PROCESSES AND OPERATING
SYSTEMS

\‘*~ /,
457 M\ &
=) \2
Y [\
-\ \’/ W)=
& \ ,L; &
AR LS
i ' ‘ A&
TR

FLORIDA INTERNATIONAL UNIVERSITY

PROCESSES

A process is a unique execution of a program.

Several copies of a program may run
simultaneously or at different times.

A process has its own state:
Registers;
Memory;
Open files, etc.

The operating system manages processes.

TERMS

Thread = lightweight process
The entity within a process that can share many system
resources with others.

Address space, executable code, global variables, etc.
How about stack ?

Each process has at least one thread, i.e., primary
thread

Faster context switching among threads than processes
Reentrancy

a single copy of the program's instructions in memory
can be safely shared by multiple, separate users, object
classes, or processes

EXAMPLE OF NON-REENTRANCY =~

Intvar = 1;

int f() {

var =var + 2;
return var; }

Intg()
{

return f() + 2;

}

EXAMPLE OF REENTRANCY

Int f(int var) {
var = var + 2;
return var; }

Int g(int var)

{

return f(var) + 2;

}

MULTIPLE TASKING

Create a process

Context switching

Process State and Scheduling
nterprocess communication

Real-time operating system (RTOS)

CREATE PROCESSES IN POSIX

» Create a process
with fork:

— Exact copy for AP €
parent and child
except for the return
value of fork().

Process a

FORK()
The fork process creates child:

childid = fork();

if (childid == 0) {
/* child operations */
}else {

/* parent operations */

J

EXECV()

Overlays child code:

childid = fork();

if (childid == 0) {
execv(“mychild”,chixjargs);
perror(“execv”);
exit(1);

}

file with child code

MULTIPLE TASKING

Context switching
Process State and Scheduling
nterprocess communication

Real-time operating system (RTOS)

CONTEXT SWITCHING

How

Copy all context (registers), keeping proper return
value for PC.

Copy new context into CPU state.
Who in control of context switching

CONTEXT SWITCHING IN ARM

» Save old process: « Start new process:
ADR rO,NEXTPROC

STMIA r13,{rO-r13}» LDR r13,[r0]

MRS r0,SPSR LDMDB r13,{r0, r14}

STMDB r13,{r0, r15} MSR SPSR,r0
LDMIA r13,{rO-r13}*

; r14: contains the next MOV pc, ri4

instruction after return from
sub-procedure

; I'15: program counter (pc)

David Jaggar, e.d., Advanced RISC Machines Architectural
Reference Manual, London: Prentice Hall, 1995.

CONTEXT SWITCHING

How

Copy all context (registers), keeping proper return
value for PC.

Copy new context into CPU state.
Who is in control of context switching
Co-operative multitasking

Preemptive multitasking
Co-routine

CO-OPERATIVE MULTITASKING

What

One process gives up the CPU to another voluntarily

Each process allows a context switch at cswitch()
call.

Separate scheduler chooses which process runs
next.

COOPERATIVELY MULTITASKING EXAMPLE

1f(x>2) Proc_data(r,s);
subl(y); cswitch():
else if (val = 3)
sub2(y); fool(r);
cswitch(); \ f002(s);
—~— Save_state(current); ~~

Process 1 p=choose_next(); Process 2
Load_state(p);

Scheduler

CO-OPERATIVE MULTITASKING

Hides context switching mechanism;
Relies on processes to give up CPU.

Programming errors can keep other processes
out:

process never gives up CPU;
process waits too long to switch, missing input.

PREEMPTIVE MULTITASKING

OS controls when contexts switches and
determines what process runs next.

Interrupts (by timer, external events) cause
OS to switch contexts:

Interrupt

FLOW OF CONTROL WITH PREEMPTION =

Interrupt interrupt

| |

OS P2

time

“FIU
PREEMPTIVE CONTEXT SWITCHING

Interrupt gives control to OS, which saves
Interrupted process’s state in an activation

record.
OS chooses next process to run.

OS installs desired context as current CPU
state.

CO-ROUTINE FOR MULTIPLE TASKING ™

* Rooted in assembly programming
« Rarely used today

» Generalize subroutines to allow multiple entry points
and suspending and resuming of execution at certain
locations

« Anexample

CO-ROUTINES

ADR rl4 co2a co2allll
eold/ !} ADR rl14.,co2b
ADR rl13.collp lI\/IOV ri15r13

<

MOV rl15,r14 b...
colb ... /S,ZADR r14,co2c
ADR rl13,col MOV r15,r13
MOV rlS,rlA[clﬁc

colc ...

