
PROCESSES AND OPERATING

SYSTEMS

PROCESSES

 A process is a unique execution of a program.

 Several copies of a program may run

simultaneously or at different times.

 A process has its own state:

Registers;

Memory;

Open files, etc.

 The operating system manages processes.

TERMS

 Thread = lightweight process
 The entity within a process that can share many system

resources with others.
 Address space, executable code, global variables, etc.

 How about stack ?

 Each process has at least one thread, i.e., primary
thread

 Faster context switching among threads than processes

 Reentrancy
 a single copy of the program's instructions in memory

can be safely shared by multiple, separate users, object
classes, or processes

EXAMPLE OF NON-REENTRANCY

int var = 1;

int f() {

var = var + 2;

return var; }

int g()

{

return f() + 2;

}

EXAMPLE OF REENTRANCY

int f(int var) {

var = var + 2;

return var; }

int g(int var)

{

return f(var) + 2;

}

MULTIPLE TASKING

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

CREATE PROCESSES IN POSIX

• Create a process

with fork:

– Exact copy for

parent and child

except for the return

value of fork().

process a

process a process b

FORK()

 The fork process creates child:

childid = fork();

if (childid == 0) {

 /* child operations */

} else {

 /* parent operations */

}

EXECV()

 Overlays child code:
childid = fork();

if (childid == 0) {

 execv(“mychild”,childargs);

 perror(“execv”);

 exit(1);

}

file with child code

MULTIPLE TASKING

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

CONTEXT SWITCHING

 How

 Copy all context (registers), keeping proper return

value for PC.

 Copy new context into CPU state.

 Who in control of context switching

CONTEXT SWITCHING IN ARM

• Save old process:

STMIA r13,{r0-r13}^

MRS r0,SPSR

STMDB r13,{r0, r15}

; r14: contains the next
instruction after return from
sub-procedure

; r15: program counter (pc)

• Start new process:
ADR r0,NEXTPROC

LDR r13,[r0]

LDMDB r13,{r0, r14}

MSR SPSR,r0

LDMIA r13,{r0-r13}^

MOV pc, r14

David Jaggar, e.d., Advanced RISC Machines Architectural

Reference Manual, London: Prentice Hall, 1995.

CONTEXT SWITCHING

 How

 Copy all context (registers), keeping proper return

value for PC.

 Copy new context into CPU state.

 Who is in control of context switching

 Co-operative multitasking

 Preemptive multitasking

 Co-routine

CO-OPERATIVE MULTITASKING

 What

One process gives up the CPU to another voluntarily

 Each process allows a context switch at cswitch()

call.

 Separate scheduler chooses which process runs

next.

COOPERATIVELY MULTITASKING EXAMPLE

If(x>2)

 sub1(y);

else

 sub2(y);

cswitch();

….

Proc_data(r,s);

cswitch();

if (val = 3)

 foo1(r);

foo2(s);

….

Process 1 Process 2

Save_state(current);

p=choose_next();

Load_state(p);

Scheduler

CO-OPERATIVE MULTITASKING

 Hides context switching mechanism;

 Relies on processes to give up CPU.

 Programming errors can keep other processes

out:

 process never gives up CPU;

 process waits too long to switch, missing input.

PREEMPTIVE MULTITASKING

 OS controls when contexts switches and

determines what process runs next.

 Interrupts (by timer, external events) cause

OS to switch contexts:

CPU

ti
m

er

interrupt

FLOW OF CONTROL WITH PREEMPTION

time

P1 OS P1 OS P2

interrupt interrupt

PREEMPTIVE CONTEXT SWITCHING

 Interrupt gives control to OS, which saves

interrupted process’s state in an activation

record.

 OS chooses next process to run.

 OS installs desired context as current CPU

state.

CO-ROUTINE FOR MULTIPLE TASKING

• Rooted in assembly programming

• Rarely used today

• Generalize subroutines to allow multiple entry points
and suspending and resuming of execution at certain
locations

• An example

CO-ROUTINES

 ADR r14,co2a

co1a …

 ADR r13,co1b

 MOV r15,r14

co1b …

 ADR r13,co1c

 MOV r15,r14

co1c ...

co2a …

 ADR r14,co2b

 MOV r15,r13

co2b …

 ADR r14,co2c

 MOV r15,r13

co2c …

Co-routine 1 Co-routine 2

r15: the program counter register

MULTITASKING WITH CO-ROUTINE

 Like subroutine, but caller determines the

return address.

