
PROCESSES AND OPERATING

SYSTEMS

PROCESSES

 A process is a unique execution of a program.

 Several copies of a program may run

simultaneously or at different times.

 A process has its own state:

Registers;

Memory;

Open files, etc.

 The operating system manages processes.

TERMS

 Thread = lightweight process
 The entity within a process that can share many system

resources with others.
 Address space, executable code, global variables, etc.

 How about stack ?

 Each process has at least one thread, i.e., primary
thread

 Faster context switching among threads than processes

 Reentrancy
 a single copy of the program's instructions in memory

can be safely shared by multiple, separate users, object
classes, or processes

EXAMPLE OF NON-REENTRANCY

int var = 1;

int f() {

var = var + 2;

return var; }

int g()

{

return f() + 2;

}

EXAMPLE OF REENTRANCY

int f(int var) {

var = var + 2;

return var; }

int g(int var)

{

return f(var) + 2;

}

MULTIPLE TASKING

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

CREATE PROCESSES IN POSIX

• Create a process

with fork:

– Exact copy for

parent and child

except for the return

value of fork().

process a

process a process b

FORK()

 The fork process creates child:

childid = fork();

if (childid == 0) {

 /* child operations */

} else {

 /* parent operations */

}

EXECV()

 Overlays child code:
childid = fork();

if (childid == 0) {

 execv(“mychild”,childargs);

 perror(“execv”);

 exit(1);

}

file with child code

MULTIPLE TASKING

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

CONTEXT SWITCHING

 How

 Copy all context (registers), keeping proper return

value for PC.

 Copy new context into CPU state.

 Who in control of context switching

CONTEXT SWITCHING IN ARM

• Save old process:

STMIA r13,{r0-r13}^

MRS r0,SPSR

STMDB r13,{r0, r15}

; r14: contains the next
instruction after return from
sub-procedure

; r15: program counter (pc)

• Start new process:
ADR r0,NEXTPROC

LDR r13,[r0]

LDMDB r13,{r0, r14}

MSR SPSR,r0

LDMIA r13,{r0-r13}^

MOV pc, r14

David Jaggar, e.d., Advanced RISC Machines Architectural

Reference Manual, London: Prentice Hall, 1995.

CONTEXT SWITCHING

 How

 Copy all context (registers), keeping proper return

value for PC.

 Copy new context into CPU state.

 Who is in control of context switching

 Co-operative multitasking

 Preemptive multitasking

 Co-routine

CO-OPERATIVE MULTITASKING

 What

One process gives up the CPU to another voluntarily

 Each process allows a context switch at cswitch()

call.

 Separate scheduler chooses which process runs

next.

COOPERATIVELY MULTITASKING EXAMPLE

If(x>2)

 sub1(y);

else

 sub2(y);

cswitch();

….

Proc_data(r,s);

cswitch();

if (val = 3)

 foo1(r);

foo2(s);

….

Process 1 Process 2

Save_state(current);

p=choose_next();

Load_state(p);

Scheduler

CO-OPERATIVE MULTITASKING

 Hides context switching mechanism;

 Relies on processes to give up CPU.

 Programming errors can keep other processes

out:

 process never gives up CPU;

 process waits too long to switch, missing input.

PREEMPTIVE MULTITASKING

 OS controls when contexts switches and

determines what process runs next.

 Interrupts (by timer, external events) cause

OS to switch contexts:

CPU

ti
m

er

interrupt

FLOW OF CONTROL WITH PREEMPTION

time

P1 OS P1 OS P2

interrupt interrupt

PREEMPTIVE CONTEXT SWITCHING

 Interrupt gives control to OS, which saves

interrupted process’s state in an activation

record.

 OS chooses next process to run.

 OS installs desired context as current CPU

state.

CO-ROUTINE FOR MULTIPLE TASKING

• Rooted in assembly programming

• Rarely used today

• Generalize subroutines to allow multiple entry points
and suspending and resuming of execution at certain
locations

• An example

CO-ROUTINES

 ADR r14,co2a

co1a …

 ADR r13,co1b

 MOV r15,r14

co1b …

 ADR r13,co1c

 MOV r15,r14

co1c ...

co2a …

 ADR r14,co2b

 MOV r15,r13

co2b …

 ADR r14,co2c

 MOV r15,r13

co2c …

Co-routine 1 Co-routine 2

r15: the program counter register

MULTITASKING WITH CO-ROUTINE

 Like subroutine, but caller determines the

return address.