Co-routine 1 Co-routine 2

rl5: the program counter register

#FIU
MULTITASKING WITH CO-ROUTINE

Like subroutine, but caller determines the
return address.

Co-routines voluntarily give up control to other
co-routines.

Pattern of control transfers is embedded in the
code.

MULTIPLE PROCESS

Process State and Scheduling
nterprocess communication

Real-time operating system (RTOS)

PROCESS STATE

» A process can be In
one of three states:

— executing on the
CPU;

— ready to run;
— walting for data.

executing

gets data
gets / \ and CPU
reempted
CPU y P needs
/ data
~ gets data p N
[ready) waiting}
“ needsdata ™

SCHEDULING b i

The CPU is often shared among several processes.
Cost.
Energy/power.
Physical constraints.
Someone must be responsible for giving the CPU to processes.
Co-operation between processes.
RTOS.

EMBEDDED VS. GENERAL-PURPOSE FlU
SCHEDULING

Workstations try to improve the throughput and
fairness CPU access.

Embedded systems must meet deadlines and
other constraints.

Low-priority processes may not run for a long time.

TIMING REQUIREMENTS ON PROCESSE”S A

Period: interval between process activations.
Rate: reciprocal of period.

nitiation time: time at which process becomes
ready.

Deadline: time at which process must finish.

Execution time: execution time without
preemption

SCHEDULING METRICS

CPU utilization:
Fraction of the CPU that is doing useful work.
Often calculated assuming no scheduling overhead.

Utilization:
Wi 1L 0G0 1 (82 15]

T(t): useful execution time.

Response time

Time from when the task is ready to the task being
finished

SCHEDULING METHODS

Cyclic scheduling
Round robin scheduling
Preemptive scheduling

CYCLIC SCHEDULING

Schedule task according pre-
determined schedule

Schedule in time slots.

Same process activation irrespective
of workload.

Time slots may be equal size or
unequal.

nol v] T [

P p

THE ASSUMPTIONS

Trivial scheduler ->
very small
scheduling
overhead.

Can’t handle
unexpected loads.

Must schedule a
time slot for
aperiodic events.

Schedule based on
the hyperperiod of

the process periods.

UNIVERSITY

“FIU
H Y P E R P E R I O D e s o

Hyperperiod: least common multiple (LCM) of
the task periods.

Hyperperiod can be very long if task periods are
not chosen carefully.

Larger scheduling table

More scheduling overhead

HYPERPERIOD EXAMPLE

Long hyperperiod:
P17 ms.
P2 11 ms.
P3 15 ms.
LCM = 1155 ms.

Shorter hyperperiod:
P18 ms.
P2 12 ms.
P3 16 ms.
LCM = 96 ms.

ROUND-ROBIN

Schedule process only if ready.
Always test processes in the same order.

Variations:
Constant/weighted time slots
Start round-robin again after finishing a round.

Better adaptivity
Can be adapted to handle unexpected load.

T T,

A
v
A
v

@ FIU
PRIORITY-DRIVEN SCHEDULING =~~~

Each process has a priority.

CPU runs the highest-priority process that is
ready.
Priorities determine scheduling policy:

fixed priority;

time-varying priorities.

PRIORITY-DRIVEN SCHEDULING EXAMPLE

Rules:
each process has a fixed priority (1 highest);
highest-priority ready process gets CPU;
process continues until done.

Processes
P1: priority 1, execution time 10
P2: priority 2, execution time 30

P3: priority 3, execution time 20

PRIORITY-DRIVEN SCHEDULING
EXAMPLE

P3 ready t=18
P2 ready t=0 P1 ready t=15

| | |

time

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

Rate Monotonic Scheduling (RMS)

Shortest-period process gets highest priority, i.e.
priority inversely proportional to period,;

Higher the rate (smaller the period), higher the priority
Schedulability analysis

Earliest Deadline First (EDF)

Process closest to its (absolute) deadline has
highest priority.

