I/O Devices

I/O Devices

- Universal Asynchronous Receiver/Transmitter (UART)
- Timers and counters
- A/D D/A converter
- Keyboards
- Displays

UART

- Universal asynchronous receiver transmitter
 - provides serial communication.
- Usually integrated into standard PC interface chip.

Serial communication

Characters are transmitted separately:

Serial communication parameters

- Baud (bit) rate.
- Number of bits per character.
- Parity/no parity.
- Even/odd parity.
- Length of stop bit (1, 1.5, 2 bits).

8251 CPU interface

Timers and counters

- Very similar:
 - Registers to hold the current value;
 - An increment input that adds one to the current register value.
- Timer
 - Connected to a periodic clock signal
- Counter
 - Connected to more general (periodic/aperiodic) signals

Watchdog timer

- Watchdog timer is periodically reset by system timer.
- If watchdog is not reset, it generates an interrupt to reset the host.

A/D and D/A converters

- A/D converter (ADC)
 - The control signal requires sampling the analog signal and converting it to digital form (binary)
- D/A converter (DAC)
 - Convert the digital signal to the analog signal

Keyboard

An array of switches

• Button bouncing and debouncing

Key Bouncing

• The mechanical contact to make or break an electrical circuit generates bouncing signal

LED

- Light Emitting DiodeUse resistor to limit current:

LCD display

- Liquid crystal display
 - The digit input activates the display elements

LCD Parameters

- Resolution
 - Horizontal and vertical size
- Dot pitch
 - Distance between two adjacent pixel
- Response time
 - Time to change the color or brightness
- Refresh rate
 - Number of times the data is drawn
- Others
 - View angles, contrast ratio, aspect ratio, etc

Types of high-resolution display

- Cathode ray tube (CRT)
- Liquid crystal display (LCD) panels
- Plasma, etc.

Touchscreen

- Includes input and output device.
- Input device is a two-dimensional voltmeter:

Touchscreen position sensing

Communications in embedded systems

- Data transfer between processors, memories, and I/O devices
- Usually implemented using buses
 - bus

A simple bus

- Wires:
 - Uni-directional or bi-directional
 - One line may represent multiple wires
- Bus
 - Set of wires with a single function
 - Address bus, data bus
 - Or, entire collection of wires
 - Address, data and control
 - bus protocol: rules for communication

Timing Diagrams

- Most common method for describing a communication protocol
- Time proceeds to the right on x-axis
- Control signal: low or high
 - May be active low (e.g., go', /go, or go_L)
 - Use terms assert (active) and deassert
 - Asserting go' means go=0
- Data signal: not valid or valid
- Protocol may have subprotocols
 - Called bus cycle, e.g., read and write
 - Each may be several clock cycles
- Read example
 - rd'/wr set low,address placed on addr for at least $t_{\rm setup}$ time before enable asserted, enable triggers memory to place data on data wires by time $t_{\rm read}$

write protocol

Advanced Communication Interfacing

- Wired Communications
 - Serial Communications
 - Parallel Communications
- Wireless Communications

Serial communication

- Single data wire
- Words transmitted one bit at a time
- Higher data throughput with long distances
 - Less average capacitance, so more bits per unit of time
- Cheaper, less bulky
- More complex interfacing logic and communication protocol
 - Sender needs to decompose word into bits
 - Receiver needs to recompose bits into word
 - Control signals often sent on same wire as data increasing protocol complexity

- I²C (Inter-IC)
 - Two-wire serial bus protocol
 - Serial data line (SDA)
 - Serial clock line (SCL)
 - Developed by Philips Semiconductors nearly 20 years ago
 - Data transfer rates
 - up to 100 kbits/s and 7-bit addressing (i.e., 128 devices) possible in normal mode
 - 3.4 Mbits/s and 10-bit (i.e., 1024 devices) addressing in fast-mode

- CAN (Controller area network)
 - All nodes can hear the message, each node filters the messages by itself
 - Protocol for real-time applications
 - Developed by Robert Bosch GmbH
 - Originally for communication among components of cars
 - Data transfer rates up to 1 Mbit/s and 11-bit addressing

- FireWire (a.k.a. I-Link, IEEE 1394)
 - High-performance serial bus developed by Apple Computer Inc.
 - Designed for interfacing independent electronic components
 - e.g., Desktop, scanner
 - Data transfer rates from 100,200,400 Mbits/s, (new revision up to 800, 1600MBits/s)
 - Maximal distance between two devices are 4.5 meters
 - Maximal number of devices 63
 - Plug-and-play capabilities