 Co-routines voluntarily give up control to other

co-routines.

 Pattern of control transfers is embedded in the

code.

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

PROCESS STATE

• A process can be in

one of three states:

– executing on the

CPU;

– ready to run;

– waiting for data.

executing

ready waiting

gets data

and CPU

needs

data

gets data

needs data

preempted
gets

CPU

SCHEDULING

 The CPU is often shared among several processes.

 Cost.

 Energy/power.

 Physical constraints.

 Someone must be responsible for giving the CPU to processes.

 Co-operation between processes.

 RTOS.

EMBEDDED VS. GENERAL-PURPOSE

SCHEDULING

 Workstations try to improve the throughput and

fairness CPU access.

 Embedded systems must meet deadlines and

other constraints.

 Low-priority processes may not run for a long time.

TIMING REQUIREMENTS ON PROCESSES

 Period: interval between process activations.

 Rate: reciprocal of period.

 Initiation time: time at which process becomes

ready.

 Deadline: time at which process must finish.

 Execution time: execution time without

preemption

SCHEDULING METRICS

 CPU utilization:

 Fraction of the CPU that is doing useful work.

Often calculated assuming no scheduling overhead.

 Utilization:

U = [S t1 ≤ t ≤ t2 T(t)] / [t2 – t1]

 T(t): useful execution time.

 Response time

 Time from when the task is ready to the task being
finished

SCHEDULING METHODS

 Cyclic scheduling

 Round robin scheduling

 Preemptive scheduling

CYCLIC SCHEDULING

 Schedule task according pre-
determined schedule

 Schedule in time slots.
 Same process activation irrespective

of workload.

 Time slots may be equal size or
unequal.

T1 T2 T3

P

T1 T2 T3

P

THE ASSUMPTIONS

 Trivial scheduler ->
very small
scheduling
overhead.

 Can’t handle
unexpected loads.
 Must schedule a

time slot for
aperiodic events.

 Schedule based on
the hyperperiod of
the process periods.

P1 P1 P1

P2 P2

PLCM

HYPERPERIOD

 Hyperperiod: least common multiple (LCM) of

the task periods.

 Hyperperiod can be very long if task periods are

not chosen carefully.

 Larger scheduling table

More scheduling overhead

HYPERPERIOD EXAMPLE

 Long hyperperiod:

 P1 7 ms.

 P2 11 ms.

 P3 15 ms.

 LCM = 1155 ms.

 Shorter hyperperiod:

 P1 8 ms.

 P2 12 ms.

 P3 16 ms.

 LCM = 96 ms.

ROUND-ROBIN

 Schedule process only if ready.
 Always test processes in the same order.

 Variations:
 Constant/weighted time slots
 Start round-robin again after finishing a round.

 Better adaptivity
 Can be adapted to handle unexpected load.

T1 T2 T3

P

T2 T3

P

PRIORITY-DRIVEN SCHEDULING

 Each process has a priority.

 CPU runs the highest-priority process that is

ready.

 Priorities determine scheduling policy:

 fixed priority;

 time-varying priorities.

PRIORITY-DRIVEN SCHEDULING EXAMPLE

 Rules:

 each process has a fixed priority (1 highest);

 highest-priority ready process gets CPU;

 process continues until done.

 Processes

 P1: priority 1, execution time 10

 P2: priority 2, execution time 30

 P3: priority 3, execution time 20

PRIORITY-DRIVEN SCHEDULING

EXAMPLE

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 30 10 20 60 40 50

P2 P2 P1 P3

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

 Rate Monotonic Scheduling (RMS)

 Shortest-period process gets highest priority, i.e.
priority inversely proportional to period;

Higher the rate (smaller the period), higher the priority

 Schedulability analysis

 Earliest Deadline First (EDF)

 Process closest to its (absolute) deadline has
highest priority.

 Schedulability analysis

RMS EXAMPLE

P1=D1=4 C1=1

P2=D2=6 C2=2

P3=D3=11 D3=4

4 8 12

6 12

11

RMS SCHEDULABILITY ANALYSIS

 Can all tasks meet their deadlines?

 A simple RMS model

 All processes are periodic (with period Pi) and run on a single CPU.

 Process execution time (Ci) is constant (worst case).

 Deadline is at end of period (Di=Pi).