 Co-routines voluntarily give up control to other

co-routines.

 Pattern of control transfers is embedded in the

code.

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

PROCESS STATE

• A process can be in

one of three states:

– executing on the

CPU;

– ready to run;

– waiting for data.

executing

ready waiting

gets data

and CPU

needs

data

gets data

needs data

preempted
gets

CPU

SCHEDULING

 The CPU is often shared among several processes.

 Cost.

 Energy/power.

 Physical constraints.

 Someone must be responsible for giving the CPU to processes.

 Co-operation between processes.

 RTOS.

EMBEDDED VS. GENERAL-PURPOSE

SCHEDULING

 Workstations try to improve the throughput and

fairness CPU access.

 Embedded systems must meet deadlines and

other constraints.

 Low-priority processes may not run for a long time.

TIMING REQUIREMENTS ON PROCESSES

 Period: interval between process activations.

 Rate: reciprocal of period.

 Initiation time: time at which process becomes

ready.

 Deadline: time at which process must finish.

 Execution time: execution time without

preemption

SCHEDULING METRICS

 CPU utilization:

 Fraction of the CPU that is doing useful work.

Often calculated assuming no scheduling overhead.

 Utilization:

U = [S t1 ≤ t ≤ t2 T(t)] / [t2 – t1]

 T(t): useful execution time.

 Response time

 Time from when the task is ready to the task being
finished

SCHEDULING METHODS

 Cyclic scheduling

 Round robin scheduling

 Preemptive scheduling

CYCLIC SCHEDULING

 Schedule task according pre-
determined schedule

 Schedule in time slots.
 Same process activation irrespective

of workload.

 Time slots may be equal size or
unequal.

T1 T2 T3

P

T1 T2 T3

P

THE ASSUMPTIONS

 Trivial scheduler ->
very small
scheduling
overhead.

 Can’t handle
unexpected loads.
 Must schedule a

time slot for
aperiodic events.

 Schedule based on
the hyperperiod of
the process periods.

P1 P1 P1

P2 P2

PLCM

HYPERPERIOD

 Hyperperiod: least common multiple (LCM) of

the task periods.

 Hyperperiod can be very long if task periods are

not chosen carefully.

 Larger scheduling table

More scheduling overhead

HYPERPERIOD EXAMPLE

 Long hyperperiod:

 P1 7 ms.

 P2 11 ms.

 P3 15 ms.

 LCM = 1155 ms.

 Shorter hyperperiod:

 P1 8 ms.

 P2 12 ms.

 P3 16 ms.

 LCM = 96 ms.

ROUND-ROBIN

 Schedule process only if ready.
 Always test processes in the same order.

 Variations:
 Constant/weighted time slots
 Start round-robin again after finishing a round.

 Better adaptivity
 Can be adapted to handle unexpected load.

T1 T2 T3

P

T2 T3

P

PRIORITY-DRIVEN SCHEDULING

 Each process has a priority.

 CPU runs the highest-priority process that is

ready.

 Priorities determine scheduling policy:

 fixed priority;

 time-varying priorities.

PRIORITY-DRIVEN SCHEDULING EXAMPLE

 Rules:

 each process has a fixed priority (1 highest);

 highest-priority ready process gets CPU;

 process continues until done.

 Processes

 P1: priority 1, execution time 10

 P2: priority 2, execution time 30

 P3: priority 3, execution time 20

PRIORITY-DRIVEN SCHEDULING

EXAMPLE

time

P2 ready t=0 P1 ready t=15

P3 ready t=18

0 30 10 20 60 40 50

P2 P2 P1 P3

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

 Rate Monotonic Scheduling (RMS)

 Shortest-period process gets highest priority, i.e.
priority inversely proportional to period;

Higher the rate (smaller the period), higher the priority

 Schedulability analysis

 Earliest Deadline First (EDF)

 Process closest to its (absolute) deadline has
highest priority.

 Schedulability analysis

RMS EXAMPLE

P1=D1=4 C1=1

P2=D2=6 C2=2

P3=D3=11 D3=4

4 8 12

6 12

11

RMS SCHEDULABILITY ANALYSIS

 Can all tasks meet their deadlines?

 A simple RMS model

 All processes are periodic (with period Pi) and run on a single CPU.

 Process execution time (Ci) is constant (worst case).

 Deadline is at end of period (Di=Pi).

 Zero context switch time.

