
PROCESSES AND OPERATING 

SYSTEMS 



PROCESSES 

 A process is a unique execution of a program. 

 Several copies of a program may run 

simultaneously or at different times. 

 A process has its own state: 

Registers; 

Memory; 

Open files, etc. 

 The operating system manages processes. 



TERMS 

 Thread = lightweight process 
 The entity within a process that can share many system 

resources with others. 
 Address space, executable code, global variables, etc. 

 How about stack ? 

 Each process has at least one thread, i.e., primary 
thread 

 Faster context switching among threads than processes 

 Reentrancy  
 a single copy of the program's instructions in memory 

can be safely shared by multiple, separate users, object 
classes, or processes 



EXAMPLE OF NON-REENTRANCY 

int var = 1;  

 

int f( ) {  

var = var + 2;  

return var; }  

 

int g( )  

{  

return f() + 2;  

}  



EXAMPLE OF REENTRANCY 

int f(int var) {  

var = var + 2;  

return var; }  

 

int g(int var)  

{  

return f(var) + 2;  

}  



MULTIPLE TASKING 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



CREATE PROCESSES IN POSIX 

• Create a process 

with fork: 

– Exact copy for 

parent and child 

except for the return 

value of fork().  

process a 

process a process b 

 



FORK() 

 The fork process creates child: 

 
childid = fork(); 

if (childid == 0) { 

 /* child operations */ 

} else { 

 /* parent operations */ 

} 



EXECV() 

 Overlays child code: 
childid = fork(); 

if (childid == 0) { 

 execv(“mychild”,childargs); 

 perror(“execv”); 

 exit(1); 

} 

file with child code 



MULTIPLE TASKING 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



CONTEXT SWITCHING 

 How 

 Copy all context (registers), keeping proper return 

value for PC. 

 Copy new context into CPU state. 

 Who in control of context switching 



CONTEXT SWITCHING IN ARM 

• Save old process: 

 
STMIA    r13,{r0-r13}^ 

MRS       r0,SPSR 

STMDB  r13,{r0, r15} 

 

; r14: contains the next 
instruction after return from 
sub-procedure 

; r15: program counter (pc) 

 

• Start new process: 
ADR        r0,NEXTPROC 

LDR        r13,[r0] 

LDMDB r13,{r0, r14} 

MSR      SPSR,r0 

LDMIA  r13,{r0-r13}^ 

MOV   pc, r14 
 

 

 

David Jaggar, e.d., Advanced RISC Machines Architectural  

Reference Manual, London: Prentice Hall, 1995. 



CONTEXT SWITCHING 

 How 

 Copy all context (registers), keeping proper return 

value for PC. 

 Copy new context into CPU state. 

 Who is in control of context switching 

 Co-operative multitasking  

 Preemptive multitasking 

 Co-routine  

 



CO-OPERATIVE MULTITASKING 

 What 

One process gives up the CPU to another voluntarily 

 Each process allows a context switch at cswitch() 

call. 

 Separate scheduler chooses which process runs 

next. 



COOPERATIVELY MULTITASKING EXAMPLE 

If(x>2)  

  sub1(y); 

else 

  sub2(y); 

cswitch(); 

…. 

Proc_data(r,s);  

cswitch(); 

if (val = 3)   

  foo1(r); 

foo2(s); 

…. 

Process 1 Process 2 

Save_state(current);  

p=choose_next(); 

Load_state(p); 

Scheduler 



CO-OPERATIVE MULTITASKING 

 Hides context switching mechanism; 

 Relies on processes to give up CPU.  

 Programming errors can keep other processes 

out: 

 process never gives up CPU; 

 process waits too long to switch, missing input. 



PREEMPTIVE MULTITASKING 

 OS controls when contexts switches and 

determines what process runs next. 

 Interrupts (by timer, external events) cause 

OS to switch contexts: 

CPU 

ti
m

er
 

interrupt 



FLOW OF CONTROL WITH PREEMPTION 

time 

P1 OS P1 OS P2 

interrupt interrupt 



PREEMPTIVE CONTEXT SWITCHING 

 Interrupt gives control to OS, which saves 

interrupted process’s state in an activation 

record. 

 OS chooses next process to run. 

 OS installs desired context as current CPU 

state.  