 Zero context switch time.

 Utilization bound analysis

 Worst Case Response Time Analysis

 If the longest response time is less than the deadline, it is schedulable

 When a task will have the longest response time

 Critical instant: scheduling state that gives worst response time.

 Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

UTILIZATION BOUND

 Utilization factor

 Theorem: For a set of m tasks with fixed priority order, the least upper bound to

processor utilization is

 In another word, for a given task set, if the utilization factor is no more than the

corresponding bound, then the task set is schedulable, i.e., all tasks can meet their

deadlines.

 E.g. m=2, Ub=0.83; m= 3, Ub=0.78; for large m, Ubln2=0.69

=
i i

i

P

C
U

)12(
1

= m
b mU

UTILIZATION BOUND (CONT’D)

 A sufficient condition

 Many feasible task can have higher utilization

 Many feasible fixed-priority task sets cannot 100% utilize the processor

RMS SCHEDULABILITY ANALYSIS

 Can all tasks meet their deadlines?

 A simple RMA model

 All processes are periodic (with period Pi) and run on a single CPU.

 Process execution time (Ci) is constant (worst case).

 Deadline is at end of period (Di=Pi).

 Zero context switch time.

 Utilization bound analysis

 Worst Case Response Time Analysis

 If the longest response time is less than the deadline, it is schedulable

 When a task has the longest response time

 Critical instant: scheduling state that gives worst response time.

 Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

CRITICAL INSTANT

P4

P3

P2

P1

critical

instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

WORST CASE RESPONSE TIME ANALYSIS

 Mathematic formulation of the worst case
response time for each task is possible
 For more details, see the following reference

 Lehoczky, J.; Sha, L.; Ding, Y. (1989), "The rate monotonic
scheduling algorithm: exact characterization and average case
behavior", IEEE Real-Time Systems Symposium, pp. 166–171

 Key points of RMS
 A fixed priority scheduling method
 The optimal (fixed) priority assignment

 If a task set is schedulable with any other fixed priority
assignment, it is schedulable with RMS.

 The worst case response time of a task occurs when it
starts at the same time when all higher priority tasks
start

EXAMPLES

• Example 1: A task set contains three tasks. Let
– P1=D1=100, P2=D2=150, P3=D3=300

– C1=40, C2=40, C3=20

– Since U = 40/100 + 40/150 + 20/300 = 0.733 < 3 (2 1/3 – 1) = 0.78

– The task set is schedulable

• Example 2: A task set contains two tasks. Let
– P1=D1=100, P2=D2=200

– C1=50, C2=100

– U = 50/100 + 100/200 = 1.0 > 2 (2 1/2 – 1) = 0.83

• Cannot be sure if the task set is schedulable or not

– It is in fact schedulable according to the worst case response time analysis
• Since there is no task with higher priority, its longest response time is 50 <= D1

• The longest response time for task 2 is the response time of its first job (the critical
instant since all tasks start at the same time t=0). Its response time is (if you draw
the timing diagram) 200 <= D2.

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

 Rate Monotonic Scheduling (RMS)

 Shortest-period process gets highest priority, i.e.

priority inversely proportional to period;

 Schedulability analysis

 Earliest Deadline First (EDF)

 Process closest to its (absolute) deadline has

highest priority.

 Schedulability analysis

EDF EXAMPLE

P1=D1=4 C1=1

P2=D2=6 C2=2

P3=D3=11 D3=4

4 8 12

6 12

11

EARLIEST-DEADLINE-FIRST

SCHEDULING

• EDF
– dynamic priority scheduling scheme.

– Requires recalculating processes at every timer
interrupt.

• Schedulability analysis
– Theorem: A given task set is feasible by EDF if

and only if the total utilization factor U <=1, i.e.

– Can fully utilize the processor

1=
i i

i

P

C
U

EXAMPLE

T1=D1=4 C1=1

T2=D2=7 C2=3

T3=D3=13 C3=3

4 8 12

7 14

13

Since U= 1/4 + 3/7 + 3/13 = 0.91 < 1,

therefore, the above task set is schedulable.

PRIORITY INVERSION

 Priority inversion: low-priority process keeps high-
priority process from running.

 Improper use of system resources can cause
scheduling problems:

 Low-priority process grabs I/O device.

 High-priority device needs I/O device, but can’t get it
until low-priority process is done.

 Can cause deadlock.

