POWERPC BASED EMBEDDED DESIGN IN FPGA USING XILINX EDK

About PowerPC 405

- 32-bit instruction/64-bit data
- Pipeline:
 - 5-stage pipeline, mostly single cycle but for multiply(4cycles)/division(35 cycles)
- Memory addressing
 - Support unaligned load/store
 - Little endian operation
- Cache:
 - 16K, 2-way cache, 32bytes block size
- Support for on-chip memory (OCM)
 - With performance identical to a cache hit
- Buses:
 - PLB, OPB, DCR,OCM

PowerPC-based Embedded Design

Processor Local Bus (PLB)

- One 32-bit address/three 64-bit data buses attached to the instruction-cache and data-cache units.
 - Two of the 64-bit buses are attached to the data-cache unit, for read/write operations. The third 64-bit bus is attached to the instruction-cache unit to support instruction fetching.
 - To provide a high-bandwidth, low-latency connection between bus agents that are the main producers and consumers of the bus transaction traffic.
 - connect your higher speed peripherals (e.g., G-Ethernet Mac) and memory.
- On-chip Peripheral Bus (OPB)
- Device Control Register (DCR)
- On-chip Memory Bus (OCM)

- Processor Local Bus (PLB)
- On-chip Peripheral Bus (OPB)
 - A fully synchronous 32-bit address and 32-bit data bus.
 - To provide a flexible connection path to peripherals and memory, while providing minimal performance impact to the PLB bus
 - put slower peripherals on this bus, such as UARTs, GPIO, 10/100 E-Net MAC, etc.
- Device Control Register (DCR)
- On-chip Memory Bus (OCM)

- Processor Local Bus (PLB)
- On-chip Peripheral Bus (OPB)
- Device Control Register (DCR)
 - A 32-bit bus for accessing device control registers
 - Most traffic occurs during the system initialization period; however, some elements, such as the DMA controller and the interrupt controller cores, use the DCR bus to access normal functional registers used during operation.
- On-chip Memory Bus (OCM)

User Defined DCR

- User Defined DCR Bus
 - •A 10-bit address bus.
 - Separate 32-bit input data and output data busses.
 - Separate read and write control signals.
 - A read/write acknowledgement signal.
- Chained DCR Peripheral Devices
- Using *mfdcr* and *mtdcr* to access
 DCRs
 - mfdcr: move from a special dcr
 - mtdcr: move to a special dcr

- Processor Local Bus (PLB)
- On-chip Peripheral Bus (OPB)
- Device Control Register (DCR)
- On-chip Memory Bus (OCM)
 - Separate bus interface for non cacheable memory
 - Separate I-side and D-side OCM controllers inside the processor block for higher performance

OCM Bus

Features

- Independent 16-MB logical space for each of the DSOCM and ISOCM
 - 16 MB must be reserved regardless of actual memory used
- ISOCM bus: 64-bit for instruction fetches and 32-bit write to initialize or test
- DSOCM bus: 32-bit data-read and 32 bit data-wirte
- Up to 128 KB / 64 KB (ISOCM / DSOCM) using programmable BRAM aspect ratios
 - Programmable processor versus BRAM clock ratio

OCM Bus

Benefits

- Avoids loads into cache, reducing pollution and thrashing
- Has fast-fixed latency of execution
- On the D-side, dual-port BRAM enables a bidirectional data connection with the processor

Sample uses

I-side: Interrupt service routines, boot-code storage

PowerPC'

 D-side: Scratch-pad memory, bidirectional data transfer

Bus Timing

	PLB CLK	OPB CLK	DCR CLK	OCM CLK *
Transaction synchronous with	Processor clock	PLB clock	Processor clock	Processor clock
Clock ratio	1:1 to 16:1	1:1 to 4:1	1:1 to 8:1	1:1 to 4:1
Example	Processor clock at 300 MHz, PLB at 100 MHz	PLB at 100 MHz, OPB at 50 MHz	Processor clock at 300 MHz, DCR at 100 MHz	Processor clock at 300 MHz, OCM at 150 MHz