 Utilization bound analysis

 Worst Case Response Time Analysis

 If the longest response time is less than the deadline, it is schedulable

 When a task will have the longest response time

 Critical instant: scheduling state that gives worst response time.

 Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

UTILIZATION BOUND

 Utilization factor

 Theorem: For a set of m tasks with fixed priority order, the least upper bound to

processor utilization is

 In another word, for a given task set, if the utilization factor is no more than the

corresponding bound, then the task set is schedulable, i.e., all tasks can meet their

deadlines.

 E.g. m=2, Ub=0.83; m= 3, Ub=0.78; for large m, Ubln2=0.69

=
i i

i

P

C
U

)12(
1

= m
b mU

UTILIZATION BOUND (CONT’D)

 A sufficient condition

 Many feasible task can have higher utilization

 Many feasible fixed-priority task sets cannot 100% utilize the processor

RMS SCHEDULABILITY ANALYSIS

 Can all tasks meet their deadlines?

 A simple RMA model

 All processes are periodic (with period Pi) and run on a single CPU.

 Process execution time (Ci) is constant (worst case).

 Deadline is at end of period (Di=Pi).

 Zero context switch time.

 Utilization bound analysis

 Worst Case Response Time Analysis

 If the longest response time is less than the deadline, it is schedulable

 When a task has the longest response time

 Critical instant: scheduling state that gives worst response time.

 Critical instant occurs when all higher-priority processes are
ready to execute simultaneously.

CRITICAL INSTANT

P4

P3

P2

P1

critical

instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

WORST CASE RESPONSE TIME ANALYSIS

 Mathematic formulation of the worst case
response time for each task is possible
 For more details, see the following reference

 Lehoczky, J.; Sha, L.; Ding, Y. (1989), "The rate monotonic
scheduling algorithm: exact characterization and average case
behavior", IEEE Real-Time Systems Symposium, pp. 166–171

 Key points of RMS
 A fixed priority scheduling method
 The optimal (fixed) priority assignment

 If a task set is schedulable with any other fixed priority
assignment, it is schedulable with RMS.

 The worst case response time of a task occurs when it
starts at the same time when all higher priority tasks
start

EXAMPLES

• Example 1: A task set contains three tasks. Let
– P1=D1=100, P2=D2=150, P3=D3=300

– C1=40, C2=40, C3=20

– Since U = 40/100 + 40/150 + 20/300 = 0.733 < 3 (2 1/3 – 1) = 0.78

– The task set is schedulable

• Example 2: A task set contains two tasks. Let
– P1=D1=100, P2=D2=200

– C1=50, C2=100

– U = 50/100 + 100/200 = 1.0 > 2 (2 1/2 – 1) = 0.83

• Cannot be sure if the task set is schedulable or not

– It is in fact schedulable according to the worst case response time analysis
• Since there is no task with higher priority, its longest response time is 50 <= D1

• The longest response time for task 2 is the response time of its first job (the critical
instant since all tasks start at the same time t=0). Its response time is (if you draw
the timing diagram) 200 <= D2.

TWO PRIORITY-BASED PREEMPTIVE SCHEDULING

 Rate Monotonic Scheduling (RMS)

 Shortest-period process gets highest priority, i.e.

priority inversely proportional to period;

 Schedulability analysis

 Earliest Deadline First (EDF)

 Process closest to its (absolute) deadline has

highest priority.

 Schedulability analysis

EDF EXAMPLE

P1=D1=4 C1=1

P2=D2=6 C2=2

P3=D3=11 D3=4

4 8 12

6 12

11

EARLIEST-DEADLINE-FIRST

SCHEDULING

• EDF
– dynamic priority scheduling scheme.

– Requires recalculating processes at every timer
interrupt.

• Schedulability analysis
– Theorem: A given task set is feasible by EDF if

and only if the total utilization factor U <=1, i.e.

– Can fully utilize the processor

1= 
i i

i

P

C
U

EXAMPLE

T1=D1=4 C1=1

T2=D2=7 C2=3

T3=D3=13 C3=3

4 8 12

7 14

13

Since U= 1/4 + 3/7 + 3/13 = 0.91 < 1,

therefore, the above task set is schedulable.

PRIORITY INVERSION

 Priority inversion: low-priority process keeps high-
priority process from running.

 Improper use of system resources can cause
scheduling problems:

 Low-priority process grabs I/O device.

 High-priority device needs I/O device, but can’t get it
until low-priority process is done.

 Can cause deadlock.