 Deadlock: two or more processes are waiting for each
other to finish but neither can do.

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

INTERPROCESS COMMUNICATION

 Interprocess communication (IPC): OS provides
mechanisms so that processes can pass data.

 Two schemes

 Shared memory:

processes have some memory in common;

must cooperate to avoid destroying/missing messages.

Message passing:
processes send messages along a communication

channel, i.e. message queue

no common address space.

RACE CONDITION IN SHARED MEMORY

 Race condition

Output dependent on the sequence of events

 Example

Event 1: CPU 1 reads flag.

Event 2: CPU 2 reads flag.

Event 3: CPU 1 sets flag to one.

Event 4: CPU 2 sets flag to two.

 The producer/consumer problem

EXAMPLE: PRODUCER/CONSUMER

 Share buffer[N], count

 count = # of valid data items in buffer

 processA produces data items and stores in buffer

 If buffer is full, must wait

 processB consumes data items from buffer

 If buffer is empty, must wait

 Error when both processes try to update count
concurrently (lines 10 and 19) and the following execution
sequence occurs. Say “count” is 3.

 A loads count (count = 3) from memory into register R1 (R1
= 3)

 A increments R1 (R1 = 4)

 B loads count (count = 3) from memory into register R2 (R2
= 3)

 B decrements R2 (R2 = 2)

 A stores R1 back to count in memory (count = 4)

 B stores R2 back to count in memory (count = 2)

 count now has incorrect value of 2

01: data_type buffer[N];

02: int count = 0;

03: void processA() {

04: int i;

05: while(1) {

06: produce(&data);

07: while(count == N);/*loop*/

08: buffer[i] = data;

09: i = (i + 1) % N;

10: count = count + 1;

11: }

12: }

13: void processB() {

14: int i;

15: while(1) {

16: while(count == 0);/*loop*/

17: data = buffer[i];

18: i = (i + 1) % N;

19: count = count - 1;

20: consume(&data);

21: }

22: }

23: void main() {

24: create_process(processA);

25: create_process(processB);

26: }

MUTUAL EXCLUSION

 Certain sections of code should not be performed concurrently
 Critical section

 Possibly noncontiguous section of code where simultaneous updates, by
multiple processes to a shared memory location, can occur

 When a process enters the critical section, other processes must be
locked out until it leaves the critical section
 Mutex

 A shared object used for locking and unlocking segment of shared data

 Disallows read/write access to memory it guards

 Multiple processes can perform lock operation simultaneously, but only one
process will acquire lock

 All other processes trying to obtain lock will be put in blocked state until
unlock operation performed by acquiring process when it exits critical section

 These processes will then be placed in runnable state and will compete for
lock again

USING MUTEX FOR THE CONSUMER-

PRODUCER PROBLEM

 The primitive mutex is used to ensure critical sections are

executed in mutual exclusion of each other

 Following the same execution sequence as before:

 A/B execute lock operation on count_mutex

 Either A or B will acquire lock

 Say B acquires it

 A will be put in blocked state

 B loads count (count = 3) from memory into register R2 (R2 = 3)

 B decrements R2 (R2 = 2)

 B stores R2 back to count in memory (count = 2)

 B executes unlock operation

 A is placed in runnable state again

 A loads count (count = 2) from memory into register R1 (R1 = 2)

 A increments R1 (R1 = 3)

 A stores R1 back to count in memory (count = 3)

 Count now has correct value of 3

 Problems?

01: data_type buffer[N];

02: int count = 0;

03: mutex count_mutex;

04: void processA() {

05: int i;

06: while(1) {

07: produce(&data);

08: count_mutex.lock();

09: while(count == N);/*loop*/

10: buffer[i] = data;

11: i = (i + 1) % N;

12: count = count + 1;

13: count_mutex.unlock();

14: }

15: }

16: void processB() {

17: int i;

18: while(1) {

19: count_mutex.lock();

20: while(count == 0);/*loop*/

21: data = buffer[i];

22: i = (i + 1) % N;

23: count = count - 1;

24: count_mutex.unlock();

25: consume(&data);

26: }

27: }

28: void main() {

29: create_process(processA);

30: create_process(processB);

31: }

CONDITION VARIABLES

 Condition variable is an object that has 2 operations, signal and wait

 When process performs a wait on a condition variable, the process is blocked

until another process performs a signal on the same condition variable

 How is this done?