CO-ROUTINE FOR MULTIPLE TASKING 

• Rooted in assembly programming 

• Rarely used today 

• Generalize subroutines to allow multiple entry points 
and suspending and resuming of execution at certain 
locations 

• An example  

 



CO-ROUTINES 

 ADR r14,co2a 

co1a … 

 ADR r13,co1b 

 MOV r15,r14 

co1b … 

 ADR r13,co1c 

 MOV r15,r14 

co1c ... 

co2a … 

 ADR r14,co2b 

 MOV r15,r13 

co2b … 

 ADR r14,co2c 

 MOV r15,r13 

co2c … 

 

Co-routine 1 Co-routine 2 

r15: the program counter register 



MULTITASKING WITH CO-ROUTINE 

 Like subroutine, but caller determines the 

return address. 

 Co-routines voluntarily give up control to other 

co-routines. 

 Pattern of control transfers is embedded in the 

code. 



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



PROCESS STATE 

• A process can be in 

one of three states: 

– executing on the 

CPU; 

– ready to run; 

– waiting for data. 

executing 

ready waiting 

gets data 

and CPU 

needs 

data 

gets data 

needs data 

preempted 
gets 

CPU 

 



SCHEDULING 

 The CPU is often shared among several processes. 

 Cost. 

 Energy/power. 

 Physical constraints. 

 Someone must be responsible for giving the CPU to processes. 

 Co-operation between processes. 

 RTOS. 



EMBEDDED VS. GENERAL-PURPOSE 

SCHEDULING 

 Workstations try to improve the throughput and 

fairness CPU access. 

 

 Embedded systems must meet deadlines and 

other constraints. 

 Low-priority processes may not run for a long time. 



TIMING REQUIREMENTS ON PROCESSES 

 Period: interval between process activations. 

 Rate: reciprocal of period. 

 Initiation time: time at which process becomes 

ready. 

 Deadline: time at which process must finish. 

 Execution time: execution time without 

preemption 



SCHEDULING METRICS 

 CPU utilization: 

 Fraction of the CPU that is doing useful work. 

Often calculated assuming no scheduling overhead. 

 Utilization: 

U = [ S t1 ≤ t ≤ t2 T(t) ] / [t2 – t1] 
 

 T(t): useful execution time.  

 Response time 

 Time from when the task is ready to the task being 
finished 

 



SCHEDULING METHODS 

 Cyclic scheduling 

 Round robin scheduling 

 Preemptive scheduling 



CYCLIC SCHEDULING 

 Schedule task according pre-
determined schedule 

 Schedule in time slots. 
 Same process activation irrespective 

of workload. 

 Time slots may be equal size or 
unequal. 

T1 T2 T3 

P 

T1 T2 T3 

P 



THE ASSUMPTIONS 

 Trivial scheduler -> 
very small 
scheduling 
overhead.  

 Can’t handle 
unexpected loads. 
 Must schedule a 

time slot for 
aperiodic events. 

 Schedule based on 
the hyperperiod of 
the process periods. 

 

P1 P1 P1 

P2 P2 

PLCM 



HYPERPERIOD 

 Hyperperiod: least common multiple (LCM) of 

the task periods. 

 Hyperperiod can be very long if task periods are 

not chosen carefully. 

 Larger scheduling table 

More scheduling overhead 



HYPERPERIOD EXAMPLE 

 Long hyperperiod: 

 P1 7 ms. 

 P2 11 ms. 

 P3 15 ms. 

 LCM = 1155 ms. 

 Shorter hyperperiod: 

 P1 8 ms. 

 P2 12 ms. 

 P3 16 ms. 

 LCM = 96 ms. 



ROUND-ROBIN 

 Schedule process only if ready. 
 Always test processes in the same order. 

 Variations: 
 Constant/weighted time slots 
 Start round-robin again after finishing a round. 

 Better adaptivity 
 Can be adapted to handle unexpected load. 

T1 T2 T3 

P 

T2 T3 

P 



PRIORITY-DRIVEN SCHEDULING 

 Each process has a priority. 

 CPU runs the highest-priority process that is 

ready. 

 Priorities determine scheduling policy: 

 fixed priority; 

 time-varying priorities. 