 Deadlock: two or more processes are waiting for each
other to finish but neither can do.

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

INTERPROCESS COMMUNICATION

 Interprocess communication (IPC): OS provides
mechanisms so that processes can pass data.

 Two schemes

 Shared memory:

processes have some memory in common;

must cooperate to avoid destroying/missing messages.

Message passing:
processes send messages along a communication

channel, i.e. message queue

no common address space.

RACE CONDITION IN SHARED MEMORY

 Race condition

Output dependent on the sequence of events

 Example

Event 1: CPU 1 reads flag.

Event 2: CPU 2 reads flag.

Event 3: CPU 1 sets flag to one.

Event 4: CPU 2 sets flag to two.

 The producer/consumer problem

EXAMPLE: PRODUCER/CONSUMER

 Share buffer[N], count

 count = # of valid data items in buffer

 processA produces data items and stores in buffer

 If buffer is full, must wait

 processB consumes data items from buffer

 If buffer is empty, must wait

 Error when both processes try to update count
concurrently (lines 10 and 19) and the following execution
sequence occurs. Say “count” is 3.

 A loads count (count = 3) from memory into register R1 (R1
= 3)

 A increments R1 (R1 = 4)

 B loads count (count = 3) from memory into register R2 (R2
= 3)

 B decrements R2 (R2 = 2)

 A stores R1 back to count in memory (count = 4)

 B stores R2 back to count in memory (count = 2)

 count now has incorrect value of 2

01: data_type buffer[N];

02: int count = 0;

03: void processA() {

04: int i;

05: while(1) {

06: produce(&data);

07: while(count == N);/*loop*/

08: buffer[i] = data;

09: i = (i + 1) % N;

10: count = count + 1;

11: }

12: }

13: void processB() {

14: int i;

15: while(1) {

16: while(count == 0);/*loop*/

17: data = buffer[i];

18: i = (i + 1) % N;

19: count = count - 1;

20: consume(&data);

21: }

22: }

23: void main() {

24: create_process(processA);

25: create_process(processB);

26: }

MUTUAL EXCLUSION

 Certain sections of code should not be performed concurrently
 Critical section

 Possibly noncontiguous section of code where simultaneous updates, by
multiple processes to a shared memory location, can occur

 When a process enters the critical section, other processes must be
locked out until it leaves the critical section
 Mutex

 A shared object used for locking and unlocking segment of shared data

 Disallows read/write access to memory it guards

 Multiple processes can perform lock operation simultaneously, but only one
process will acquire lock

 All other processes trying to obtain lock will be put in blocked state until
unlock operation performed by acquiring process when it exits critical section

 These processes will then be placed in runnable state and will compete for
lock again

USING MUTEX FOR THE CONSUMER-

PRODUCER PROBLEM

 The primitive mutex is used to ensure critical sections are

executed in mutual exclusion of each other

 Following the same execution sequence as before:

 A/B execute lock operation on count_mutex

 Either A or B will acquire lock

 Say B acquires it

 A will be put in blocked state

 B loads count (count = 3) from memory into register R2 (R2 = 3)

 B decrements R2 (R2 = 2)

 B stores R2 back to count in memory (count = 2)

 B executes unlock operation

 A is placed in runnable state again

 A loads count (count = 2) from memory into register R1 (R1 = 2)

 A increments R1 (R1 = 3)

 A stores R1 back to count in memory (count = 3)

 Count now has correct value of 3

 Problems?

01: data_type buffer[N];

02: int count = 0;

03: mutex count_mutex;

04: void processA() {

05: int i;

06: while(1) {

07: produce(&data);

08: count_mutex.lock();

09: while(count == N);/*loop*/

10: buffer[i] = data;

11: i = (i + 1) % N;

12: count = count + 1;

13: count_mutex.unlock();

14: }

15: }

16: void processB() {

17: int i;

18: while(1) {

19: count_mutex.lock();

20: while(count == 0);/*loop*/

21: data = buffer[i];

22: i = (i + 1) % N;

23: count = count - 1;

24: count_mutex.unlock();

25: consume(&data);

26: }

27: }

28: void main() {

29: create_process(processA);

30: create_process(processB);

31: }

CONDITION VARIABLES

 Condition variable is an object that has 2 operations, signal and wait

 When process performs a wait on a condition variable, the process is blocked

until another process performs a signal on the same condition variable

 How is this done?