 Process A acquires lock on a mutex

 Process A performs wait, passing this mutex

 Causes mutex to be unlocked

 Process B can now acquire lock on same mutex

 Process B enters critical section

 Computes some value and/or make condition true

 Process B performs signal when condition true

 Causes process A to implicitly reacquire mutex lock

 Process A becomes runnable

CONDITION VARIABLE EXAMPLE:

CONSUMER-PRODUCER
 2 condition variables

 buffer_empty

 Signals at least 1 free location available in buffer

 buffer_full

 Signals at least 1 valid data item in buffer

 processA:

 produces data item

 acquires lock (cs_mutex) for critical section

 checks value of count

 if count = N, buffer is full

 performs wait operation on buffer_empty

 this releases the lock on cs_mutex allowing processB to

enter critical section, consume data item and free location

in buffer

 processB then performs signal

 if count < N, buffer is not full

 processA inserts data into buffer

 increments count

 signals processB making it runnable if it has performed a

wait operation on buffer_full

01: data_type buffer[N];

02: int count = 0;

03: mutex cs_mutex;

04: condition buffer_empty, buffer_full;

06: void processA() {

07: int i;

08: while(1) {

09: produce(&data);

10: cs_mutex.lock();

11: if(count == N) buffer_empty.wait(cs_mutex);

13: buffer[i] = data;

14: i = (i + 1) % N;

15: count = count + 1;

16: cs_mutex.unlock();

17: buffer_full.signal();

18: }

19: }

20: void processB() {

21: int i;

22: while(1) {

23: cs_mutex.lock();

24: if(count == 0) buffer_full.wait(cs_mutex);

26: data = buffer[i];

27: i = (i + 1) % N;

28: count = count - 1;

29: cs_mutex.unlock();

30: buffer_empty.signal();

31: consume(&data);

32: }

33: }

34: void main() {

35: create_process(processA); create_process(processB);

37: }

Consumer-producer using condition variables

SEMAPHORE VS MUTEX

 Mutex
 Lock/unlock operation

 At any time, only one process can enter the critical section
 A bathroom with one stall

 Semaphore
 A semaphore has a non-negative integer value (S >=0)

 Wait/post operation (atomic operation, i.e. only one operation can be
executed at one time)
 Wait (DOWN)

 Decrease semaphore value by 1. If S = 0, blocks.
 Post (UP)

 Increase semaphore value by 1.

 Multiple processes can enter a critical section concurrently
 A bathroom with multiple stalls

 Mutex is a binary semaphore (max S = 1)

USING SEMAPHORES FOR

CONSUMER-PRODUCER PROBLEM
 Mutex is similar to a binary semaphore
 processA:

 produces data item
 If the buffer is not full (empty > 0) and is

allowed to access the critical section
(cs_sem>0)

 Increments count
 exit critical section
 Signal processes waiting on due to the

empty buffer

 processB:
 If the buffer is not empty (occupied > 0)

and is allowed to access the critical
section (cs_sem>0)

 decrements count
 exit critical section
 Signal processes waiting on due to the

full buffer
 consumes data item

01: data_type buffer[N];

02: int count = 0;

03: sem_t occupied, empty, cs_sem;

04: void processA() {

05: int i = 0;

06: while(1) {

07: produce(&data);

08: sem_wait (&empty); //decrease empty

09: sem_wait (&cs_sem); //decrease cs_sem

10: buffer[i] = data;

11: i = (i + 1) % N;

12: count = count + 1;

13: sem_post (&cs_sem); //increase cs_sem

14: sem_post (&occupied); //increase occupied

15: }

16: }

17: void processB() {

18: int i = 0;

19: while(1) {

20: sem_wait(&occupied); //decrease occupied

21: sem-wait(&cs_sem); //decrease cs_sem

22: data = buffer[i];

23: i = (i + 1) % N;

24: count = count - 1;

25: sem_post(&cs_sem); // increase cs_sem

26: sem_post(&empty); // increase empty

27: consume(&data);

28: }

29: }

30: void main() {

31: sem_init(&occupied, 0, 0);

32: sem_init(&empty,0, N);

33: sem_init(&cs_sem, 0, 1);

34: create_process(processA); create_process(processB);