- Use timing constraints to determine which ratio to use
- *There are two independent clocks for each OCM controller:
 PowerPC
 - BRAMDSOCMCLK

BRAMISOCMCLK

About Embedded Development Kit

- The Xilinx software suite for designing complete embedded programmable systems
- Tools, documentation, and IP for designing systems with embedded IBM PowerPC[™] hard processor cores, and/or Xilinx MicroBlaze[™] soft processor cores
- Integrated design environment for both hardware and software components

Embedded Design in an FPGA

- Embedded design in an FPGA consists of the following:
 - FPGA hardware design
 - C drivers for hardware
 - Software design
 - Software routines
 - Interrupt service routines (optional)
 - Real Time Operating System (RTOS) (optional)

Embedded Development Overview

Xilinx Platform Studio

- Xilinx Platform Studio (XPS) is a graphical Integrated Design Environment (IDE) for hardware/software design and verification
 - Project management
 - Platform management
 - Software application

Xilinx Platform Studio (XPS)

Hardware Creation

- Platform Generator PlatGen
 - Input file → Microprocessor Hardware Specification file and Microprocessor Peripheral Description file (MPD)
 - MHS file defines the configuration of the embedded processor system including bus architecture, peripherals and processor(s), interrupt request priorities, and address space
 - MPD file defines the configurable parameters with their default values and available ports for a peripheral
 - Output files → system netlist, peripheral netlists, and Block Memory Map (BMM) file
 - BMM describes how individual block memory map constitutes the continuous logical memory space

Hardware Implementation

- Hardware netlists must be implemented with the Xilinx implementation tools
- Either the ISE™ Project Navigator or Xflow batch tool can be used to implement the design
 - The ISE Project Navigator GUI gives you access to the whole suite of Xilinx design entry and physical implementation point tools
 - Xflow is a non-graphical tool that encapsulates the Xilinx implementation/simulation flows and enable an simplified flow to implement the hardware and generate the bitstream

Software Library Generation

- Library Generator LibGen
 - Input files → Microprocessor Software Specification (MSS)
 - Output files \rightarrow libc.a, libXil.a, libm.a
 - LibGen is generally the first tool run to configure libraries and device drivers
 - The MSS file defines the drivers associated with peripherals, standard input/output devices, interrupt handler routines, and other related software features
 - LibGen configures libraries and drivers with this information and produces an archive of object files:
 - libc.a Standard C library
 - libXil.a Xilinx library
 - libm.a Math functions library

Software Compilation

- Compile program sources
 - Input files → *.c, *.c++, *.h, libc.a, libXil.a, libm.a
 - Output files → executable.elf
 - This invokes the compiler for each software application and builds the executable and linkable format (ELF) files for each processor
 - Executable and Linkable Format (ELF)
 - a common standard file format for executables, object code, shared libraries, and core dumps
 - Flexible and extensible
 - Not bound to any particular processor

Merging Hardware and Software Flows

Merging Hardware and Software Flows

- Data2MEM Update the bitstream
 - Input files → system_bd.bmm, system.bit, executable.elf
 - Output file \rightarrow download.bit
 - This invokes the BitInit tool, which initializes the instruction memory of the processor
 - This is the stage where the hardware and the software flows come together. This stage also calls the hardware and software flow tools if required

Configuring the FPGA

- Download the bitstream
 - Input file → download.bit
 - This downloads the download.bit file onto the target board using the Xilinx iMPACT tool in batch mode
 - XPS uses the etc/download.cmd file for downloading the bitstream
 - The download.cmd file contains information such as the type of cable is used and the position of the FPGA in a JTAG chain

EDK Tool Flow

About IPIF

Summary

- PowerPC architecture
- Embedded development flow
- Xilinx EDK and the development flow