 Process A acquires lock on a mutex

 Process A performs wait, passing this mutex

 Causes mutex to be unlocked

 Process B can now acquire lock on same mutex

 Process B enters critical section

 Computes some value and/or make condition true

 Process B performs signal when condition true

 Causes process A to implicitly reacquire mutex lock

 Process A becomes runnable

CONDITION VARIABLE EXAMPLE:

CONSUMER-PRODUCER
 2 condition variables

 buffer_empty

 Signals at least 1 free location available in buffer

 buffer_full

 Signals at least 1 valid data item in buffer

 processA:

 produces data item

 acquires lock (cs_mutex) for critical section

 checks value of count

 if count = N, buffer is full

 performs wait operation on buffer_empty

 this releases the lock on cs_mutex allowing processB to

enter critical section, consume data item and free location

in buffer

 processB then performs signal

 if count < N, buffer is not full

 processA inserts data into buffer

 increments count

 signals processB making it runnable if it has performed a

wait operation on buffer_full

01: data_type buffer[N];

02: int count = 0;

03: mutex cs_mutex;

04: condition buffer_empty, buffer_full;

06: void processA() {

07: int i;

08: while(1) {

09: produce(&data);

10: cs_mutex.lock();

11: if(count == N) buffer_empty.wait(cs_mutex);

13: buffer[i] = data;

14: i = (i + 1) % N;

15: count = count + 1;

16: cs_mutex.unlock();

17: buffer_full.signal();

18: }

19: }

20: void processB() {

21: int i;

22: while(1) {

23: cs_mutex.lock();

24: if(count == 0) buffer_full.wait(cs_mutex);

26: data = buffer[i];

27: i = (i + 1) % N;

28: count = count - 1;

29: cs_mutex.unlock();

30: buffer_empty.signal();

31: consume(&data);

32: }

33: }

34: void main() {

35: create_process(processA); create_process(processB);

37: }

Consumer-producer using condition variables

SEMAPHORE VS MUTEX

 Mutex
 Lock/unlock operation

 At any time, only one process can enter the critical section
 A bathroom with one stall

 Semaphore
 A semaphore has a non-negative integer value (S >=0)

 Wait/post operation (atomic operation, i.e. only one operation can be
executed at one time)
 Wait (DOWN)

 Decrease semaphore value by 1. If S = 0, blocks.
 Post (UP)

 Increase semaphore value by 1.

 Multiple processes can enter a critical section concurrently
 A bathroom with multiple stalls

 Mutex is a binary semaphore (max S = 1)

USING SEMAPHORES FOR

CONSUMER-PRODUCER PROBLEM
 Mutex is similar to a binary semaphore
 processA:

 produces data item
 If the buffer is not full (empty > 0) and is

allowed to access the critical section
(cs_sem>0)

 Increments count
 exit critical section
 Signal processes waiting on due to the

empty buffer

 processB:
 If the buffer is not empty (occupied > 0)

and is allowed to access the critical
section (cs_sem>0)

 decrements count
 exit critical section
 Signal processes waiting on due to the

full buffer
 consumes data item

01: data_type buffer[N];

02: int count = 0;

03: sem_t occupied, empty, cs_sem;

04: void processA() {

05: int i = 0;

06: while(1) {

07: produce(&data);

08: sem_wait (&empty); //decrease empty

09: sem_wait (&cs_sem); //decrease cs_sem

10: buffer[i] = data;

11: i = (i + 1) % N;

12: count = count + 1;

13: sem_post (&cs_sem); //increase cs_sem

14: sem_post (&occupied); //increase occupied

15: }

16: }

17: void processB() {

18: int i = 0;

19: while(1) {

20: sem_wait(&occupied); //decrease occupied

21: sem-wait(&cs_sem); //decrease cs_sem

22: data = buffer[i];

23: i = (i + 1) % N;

24: count = count - 1;

25: sem_post(&cs_sem); // increase cs_sem

26: sem_post(&empty); // increase empty

27: consume(&data);

28: }

29: }

30: void main() {

31: sem_init(&occupied, 0, 0);

32: sem_init(&empty,0, N);

33: sem_init(&cs_sem, 0, 1);

34: create_process(processA); create_process(processB);

35: }

Consumer-producer using condition variables

A COMMON PROBLEM IN CONCURRENT

PROGRAMMING: DEADLOCK
 Deadlock: A condition where 2 or more processes are

blocked waiting for the other to unlock critical sections of

code

 Both processes are then in blocked state

 Cannot execute unlock operation so will wait forever

 Example code has 2 different critical sections of code

that can be accessed simultaneously

 2 locks needed (mutex1, mutex2)

 Following execution sequence produces deadlock

 A executes lock operation on mutex1 (and acquires it)

 B executes lock operation on mutex2(and acquires it)

 A/B both execute in critical sections 1 and 2, respectively

 A executes lock operation on mutex2

 A blocked until B unlocks mutex2

 B executes lock operation on mutex1

 B blocked until A unlocks mutex1

 DEADLOCK!