35: }

Consumer-producer using condition variables

A COMMON PROBLEM IN CONCURRENT

PROGRAMMING: DEADLOCK
 Deadlock: A condition where 2 or more processes are

blocked waiting for the other to unlock critical sections of

code

 Both processes are then in blocked state

 Cannot execute unlock operation so will wait forever

 Example code has 2 different critical sections of code

that can be accessed simultaneously

 2 locks needed (mutex1, mutex2)

 Following execution sequence produces deadlock

 A executes lock operation on mutex1 (and acquires it)

 B executes lock operation on mutex2(and acquires it)

 A/B both execute in critical sections 1 and 2, respectively

 A executes lock operation on mutex2

 A blocked until B unlocks mutex2

 B executes lock operation on mutex1

 B blocked until A unlocks mutex1

 DEADLOCK!

01: mutex mutex1, mutex2;

02: void processA() {

03: while(1) {

04: …

05: mutex1.lock();

06: /* critical section 1 */

07: mutex2.lock();

08: /* critical section 2 */

09: mutex2.unlock();

10: /* critical section 1 */

11: mutex1.unlock();

12: }

13: }

14: void processB() {

15: while(1) {

16: …

17: mutex2.lock();

18: /* critical section 2 */

19: mutex1.lock();

20: /* critical section 1 */

21: mutex1.unlock();

22: /* critical section 2 */

23: mutex2.unlock();

24: }

25: }

MESSAGE PASSING

 Message passing

 Data explicitly sent from one process to

another (msgsnd, msgget, msgrcv, etc)
 Sending process performs special operation,

send

 Receiving process must perform special
operation, receive, to receive the data

 Both operations must explicitly specify which
process it is sending to or receiving from

 Receive is blocking, sending may or may not be
blocking

 Safer model, overhead can be high

 Two modes:

 blocking: sending process waits for response;

 non-blocking: sending process continues.

void processA() {

 while(1) {

 produce(&data)

 send(B, &data);

 /* region 1 */

 receive(B, &data);

 consume(&data);

 }

}

void processB() {

 while(1) {

 receive(A, &data);

 transform(&data)

 send(A, &data);

 /* region 2 */

 }

}

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

REAL-TIME OPERATING SYSTEMS

 What

Operating system with bounded response time

Provide mechanisms, primitives, and guidelines for

building real-

time embedded systems

 Real-Time

 Operating systems

REAL-TIME SYSTEMS

 Not systems run very fast
 The real-time system is the system that its

timeliness is as important as the logic
correctness of the result

 Two basic categories
 Hard real-time

 Deadline misses imply the failure of system

 Soft real-time
 Deadlines can be occasionally missed
 Firm real-time system

 Deadline miss is of no use at all
Non-firm real-time system

 Task execution is still valuable with deadline miss albeit with
reduced performance

OPERATING SYSTEMS

 A software that manages system resources and
supports user interface to access these resources
 System resources

 CPU times

Memory usage

 File handlers

Networking

 Input/output devices

 etc

 Examples
 Unix, Linux, Microsoft Windows, Mac OS, etc

CHARACTERISTICS OF RTOS

 Deterministic/Predicability

 To deliver service in deterministic or predicable time

Non-deterministic makes embedded system to randomly miss

deadlines, which is not acceptable in real-time systems

 Scheduling/memory allocation/inter task

communication

 Usually small in size

 Small kernel with optional resource managers

REAL-TIME OPERATING SYSTEMS (RTOS)

 Windows CE

 Built specifically for embedded systems and appliance market

 Scalable real-time 32-bit platform

 Supports Windows API

 Perfect for systems designed to interface with Internet

 Preemptive priority scheduling with 256 priority levels per process

 Kernel is 400 Kbytes

 QNX

 Real-time microkernel surrounded by optional processes (resource managers) that provide

POSIX and UNIX compatibility

 Microkernels typically support only the most basic services

 Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor

systems connected by various networking and communication technologies

 Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling

 32 priority levels per process

 Microkernel < 10 Kbytes and complies with POSIX real-time standard

SUMMARY

 Process/thread, reentrancy
 Process/thread creation
 Multitasking context switching

 Co-operative multitasking
 Preemptive multitasking
 Co-routine

 Scheduling
 Cyclic scheduling
 Round robin
 Priority-based preemptive scheduling

 RMA/EDF

 Interprocess communication
 Shared memory/message passing
 Mutex/semaphore
 Priority inversion/deadlock

 Real-time and Real-time Operating System (RTOS)