Schedulability analysis

RMS EXAMPLE

P1=D1=4 C1=1
P2=D2=6 C2=2
P3=D3=11 D3=4

E m =
4 8 12

- —
6 2

RMS SCHEDULABILITY ANALYSIS

Can all tasks meet their deadlines?
A simple RMS model

All processes are periodic (with period Pi) and run on a single CPU.
Process execution time (Ci) is constant (worst case).

Deadline is at end of period (Di=Pi).

Zero context switch time.

Utilization bound analysis

Worst Case Response Time Analysis
If the longest response time is less than the deadline, it is schedulable
When a task will have the longest response time
Critical instant: scheduling state that gives worst response time.

Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

@FIU

UTILIZATION BOUND AR

Utilization factor

Theorem: For a set of m tasks with fixed priority order, the least upper bound to
processor utilization is

In another word, for a given task set, if the utilization factor is no more than the
corresponding bound, then the task set is schedulable, i.e., all tasks can meet their
deadlines.

E.g. m=2, U,=0.83; m= 3, U,=0.78; for large m, U,2In2=0.69

» FIU

UTILIZATION BOUND (CONT’D) T

A sufficient condition
Many feasible task can have higher utilization

Many feasible fixed-priority task sets cannot 100% utilize the processor

RMS SCHEDULABILITY ANALYSIS

Can all tasks meet their deadlines?
A simple RMA model

All processes are periodic (with period Pi) and run on a single CPU.
Process execution time (Ci) is constant (worst case).

Deadline is at end of period (Di=Pi).

Zero context switch time.

Utilization bound analysis

Worst Case Response Time Analysis
If the longest response time is less than the deadline, it is schedulable
When a task has the longest response time
Critical instant: scheduling state that gives worst response time.

Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

CRITICAL INSTANT

Interfering processes

critical
Instant

It

v
I IS S S S e . .

TN
o/ 0N
st
\\1,,;/
INTERNATIONAL UNIVERSITY

WORST CASE RESPONSE TIME ANALYSIS T

Mathematic formulation of the worst case
response time for each task is possible

For more details, see the following reference

Lehoczky, J.; Sha, L.; Ding, Y. (1989), "The rate monotonic
scheduling algorithm: exact characterization and average case
behavior", IEEE Real-Time Systems Symposium, pp. 166-171

Key points of RMS
A fixed priority scheduling method
The optimal (fixed) priority assignment

If a task set is schedulable with any other fixed priority
assignment, it is schedulable with RMS.

The worst case response time of a task occurs when it
s’%ar%s at the same time when all higher priority tasks
star

EXAMPLES

« Example 1: Atask set contains three tasks. Let
— P1=D1=100, P2=D2=150, P3=D3=300
— C1=40, C2=40, C3=20

— Since U =40/100 + 40/150 + 20/300=0.733<3 (213 -1)=0.78
— The task set is schedulable

« Example 2: A task set contains two tasks. Let
— P1=D1=100, P2=D2=200
— C1=50, C2=100

— U =50/100 + 100/200=1.0>2 (2 Y2-1) =0.83
Cannot be sure if the task set is schedulable or not
It is in fact schedulable according to the worst case response time analysis

Since there is no task with higher priority, its longest response time is 50 <= D1

The longest response time for task 2 is the response time of its first job (the critical

instant since all tasks start at the same time t=0). Its response time is (if you draw
the timing diagram) 200 <= D2.

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

Rate Monotonic Scheduling (RMS)

Shortest-period process gets highest priority, i.e.
priority inversely proportional to period,;

Schedulability analysis

Earliest Deadline First (EDF)

Process closest to its (absolute) deadline has
highest priority.

Schedulability analysis

@ FIU

EDF EXAMPLE o Mt il

P1=D1=4 C1=1

P2=D2=6 C2=2 -

P3=D3=11 D3=4

EARLIEST-DEADLINE-FIRST
SCHEDULING

« EDF
— dynamic priority scheduling scheme.

— Requires recalculating processes at every timer
Interrupt.

 Schedulability analysis

— Theorem: A given task set is feasible by EDF if
and only if the total utilization factor U <=1, I.e.

— Can fully utilize the processor

FLORIDA INTERNATIONAL UNIVERSITY

EXAMPLE
T1=D1=4 C1=1 m F gb E =
T2=D2=7 C2=3 om | wm
T3=D3=13 C3=3] H“‘
m 13

Since U=1/4+3/7+3/13=0.91 <1,
therefore, the above task set is schedulable.