PRIORITY-DRIVEN SCHEDULING EXAMPLE 

 Rules: 

 each process has a fixed priority (1 highest); 

 highest-priority ready process gets CPU; 

 process continues until done. 

 Processes 

 P1: priority 1, execution time 10 

 P2: priority 2, execution time 30 

 P3: priority 3, execution time 20 



PRIORITY-DRIVEN SCHEDULING 

EXAMPLE 

time 

P2 ready t=0 P1 ready t=15 

P3 ready t=18 

0 30 10 20 60 40 50 

P2 P2 P1 P3 



TWO PRIORITY-BASED PREEMPTIVE SCHEDULING 

 Rate Monotonic Scheduling (RMS) 

 Shortest-period process gets highest priority, i.e. 
priority inversely proportional to period; 

Higher the rate (smaller the period), higher the priority 

 Schedulability analysis 

 

 Earliest Deadline First (EDF) 

 Process closest to its (absolute) deadline has 
highest priority. 

 Schedulability analysis 

 

 



RMS EXAMPLE 

P1=D1=4 C1=1 

P2=D2=6 C2=2 

P3=D3=11 D3=4 

4 8 12 

6 12 

11 



RMS SCHEDULABILITY ANALYSIS 

 Can all tasks meet their deadlines? 

 A simple RMS model  

 All processes are periodic (with period Pi) and run on a single CPU. 

 Process execution time (Ci) is constant (worst case). 

 Deadline is at end of period (Di=Pi). 

 Zero context switch time. 

 Utilization bound analysis 

 

 Worst Case Response Time Analysis 

 If the longest response time is less than the deadline, it is schedulable 

 When a task will have the longest response time 

 Critical instant: scheduling state that gives worst response time. 

 Critical instant occurs when all higher-priority processes are 
ready to execute simultaneously. 



UTILIZATION BOUND 

 Utilization factor 

 

 

 Theorem: For a set of m tasks with fixed priority order, the least upper bound to 

processor utilization is 

 

 

 In another word, for a given task set, if the utilization factor is no more than the 

corresponding bound, then the task set is schedulable, i.e., all tasks can meet their 

deadlines.  

 E.g. m=2, Ub=0.83; m= 3, Ub=0.78; for large m, Ubln2=0.69 
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UTILIZATION BOUND (CONT’D) 

 A sufficient condition  

 Many feasible task can have higher utilization 

 

 Many feasible fixed-priority task sets cannot 100% utilize the processor 



RMS SCHEDULABILITY ANALYSIS 

 Can all tasks meet their deadlines? 

 A simple RMA model  

 All processes are periodic (with period Pi) and run on a single CPU. 

 Process execution time (Ci) is constant (worst case). 

 Deadline is at end of period (Di=Pi). 

 Zero context switch time. 

 Utilization bound analysis 

 

 Worst Case Response Time Analysis 

 If the longest response time is less than the deadline, it is schedulable 

 When a task has the longest response time 

 Critical instant: scheduling state that gives worst response time. 

 Critical instant occurs when all higher-priority processes are 
ready to execute simultaneously. 



CRITICAL INSTANT 

P4 

P3 

P2 

P1 

critical 

instant 

P1 P1 P1 P1 

P2 P2 

P3 

interfering processes 



WORST CASE RESPONSE TIME ANALYSIS 

 Mathematic formulation of the worst case 
response time for each task is possible  
 For more details, see the following reference 

 Lehoczky, J.; Sha, L.; Ding, Y. (1989), "The rate monotonic 
scheduling algorithm: exact characterization and average case 
behavior", IEEE Real-Time Systems Symposium, pp. 166–171  

 Key points of RMS 
 A fixed priority scheduling method 
 The optimal (fixed) priority assignment 

 If a task set is schedulable with any other fixed priority 
assignment, it is schedulable with RMS. 