- USB (Universal Serial Bus)
 - Invented in 1995
 - A serial bus that supports up to 127 devices
 - Plug and play
 - Four wires: Vbus, GND, D+, D-
 - D+ high D- low \rightarrow 1
 - D+ low D- high $\rightarrow 0$
 - Data rates:
 - 12 Mbps for increased bandwidth devices
 - 1.5 Mbps for lower-speed devices (joysticks, game pads)
 - 480 Mbps (USB 2.0)
 - 4.8Gbps (experimental)

A Typical USB System

- One and only on host
 - Control media access
- Hub
 - Enable multiple devices to be connected to the same USB bus
 - Detect attachment and detachment of devices and power management
 - Manage both high and low speed device
- Other USB devices
 - Self powered/Bus powered
 - Full-speed/low-speed devices

Parallel communication

- Multiple data, control, and possibly power wires
 - One bit per wire
- High data throughput with short distances
- Typically used when connecting devices on same IC or same circuit board
 - Bus must be kept short
 - long parallel wires result in high capacitance values which requires more time to charge/discharge
 - Data misalignment between wires increases as length increases
- Higher cost, bulky

Parallel protocol

- PCI Bus (Peripheral Component Interconnect)
 - High performance bus originated at Intel in the early 1990's
 - Standard adopted by industry and administered by PCISIG (PCI Special Interest Group)
 - Interconnects chips, expansion boards, processor memory subsystems
 - Data transfer rates of 133 Mbits/s and 32-bit addressing
 - Later extended to 64-bit while maintaining compatibility with 32-bit schemes
 - Multiplexed data/address lines

About PCI-x and PCI-Express

- PCI-x
 - Designed by IBM, HP and Compaq
 - PCI extended, enhanced PCI bus to as much as 4 Gbps
- PCI-Express
 - Point-to-point connection
 - A two-way *serial* connection
 - Data is transmitted through two pairs of wires called lane
 - Each lane has transfer rate 2.5Gbps or approx. 200MB/s data rate
 - Multiple lanes can be used
 - Plug and play

PCI, PCI-x, AGP

Bus	Clock	Number of bits	Data per Clock Cycle	Maximum Transfer Rate
PCI	33 MHz	32	1	133 MB/s
PCI	66 MHz	32	1	266 MB/s
PCI	33 MHz	64	1	266 MB/s
PCI	66 MHz	64	1	533 MB/s
PCI-X 64	66 MHz	64	1	533 MB/s
PCI-X 133	133 MHz	64	1	1,066 MB/s
PCI-X 266	133 MHz	64	2	2,132 MB/s
PCI-X 533	133 MHz	64	4	4,266 MB/s
AGP x1	66 MHz	32	1	266 MB/s
AGP x2	66 MHz	32	2	533 MB/s
AGP x4	66 MHz	32	4	1,066 MB/s
AGP x8	66 MHz	32	8	2,133 MB/s

AGP: Accelerated Graphics Port or Accelerated Graph Port, Intel, 1996

PCI, AGP, PCI Express

Bus	Maximum Transfer Rate
PCI	133 MB/s
AGP 2x	533 MB/s
AGP 4x	1,066 MB/s
AGP 8x	2,133 MB/s
PCI Express x1	250 MB/s
PCI Express x2	500 MB/s
PCI Express x4	1,000 MB/s
PCI Express x16	4,000 MB/s
PCI Express x32	8,000 MB/s

Wireless communication

- No need for physical connection
- Infrared (IR)
 - Electronic wave frequencies just below visible light spectrum
 - Turning on/off diode generates 1/0
 - Infrared transistor detects signal, conducts when exposed to infrared light
 - Cheap to build
 - Need line of sight, limited range
- Radio frequency (RF)
 - Electromagnetic wave frequencies in radio spectrum
 - Analog circuitry and antenna needed on both sides of transmission
 - Line of sight not needed, transmitter power determines range

THE ELECTROMAGNETIC SPECTRUM

Wireless protocols

- IrDA
 - Short-range point-to-point infrared data transmission
 - Created and promoted by the Infrared Data Association (IrDA)
 - Transfer rate of 9.6 kbps and 16 Mbps
 - Becoming available on popular embedded OS's

Wireless protocols

- Bluetooth
 - New, global standard for wireless connectivity
 - Based on low-cost, short-range radio link to remove the cables
 - Connection established when within 10 meters of each other
 - No line-of-sight required
 - e.g., Connect to printer in another room

Wireless Protocols

- IEEE 802.11
 - Proposed standard for wireless LANs
 - Layered protocol
 - Specifies parameters for PHY and MAC layers of network
 - provisions for data transfer rates of 1 or 2 Mbps
 - operates in 2.4 to 2.4835 GHz frequency band (RF) or 300 to 428,000 GHz (IR)

Summary

- I/O devices
 - UART, Timer/counter, ADC/DAC, keyboards, display
- Communication and connections
- Advanced communication interfacing