PRIORITY INVERSION

Priority inversion: low-priority process keeps high-
oriority process from running.

mproper use of system resources can cause
scheduling problems:

Low-priority process grabs |/0 device.

High-priority device needs |/0O device, but can’t get it
until low-priority process is done.

Can cause deadlock.

Deadlock: two or more processes are waiting for each
other to finish but neither can do.

MULTIPLE PROCESS

Interprocess communication
Real-time operating system (RTOS)

INTERPROCESS COMMUNICATION

Interprocess communication (IPC): OS provides
mechanisms so that processes can pass data.

Two schemes

Shared memory:

processes have some memory in common;

must cooperate to avoid destroying/missing messages.
Message passing:

processes send messages along a communication
channel, i.e. message queue

no common address space.

RACE CONDITION IN SHARED MEMORY

Race condition
Output dependent on the sequence of events

Example
Event 1: CPU 1 reads flag.
Event 2: CPU 2 reads flag.
Event 3: CPU 1 sets flag to one.
Event 4: CPU 2 sets flag to two.

The producer/consumer problem

FIU

EXAMPLE; PRODUCER/CONSUMER "™

Share buffer[N], count
count = # of valid data items in buffer

processA produces data items and stores in buffer
If buffer is full, must wait

processB consumes data items from buffer
If buffer is empty, must wait
Error when both processes try to update count

concurrently (lines 10 and 19) and the following execution
sequence occurs. Say “count” is 3.

A loads count (count = 3) from memory into register R1 (R1
= 3)

A increments R1 (R1 = 4)

B loads count (count = 3) from memory into register R2 (R2
= 3)

B decrements R2 (R2 = 2)

A stores R1 back to count in memory (count = 4)

B stores R2 back to count in memory (count = 2)

count now has incorrect value of 2

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:

data type buffer[N];

int count = 0;
void processA() {
int i;

while(1) {
produce (&data) ;
while(count == N);/*loop*/
buffer[i] = data;
i = (i1 + 1) % N;
count = count + 1;
}
}
void processB() {
int 1;
while(1) {
while(count == 0);/*loop*/
data = buffer[i];
i=(i+ 1) % N;
count = count - 1;
consume (&data) ;
}
}
void main () {
create process (processA) ;
create process (processB) ;

}

FIU

TERNATIONAL UNIVERSITY

MUTUAL EXCLUSION

Certain sections of code should not be performed concurrently
Critical section

Possibly noncontiguous section of code where simultaneous updates, by
multiple processes to a shared memory location, can occur

When a process enters the critical section, other processes must be
locked out until it leaves the critical section
Mutex
A shared object used for locking and unlocking segment of shared data
Disallows read/write access to memory it guards

Multiple processes can perform lock operation simultaneously, but only one
process will acquire lock

All other processes trying to obtain lock will be put in blocked state until
unlock operation performed by acquiring process when it exits critical section

These processes will then be placed in runnable state and will compete for
lock again

USING MUTEX FOR THE CONSUMER-

PRODUCER PROBLEM

The primitive mutex is used to ensure critical sections are
executed in mutual exclusion of each other

Following the same execution sequence as before:
A/B execute lock operation on count_mutex

Either A or B will acquire lock
Say B acquires it
A will be put in blocked state

B loads count (count = 3) from memory into register R2 (R2 = 3)
B decrements R2 (R2 = 2)
B stores R2 back to count in memory (count = 2)

B executes unlock operation
A is placed in runnable state again

A loads count (count = 2) from memory into register R1 (R1 = 2)
A increments R1 (R1 = 3)
A stores R1 back to count in memory (count = 3)

Count now has correct value of 3

Problems?

FLORIDA INTERNATIONAL UNIVERSITY

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24:
25:
26:
27
28:
29:
30:
31:

data type buffer[N];

int count = 0;
mutex count mutex;
void processA() {
int 1i;
while(1) {

produce (&data) ;
count mutex.lock();

while(count == N);/*loop*/
buffer[i] = data;
i = (i 4+ 1) % N;

count = count + 1;
count_mutex.unlock() ;
}
}
void processB() {
int 1i;
while(1) {
count mutex.lock();
while (count ==) :/*1loop*/
data = buffer[i];
i = (i1 + 1) % N;
count = count - 1;
count_mutex.unlock() ;
consume (&data) ;
}
}
void main () {
create process (processA) ;
create process (processB) ;