 The worst case response time of a task occurs when it 
starts at the same time when all higher priority tasks 
start 



EXAMPLES 

• Example 1: A task set contains three tasks. Let 
– P1=D1=100, P2=D2=150, P3=D3=300 

– C1=40, C2=40, C3=20 

 
– Since U = 40/100 + 40/150 + 20/300 = 0.733 < 3 ( 2 1/3 – 1) = 0.78 

– The task set is schedulable 

 

• Example 2: A task set contains two tasks. Let 
– P1=D1=100, P2=D2=200 

– C1=50, C2=100 

 
– U = 50/100 + 100/200 = 1.0 > 2 ( 2 1/2 – 1) = 0.83 

• Cannot be sure if the task set is schedulable or not 

– It is in fact schedulable according to the worst case response time analysis 
• Since there is no task with higher priority, its longest response time is 50 <= D1 

• The longest response time for task 2 is the response time of its first job (the critical 
instant since all tasks start at the same time t=0). Its response time is (if you draw 
the timing diagram) 200 <= D2.  



TWO PRIORITY-BASED PREEMPTIVE SCHEDULING 

 Rate Monotonic Scheduling (RMS) 

 Shortest-period process gets highest priority, i.e. 

priority inversely proportional to period; 

 Schedulability analysis 

 

 Earliest Deadline First (EDF) 

 Process closest to its (absolute) deadline has 

highest priority. 

 Schedulability analysis 

 

 



EDF EXAMPLE 

P1=D1=4 C1=1 

P2=D2=6 C2=2 

P3=D3=11 D3=4 

4 8 12 

6 12 

11 



EARLIEST-DEADLINE-FIRST 

SCHEDULING 

• EDF 
– dynamic priority scheduling scheme. 

– Requires recalculating processes at every timer 
interrupt. 

 

• Schedulability analysis  
– Theorem: A given task set is feasible by EDF if 

and only if the total utilization factor U <=1, i.e. 

 

 

– Can fully utilize the processor 

 

1= 
i i

i
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EXAMPLE 

T1=D1=4 C1=1 

T2=D2=7 C2=3 

T3=D3=13 C3=3 

4 8 12 

7 14 

13 

Since U= 1/4 + 3/7 + 3/13 = 0.91 < 1, 

therefore, the above task set is schedulable. 



PRIORITY INVERSION 

 Priority inversion: low-priority process keeps high-
priority process from running. 

 Improper use of system resources can cause 
scheduling problems: 

 Low-priority process grabs I/O device. 

 High-priority device needs I/O device, but can’t get it 
until low-priority process is done. 

 Can cause deadlock. 

 Deadlock: two or more processes are waiting for each 
other to finish but neither can do.  



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



INTERPROCESS COMMUNICATION 

 Interprocess communication (IPC): OS provides 
mechanisms so that processes can pass data. 

 Two schemes 

 Shared memory: 

processes have some memory in common; 

must cooperate to avoid destroying/missing messages. 

Message passing: 
processes send messages along a communication 

channel, i.e. message queue 

no common address space. 



RACE CONDITION IN SHARED MEMORY 

 Race condition 

Output dependent on the sequence of events 

 Example  

Event 1:  CPU 1 reads flag. 

Event 2: CPU 2 reads flag. 

Event 3: CPU 1 sets flag to one. 

Event 4: CPU 2 sets flag to two. 

 

 The producer/consumer problem 



EXAMPLE: PRODUCER/CONSUMER 

 Share buffer[N], count 

 count = # of valid data items in buffer 

 processA produces data items and stores in buffer 

 If buffer is full, must wait 

 processB consumes data items from buffer 

 If buffer is empty, must wait 

 Error when both processes try to update count 
concurrently (lines 10 and 19) and the following execution 
sequence occurs. Say “count” is 3. 

 A loads count (count = 3) from memory into register R1 (R1 
= 3) 

 A increments R1 (R1 = 4) 

 B loads count (count = 3) from memory into register R2 (R2 
= 3) 

 B decrements R2 (R2 = 2) 

 A stores R1 back to count in memory (count = 4) 

 B stores R2 back to count in memory (count = 2) 

 count now has incorrect value of 2 

01: data_type buffer[N]; 

02: int count = 0; 

03: void processA() { 

04:   int i; 

05:   while( 1 ) { 

06:     produce(&data); 

07:     while( count == N );/*loop*/ 

08:     buffer[i] = data; 

09:     i = (i + 1) % N; 

10:     count = count + 1; 

11:   } 

12: } 

13: void processB() { 

14:   int i; 

15:   while( 1 ) { 

16:     while( count == 0 );/*loop*/ 

17:     data = buffer[i]; 

18:     i = (i + 1) % N; 