01: mutex mutex1, mutex2;

02: void processA() {

03: while(1) {

04: …

05: mutex1.lock();

06: /* critical section 1 */

07: mutex2.lock();

08: /* critical section 2 */

09: mutex2.unlock();

10: /* critical section 1 */

11: mutex1.unlock();

12: }

13: }

14: void processB() {

15: while(1) {

16: …

17: mutex2.lock();

18: /* critical section 2 */

19: mutex1.lock();

20: /* critical section 1 */

21: mutex1.unlock();

22: /* critical section 2 */

23: mutex2.unlock();

24: }

25: }

MESSAGE PASSING

 Message passing

 Data explicitly sent from one process to

another (msgsnd, msgget, msgrcv, etc)
 Sending process performs special operation,

send

 Receiving process must perform special
operation, receive, to receive the data

 Both operations must explicitly specify which
process it is sending to or receiving from

 Receive is blocking, sending may or may not be
blocking

 Safer model, overhead can be high

 Two modes:

 blocking: sending process waits for response;

 non-blocking: sending process continues.

void processA() {

 while(1) {

 produce(&data)

 send(B, &data);

 /* region 1 */

 receive(B, &data);

 consume(&data);

 }

}

void processB() {

 while(1) {

 receive(A, &data);

 transform(&data)

 send(A, &data);

 /* region 2 */

 }

}

MULTIPLE PROCESS

 Create a process

 Context switching

 Process State and Scheduling

 Interprocess communication

 Real-time operating system (RTOS)

REAL-TIME OPERATING SYSTEMS

 What

Operating system with bounded response time

Provide mechanisms, primitives, and guidelines for

building real-

time embedded systems

 Real-Time

 Operating systems

REAL-TIME SYSTEMS

 Not systems run very fast
 The real-time system is the system that its

timeliness is as important as the logic
correctness of the result

 Two basic categories
 Hard real-time

 Deadline misses imply the failure of system

 Soft real-time
 Deadlines can be occasionally missed
 Firm real-time system

 Deadline miss is of no use at all
Non-firm real-time system

 Task execution is still valuable with deadline miss albeit with
reduced performance

OPERATING SYSTEMS

 A software that manages system resources and
supports user interface to access these resources
 System resources

 CPU times

Memory usage

 File handlers

Networking

 Input/output devices

 etc

 Examples
 Unix, Linux, Microsoft Windows, Mac OS, etc

CHARACTERISTICS OF RTOS

 Deterministic/Predicability

 To deliver service in deterministic or predicable time

Non-deterministic makes embedded system to randomly miss

deadlines, which is not acceptable in real-time systems

 Scheduling/memory allocation/inter task

communication

 Usually small in size

 Small kernel with optional resource managers

REAL-TIME OPERATING SYSTEMS (RTOS)

 Windows CE

 Built specifically for embedded systems and appliance market

 Scalable real-time 32-bit platform

 Supports Windows API

 Perfect for systems designed to interface with Internet

 Preemptive priority scheduling with 256 priority levels per process

 Kernel is 400 Kbytes

 QNX

 Real-time microkernel surrounded by optional processes (resource managers) that provide

POSIX and UNIX compatibility

 Microkernels typically support only the most basic services

 Optional resource managers allow scalability from small ROM-based systems to huge multiprocessor

systems connected by various networking and communication technologies

 Preemptive process scheduling using FIFO, round-robin, adaptive, or priority-driven scheduling

 32 priority levels per process

 Microkernel < 10 Kbytes and complies with POSIX real-time standard

SUMMARY

 Process/thread, reentrancy
 Process/thread creation
 Multitasking context switching

 Co-operative multitasking
 Preemptive multitasking
 Co-routine

 Scheduling
 Cyclic scheduling
 Round robin
 Priority-based preemptive scheduling

 RMA/EDF

 Interprocess communication
 Shared memory/message passing
 Mutex/semaphore
 Priority inversion/deadlock

 Real-time and Real-time Operating System (RTOS)

