

25:     sem_post(&cs_sem);  // increase cs_sem 

26:     sem_post(&empty);   // increase empty 

27:     consume(&data); 

28:   } 

29: } 

30: void main() { 

31: sem_init(&occupied, 0, 0); 

32: sem_init(&empty,0, N); 

33: sem_init(&cs_sem, 0, 1); 

34: create_process(processA); create_process(processB); 

35: } 

 

Consumer-producer using condition variables 



A COMMON PROBLEM IN CONCURRENT 

PROGRAMMING: DEADLOCK 
 Deadlock: A condition where 2 or more processes are 

blocked waiting for the other to unlock critical sections of 

code 

 Both processes are then in blocked state 

 Cannot execute unlock operation so will wait forever 

 Example code has 2 different critical sections of code 

that can be accessed simultaneously 

 2 locks needed (mutex1, mutex2) 

 Following execution sequence produces deadlock 

 A executes lock operation on mutex1 (and acquires it) 

 B executes lock operation on mutex2( and acquires it) 

 A/B both execute in critical sections 1 and 2, respectively 

 A executes lock operation on mutex2 

 A blocked until B unlocks mutex2 

 B executes lock operation on mutex1 

 B blocked until A unlocks mutex1 

 DEADLOCK! 

01: mutex mutex1, mutex2; 

02: void processA() { 

03:   while( 1 ) { 

04:     … 

05:     mutex1.lock(); 

06:     /* critical section 1 */ 

07:     mutex2.lock(); 

08:     /* critical section 2 */ 

09:     mutex2.unlock(); 

10:     /* critical section 1 */ 

11:     mutex1.unlock(); 

12:   } 

13: } 

14: void processB() { 

15:   while( 1 ) { 

16:     … 

17:     mutex2.lock(); 

18:     /* critical section 2 */ 

19:     mutex1.lock(); 

20:     /* critical section 1 */  

21:     mutex1.unlock(); 

22:     /* critical section 2 */ 

23:     mutex2.unlock(); 

24:   } 

25: } 

 



MESSAGE PASSING 

 Message passing 

 Data explicitly sent from one process to 

another (msgsnd, msgget, msgrcv, etc) 
 Sending process performs special operation, 

send 

 Receiving process must perform special 
operation, receive, to receive the data 

 Both operations must explicitly specify which 
process it is sending to or receiving from 

 Receive is blocking, sending may or may not be 
blocking 

 Safer model, overhead can be high 

 Two modes: 

 blocking: sending process waits for response; 

 non-blocking: sending process continues. 

void processA() { 

  while( 1 ) { 

    produce(&data) 

    send(B, &data); 

    /* region 1 */ 

    receive(B, &data); 

    consume(&data); 

  } 

} 

void processB() { 

  while( 1 ) { 

    receive(A, &data); 

    transform(&data) 

    send(A, &data); 

    /* region 2 */ 

  } 

} 



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



REAL-TIME OPERATING SYSTEMS 

 What 

Operating system with bounded response time 

Provide mechanisms, primitives, and guidelines for 

building real- 

time embedded systems  

 

 Real-Time 

 

 Operating systems 



REAL-TIME SYSTEMS 

 Not systems run very fast 
 The real-time system is the system that its 

timeliness is as important as the logic 
correctness of the result 

 Two basic categories 
 Hard real-time 

 Deadline misses imply the failure of system 
 

 Soft real-time  
 Deadlines can be occasionally missed 
 Firm real-time system 

 Deadline miss is of no use at all 
Non-firm real-time system 

 Task execution is still valuable with deadline miss albeit with 
reduced performance 



OPERATING SYSTEMS 

 A software that manages system resources and 
supports user interface to access these resources 
 System resources 

 CPU times 

Memory usage 

 File handlers 

Networking 

 Input/output devices 

 etc 

 

 Examples 
 Unix, Linux, Microsoft Windows, Mac OS, etc 

 



CHARACTERISTICS OF RTOS 

 Deterministic/Predicability 

 To deliver service in deterministic or predicable time 

Non-deterministic makes embedded system to randomly miss 

deadlines, which is not acceptable in real-time systems 

 Scheduling/memory allocation/inter task 

communication 

 

 Usually small in size 

 Small kernel with optional resource managers 



REAL-TIME OPERATING SYSTEMS (RTOS) 

 Windows CE 

 Built specifically for embedded systems and appliance market 

 Scalable real-time 32-bit platform 

 Supports Windows API 

 Perfect for systems designed to interface with Internet 

 Preemptive priority scheduling with 256 priority levels per process 

 Kernel is 400 Kbytes 

 QNX 

 Real-time microkernel surrounded by optional processes (resource managers) that provide 

POSIX and UNIX compatibility 

 Microkernels typically support only the most basic services 

 Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor 

systems connected by various networking and communication technologies 

 Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling 

 32 priority levels per process 

 Microkernel < 10 Kbytes and complies with POSIX real-time standard 



SUMMARY  

 Process/thread, reentrancy  
 Process/thread creation 
 Multitasking context switching 

 Co-operative multitasking 
 Preemptive multitasking 
 Co-routine 

 Scheduling 
 Cyclic scheduling 
 Round robin 
 Priority-based preemptive scheduling 

 RMA/EDF 

 Interprocess communication 
 Shared memory/message passing 
 Mutex/semaphore  
 Priority inversion/deadlock 

 Real-time and Real-time Operating System (RTOS) 
 