19:     count = count - 1; 

20:     consume(&data); 

21:   } 

22: } 

23: void main() { 

24:   create_process(processA);  

25:   create_process(processB); 

26: } 



MUTUAL EXCLUSION 

 Certain sections of code should not be performed concurrently 
 Critical section 

 Possibly noncontiguous section of code where simultaneous updates, by 
multiple processes to a shared memory location, can occur 

 When a process enters the critical section, other processes must be 
locked out until it leaves the critical section 
 Mutex  

 A shared object used for locking and unlocking segment of shared data 

 Disallows read/write access to memory it guards 

 Multiple processes can perform lock operation simultaneously, but only one 
process will acquire lock 

 All other processes trying to obtain lock will be put in blocked state until 
unlock operation performed by acquiring process when it exits critical section 

 These processes will then be placed in runnable state and will compete for 
lock again 



USING MUTEX FOR THE CONSUMER-

PRODUCER PROBLEM 

 The primitive mutex is used to ensure critical sections are 

executed in mutual exclusion of each other 

 Following the same execution sequence as before: 

 A/B execute lock operation on count_mutex 

 Either A or B will acquire lock 

 Say B acquires it 

 A will be put in blocked state 

 B loads count (count = 3) from memory into register R2 (R2 = 3) 

 B decrements R2 (R2 = 2) 

 B stores R2 back to count in memory (count = 2) 

 B executes unlock operation 

 A is placed in runnable state again 

 A loads count (count = 2) from memory into register R1 (R1 = 2) 

 A increments R1 (R1 = 3) 

 A stores R1 back to count in memory (count = 3) 

 Count now has correct value of 3 

 Problems? 

01: data_type buffer[N]; 

02: int count = 0; 

03: mutex count_mutex; 

04: void processA() { 

05:   int i; 

06:   while( 1 ) { 

07:     produce(&data); 

08:     count_mutex.lock(); 

09:     while( count == N );/*loop*/ 

10:     buffer[i] = data; 

11:     i = (i + 1) % N; 

12:     count = count + 1; 

13:     count_mutex.unlock(); 

14:   } 

15: } 

16: void processB() { 

17:   int i; 

18:   while( 1 ) { 

19:     count_mutex.lock(); 

20:     while( count == 0 );/*loop*/ 

21:     data = buffer[i]; 

22:     i = (i + 1) % N; 

23:     count = count - 1; 

24:     count_mutex.unlock(); 

25:     consume(&data); 

26:   } 

27: } 

28: void main() { 

29:   create_process(processA);  

30:   create_process(processB); 

31: } 



CONDITION VARIABLES 

 Condition variable is an object that has 2 operations, signal and wait 

 When process performs a wait on a condition variable, the process is blocked 

until another process performs a signal on the same condition variable 

 How is this done? 

 Process A acquires lock on a mutex 

 Process A performs wait, passing this mutex 

 Causes mutex to be unlocked 

 Process B can now acquire lock on same mutex 

 Process B enters critical section 

 Computes some value and/or make condition true 

 Process B performs signal when condition true 

 Causes process A to implicitly reacquire mutex lock 

 Process A becomes runnable 



CONDITION VARIABLE EXAMPLE: 

CONSUMER-PRODUCER 
 2 condition variables 

 buffer_empty 

 Signals at least 1 free location available in buffer 

 buffer_full 

 Signals at least 1 valid data item in buffer 

 processA:  

 produces data item 

 acquires lock (cs_mutex) for critical section 

 checks value of count 

 if count = N, buffer is full 

 performs wait operation on buffer_empty 

 this releases the lock on cs_mutex allowing processB to 

enter critical section, consume data item and free location 

in buffer 

 processB then performs signal 

 if count < N, buffer is not full 

 processA  inserts data into buffer  

 increments count 

 signals processB making it runnable if it has performed a 

wait operation on buffer_full 

01: data_type buffer[N]; 

02: int count = 0; 

03: mutex cs_mutex; 

04: condition buffer_empty, buffer_full; 

06: void processA() { 

07:   int i; 

08:   while( 1 ) { 

09:     produce(&data); 

10:     cs_mutex.lock(); 

11:     if( count == N ) buffer_empty.wait(cs_mutex); 

13:     buffer[i] = data; 