}

CONDITION VARIABLES

Condition variable is an object that has 2 operations, signal and wait

When process performs a wait on a condition variable, the process is blocked
until another process performs a signal on the same condition variable
How is this done?
Process A acquires lock on a mutex
Process A performs wait, passing this mutex
Causes mutex to be unlocked
Process B can now acquire lock on same mutex
Process B enters critical section
Computes some value and/or make condition true

Process B performs signal when condition true

Causes process A to implicitly reacquire mutex lock
Process A becomes runnable

CONDITION VARIABLE EXAMPLE: bl
CONSUMER-PRODUCER

2 condition variables Consumer-producer using condition variables
buffer_empty 01: data type buffer[N];
Signals at least 1 free location available in buffer 02: int count = 0;
03: mutex cs mutex;
buffer_full 04: condition buffer empty, buffer full;
Signals at least 1 valid data item in buffer 8?1 Vo%dtp{foceSSA 0 A
M in 1y
ProcessA: 08: while(1) {
f 09: produce (&data) ;
produces data item 10 cs mutex.lock () ;
acquires lock (cs_mutex) for critical section 11: if(count == N) buffer empty.wait(cs_mutex);
heck | f 13: buffer[i] = data;
checks value of count 14 i- (141)%N;
if count = N, buffer is full 15: count = count + 1;
) X 16: cs mutex.unlock () ;
performs wait operation on buffer_empty 17 buffer full.signal();
this releases the lock on cs_mutex allowing processB to 18: }
enter critical section, consume data item and free location L9:)} .
i 20: void processB() {
in buffer 01: int i;
processB then performs signal 22: while(1) {
. . 23: cs mutex.lock();
if count < N, buffer is not full 24 if (count ==) buffer full.wait (cs mutex);
processA inserts data into buffer 26: data = buffer[i];
J 27 2 i = (i + 1) % N;
increments count bg . count = count - 1;
signals processB making it runnable if it has performed a §g= kc)sémtex-uglock 0 ;1 0
[! : uffer empty.signa ;
wait operation on buffer_full 31: consume (&data) :
32: }
33: }
34: void main () {
35: create process(processA); create process(processB);

37: }

SEMAPHORE VS MUTEX

Mutex
Lock/unlock operation

At any time, only one process can enter the critical section
A bathroom with one stall

Semaphore
A semaphore has a non-negative integer value (S >=0)

Wait/post operation (atomic operation, i.e. only one operation can be

executed at one time)
Wait (DOWN)

Decrease semaphore value by 1. If S =0, blocks.
Post (UP)

Increase semaphore value by 1.

Multiple processes can enter a critical section concurrently
A bathroom with multiple stalls

Mutex is a binary semaphore (max S = 1)

USING SEMAPHORES FOR
CONSUMER-PRODUCER PROBLEM

Consumer-producer using condition variables

Mutex is similar to a binary semaphore

0l1: data type buffer[N];
proceSSA: 02: int count = 0;
4 03: sem t occupied, empty, cs_sem;
produces data item 04: void processA() |
If the buffer is not full (empty > 0) andis pei whire(1) |
allowed to access the critical section 07 produce (sdata);)
: sem wal em ; ecrease em
(CS—Sem>O) 09: sem:waitlz (&csﬁsie/m); //decrease ch)_Zem
Increments count 0 pufrerl S date
exit critical section 12: count = count + 1;
13: sem_post (&cs_sem); //increase cs_sem
Signal processes waiting on due to the 14: sem_post (soccupied); //increase occupied
15: }
empty buffer o
processB: 17: void processB() {
If the buffer is not empty (occupied > 0) 19: while(1) . .
and is allowed to access the critical Ao e=rIg oL vesiesttbogi it
section (cs_sem>0) 22 data = bufferm; -
: i = (i + % N;
decrements count 24: count = count - 1; |
exit critical section D61 senhosticonpiny’ /0 increase enpen
%nal rocesses waiting on due to the Cos) comeume(adatals
29: }
: 30: void main() {
consumes data item 31: sem init (soccupied, 0, 0);
32: sem_init(&empty,o, N) ;
33: sem:init(&cs_sem, 0, 1);
34 : create process (processA); create process (processB);
35: }