14:     i = (i + 1) % N; 

15:     count = count + 1; 

16:     cs_mutex.unlock(); 

17:     buffer_full.signal(); 

18:   } 

19: } 

20: void processB() { 

21:   int i; 

22:   while( 1 ) { 

23:     cs_mutex.lock(); 

24:     if( count == 0 ) buffer_full.wait(cs_mutex); 

26:     data = buffer[i]; 

27:     i = (i + 1) % N; 

28:     count = count - 1; 

29:     cs_mutex.unlock(); 

30:     buffer_empty.signal(); 

31:     consume(&data); 

32:   } 

33: } 

34: void main() { 

35:   create_process(processA); create_process(processB); 

37: } 

 

Consumer-producer using condition variables 



SEMAPHORE VS MUTEX 

 Mutex 
 Lock/unlock operation 

 At any time, only one process can enter the critical section 
 A bathroom with one stall 

 Semaphore 
 A semaphore has a non-negative integer value (S >=0) 

 Wait/post operation (atomic operation, i.e. only one operation can be 
executed at one time) 
 Wait (DOWN)  

 Decrease semaphore value by 1. If  S = 0, blocks. 
 Post (UP) 

 Increase semaphore value by 1. 

 

 Multiple processes can enter a critical section concurrently 
 A bathroom with multiple stalls 

 Mutex is a binary semaphore (max S = 1) 



USING SEMAPHORES FOR 

CONSUMER-PRODUCER PROBLEM 
 Mutex is similar to a binary semaphore 
 processA:  

 produces data item 
 If the buffer is not full (empty > 0)  and is 

allowed to access the critical section 
(cs_sem>0)  

 Increments count 
 exit critical section 
 Signal processes waiting on due to the 

empty buffer 

 processB:  
 If the buffer is not empty (occupied > 0)  

and is allowed to access the critical 
section (cs_sem>0)  

 decrements count 
 exit critical section 
 Signal processes waiting on due to the 

full buffer 
 consumes data item 

 

01: data_type buffer[N]; 

02: int count = 0;  

03: sem_t occupied, empty, cs_sem; 

04: void processA() { 

05:   int i = 0; 

06:   while( 1 ) { 

07:     produce(&data); 

08:     sem_wait (&empty); //decrease empty 

09:     sem_wait (&cs_sem); //decrease cs_sem 

10:     buffer[i] = data; 

11:     i = (i + 1) % N; 

12:     count = count + 1; 

13:     sem_post (&cs_sem); //increase cs_sem 

14:     sem_post (&occupied); //increase occupied 

15:   } 

16: } 

17: void processB() { 

18:   int i = 0; 

19:   while( 1 ) { 

20:     sem_wait(&occupied); //decrease occupied 

21:     sem-wait(&cs_sem);   //decrease cs_sem 

22:     data = buffer[i]; 

23:     i = (i + 1) % N; 

24:     count = count - 1; 

25:     sem_post(&cs_sem);  // increase cs_sem 

26:     sem_post(&empty);   // increase empty 

27:     consume(&data); 

28:   } 

29: } 

30: void main() { 

31: sem_init(&occupied, 0, 0); 

32: sem_init(&empty,0, N); 

33: sem_init(&cs_sem, 0, 1); 

34: create_process(processA); create_process(processB); 

35: } 

 

Consumer-producer using condition variables 



A COMMON PROBLEM IN CONCURRENT 

PROGRAMMING: DEADLOCK 
 Deadlock: A condition where 2 or more processes are 

blocked waiting for the other to unlock critical sections of 

code 

 Both processes are then in blocked state 

 Cannot execute unlock operation so will wait forever 

 Example code has 2 different critical sections of code 

that can be accessed simultaneously 

 2 locks needed (mutex1, mutex2) 

 Following execution sequence produces deadlock 

 A executes lock operation on mutex1 (and acquires it) 

 B executes lock operation on mutex2( and acquires it) 

 A/B both execute in critical sections 1 and 2, respectively 

 A executes lock operation on mutex2 

 A blocked until B unlocks mutex2 

 B executes lock operation on mutex1 

 B blocked until A unlocks mutex1 

 DEADLOCK! 