A COMMON PROBLEM IN CONCURRENT

PROGRAMMING: DEADLOCK

Deadlock: A condition where 2 or more processes are
blocked waiting for the other to unlock critical sections of
code

Both processes are then in blocked state
Cannot execute unlock operation so will wait forever

Example code has 2 different critical sections of code
that can be accessed simultaneously

2 locks needed (mutex1, mutex2)

Following execution sequence produces deadlock

A executes lock operation on mutex1 (and acquires it)
B executes lock operation on mutex2(and acquires it)
A/B both execute in critical sections 1 and 2, respectively
A executes lock operation on mutex2

A blocked until B unlocks mutex2
B executes lock operation on mutex1

B blocked until A unlocks mutex1
DEADLOCK!

S FIU

FLORIDA INTERNATIONAL UNIVERSITY

: mutex mutexl, mutex2;
: void processA() {

while(1) {

}

3 I

: void processB() {

mutexl.lock ()

/* critical section
mutex2.lock () ;

/* critical section
mutex2.unlock () ;

/* critical section
mutexl.unlock() ;

while(1) {

mutex2.lock () ;

/* critical section
mutexl.lock();

/* critical section
mutexl.unlock () ;

/* critical section
mutex2.unlock () ;

18
29

i 74

20 ¥/
i 7

2 W/

MESSAGE PASSING

Message passing
Data explicitly sent from one process to

another (msgsnd, msgget, msgrcyv, etc)

Sending process performs special operation,
send

Receiving process must perform special
operation, receive, to receive the data

Both operations must explicitly specify which
process it is sending to or receiving from

Receive is blocking, sending may or may not be
blocking

Safer model, overhead can be high
Two modes:

blocking: sending process waits for response;
non-blocking: sending process continues.

FLORIDA INTERNATIONAL UNIVERSITY

void processA() {
while(1) {
produce (&data)
send (B, &data);
/* region 1 */
receive (B, &data);
consume (&data) ;
}
}

void processB() {
while(1) {
receive (A, &data);
transform(&data)
send (A, &data);
/* region 2 */
}
}

MULTIPLE PROCESS

Real-time operating system (RTOS)

REAL-TIME OPERATING SYSTEMS

What

Operating system with bounded response time

Provide mechanisms, primitives, and guidelines for
building real-
time embedded systems

Real-Time

Operating systems

REAL-TIME SYSTEMS

Not systems run very fast

The real-time system is the system that its
timeliness is as important as the logic
correctness of the result

Two basic categories

Hard real-time _
Deadline misses imply the failure of system

Soft real-time _ _
eadlines can be occasionally missed
Irm real-time system
Deadline miss is of no use at all
Non-firm real-time system
Task execution is still valuable with deadline miss albeit with

reduced performance

OPERATING SYSTEMS

A software that manages system resources and
sSupports user Interface to access these resources
System resources
CPU times
Memory usage
File handlers
Networking

Input/output devices
etc

Examples
Unix, Linux, Microsoft Windows, Mac OS, etc

CHARACTERISTICS OF RTOS

Deterministic/Predicability

To deliver service in deterministic or predicable time

Non-deterministic makes embedded system to randomly miss
deadlines, which is not acceptable in real-time systems

Scheduling/memory allocation/inter task
communication

Usually small in size

Small kernel with optional resource managers

REAL-TIME OPERATING SYSTEMS (RTOS)

Windows CE
Built specifically for embedded systems and appliance market
Scalable real-time 32-bit platform
Supports Windows API
Perfect for systems designed to interface with Internet
Preemptive priority scheduling with 256 priority levels per process
Kernel is 400 Kbytes

QNX

Real-time microkernel surrounded by optional processes (resource managers) that provide
POSIX and UNIX compatibility
Microkernels typically support only the most basic services

Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor
systems connected by various networking and communication technologies

Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling
32 priority levels per process
Microkernel < 10 Kbytes and complies with POSIX real-time standard

S U M M A RY FLORIDA INTERNATIONAL UNIVERSITY

Process/thread, reentrancy
Process/thread creation
Multitasking context switching
Co-operative multitasking
Preemptive multitasking
Co-routine
Scheduling
Cyclic scheduling
Round robin

Priority-based preemptive schedulin
RK/IA/EDF y 7 g

Interprocess communication
Shared memory/message passing
Mutex/semaphore
Priority inversion/deadlock

Real-time and Real-time Operating System (RTOS)