01: mutex mutex1, mutex2; 

02: void processA() { 

03:   while( 1 ) { 

04:     … 

05:     mutex1.lock(); 

06:     /* critical section 1 */ 

07:     mutex2.lock(); 

08:     /* critical section 2 */ 

09:     mutex2.unlock(); 

10:     /* critical section 1 */ 

11:     mutex1.unlock(); 

12:   } 

13: } 

14: void processB() { 

15:   while( 1 ) { 

16:     … 

17:     mutex2.lock(); 

18:     /* critical section 2 */ 

19:     mutex1.lock(); 

20:     /* critical section 1 */  

21:     mutex1.unlock(); 

22:     /* critical section 2 */ 

23:     mutex2.unlock(); 

24:   } 

25: } 

 



MESSAGE PASSING 

 Message passing 

 Data explicitly sent from one process to 

another (msgsnd, msgget, msgrcv, etc) 
 Sending process performs special operation, 

send 

 Receiving process must perform special 
operation, receive, to receive the data 

 Both operations must explicitly specify which 
process it is sending to or receiving from 

 Receive is blocking, sending may or may not be 
blocking 

 Safer model, overhead can be high 

 Two modes: 

 blocking: sending process waits for response; 

 non-blocking: sending process continues. 

void processA() { 

  while( 1 ) { 

    produce(&data) 

    send(B, &data); 

    /* region 1 */ 

    receive(B, &data); 

    consume(&data); 

  } 

} 

void processB() { 

  while( 1 ) { 

    receive(A, &data); 

    transform(&data) 

    send(A, &data); 

    /* region 2 */ 

  } 

} 



MULTIPLE PROCESS 

 Create a process 

 Context switching 

 Process State and Scheduling 

 Interprocess communication 

 Real-time operating system (RTOS) 



REAL-TIME OPERATING SYSTEMS 

 What 

Operating system with bounded response time 

Provide mechanisms, primitives, and guidelines for 

building real- 

time embedded systems  

 

 Real-Time 

 

 Operating systems 



REAL-TIME SYSTEMS 

 Not systems run very fast 
 The real-time system is the system that its 

timeliness is as important as the logic 
correctness of the result 

 Two basic categories 
 Hard real-time 

 Deadline misses imply the failure of system 
 

 Soft real-time  
 Deadlines can be occasionally missed 
 Firm real-time system 

 Deadline miss is of no use at all 
Non-firm real-time system 

 Task execution is still valuable with deadline miss albeit with 
reduced performance 



OPERATING SYSTEMS 

 A software that manages system resources and 
supports user interface to access these resources 
 System resources 

 CPU times 

Memory usage 

 File handlers 

Networking 

 Input/output devices 

 etc 

 

 Examples 
 Unix, Linux, Microsoft Windows, Mac OS, etc 

 



CHARACTERISTICS OF RTOS 

 Deterministic/Predicability 

 To deliver service in deterministic or predicable time 

Non-deterministic makes embedded system to randomly miss 

deadlines, which is not acceptable in real-time systems 

 Scheduling/memory allocation/inter task 

communication 

 

 Usually small in size 

 Small kernel with optional resource managers 



REAL-TIME OPERATING SYSTEMS (RTOS) 

 Windows CE 

 Built specifically for embedded systems and appliance market 

 Scalable real-time 32-bit platform 

 Supports Windows API 

 Perfect for systems designed to interface with Internet 

 Preemptive priority scheduling with 256 priority levels per process 

 Kernel is 400 Kbytes 

 QNX 

 Real-time microkernel surrounded by optional processes (resource managers) that provide 

POSIX and UNIX compatibility 

 Microkernels typically support only the most basic services 

 Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor 

systems connected by various networking and communication technologies 

 Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling 

 32 priority levels per process 

 Microkernel < 10 Kbytes and complies with POSIX real-time standard 



SUMMARY  

 Process/thread, reentrancy  
 Process/thread creation 
 Multitasking context switching 

 Co-operative multitasking 
 Preemptive multitasking 
 Co-routine 

 Scheduling 
 Cyclic scheduling 
 Round robin 
 Priority-based preemptive scheduling 

 RMA/EDF 

 Interprocess communication 
 Shared memory/message passing 
 Mutex/semaphore  
 Priority inversion/deadlock 

 Real-time and Real-time Operating System (RTOS) 
 


