
Electrical and Computer Engineering
Florida International University
Fall, 2009

Processor Architecture and Buses

Outline
• Processor structure and instruction cycles
• Pipelining basic
• Interrupt
• Buses

What is a program?
• A sequence of instructions (steps)

— an instruction
– a binary number
– Consisting of two part

+ Opcode: what to do
+ Oprand: what data should be used

– Ex:

• For each instruction (step), an arithmetic
or logical operation is done

• For each operation, a different set of
control signals is needed

Opcode Operand

Function of Control Unit
• Each operation is associated with a unique

opcode
—e.g. ADD, MOVE

• The hardware interprets the opcode and
issues the control signals

• We have a computer!

Computer Components:
Top Level View

Instruction Cycle
• Two steps:

—Fetch
—Execute

Fetch Cycle
• Program Counter (PC) holds address of

next instruction to fetch
• Processor fetches instruction from

memory location pointed to by PC
• Increment PC

—Unless told otherwise

• Instruction loaded into Instruction
Register (IR)

• Processor interprets instruction and
performs required actions

Execute Cycle
• Processor-memory

—data transfer between CPU and main memory

• Processor I/O
—Data transfer between CPU and I/O module

• Data processing
—Some arithmetic or logical operation on data

• Control
—Alteration of sequence of operations
—e.g. jump

• Combination of above

Example of Program Execution

0b 0001 = 0x1
Load AC from memory
0b 0010 = 0x2
Store AC to memory
0b 0101 = 0x5
Add to AC from memory

Opcode Operand (Address)
0 153

PC: program counter
AC: accumulator
IR: instruction register

Instruction Cycle State Diagram

Outline
• Processor structure and instruction cycles
• Pipelining basic
• Interrupt
• Buses

What is Pipeline?

• Laundry Example
—Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry, and
fold

—Washer takes 30
minutes

—Dryer takes 40 minutes

—“Folder” takes 20
minutes

A B C D

Sequential Laundry

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Total = 6 hours

Pipelined Laundry: Start ASAP

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Total: 3.5 hours

Pipelining
• Overlap the executions of multiple

instructions
—Fetch instruction (FI)
—Decode instruction (DI)
—Calculate operands (i.e. EAs) (CO)
—Fetch operands (FO)
—Execute instructions (EI)
—Write result (WO)

Timing Diagram for
Instruction Pipeline Operation

Pipeline Performance

• Speedup factor
— Let

– each stage take one clock cycle
– an instruction takes k stages

— T1: without pipeline, a program with n instruction will take
nk cycles

— T2: with k stage pipeline, only the first instruction takes k
cycles and the rest of them takes only one cycles.

— Therefore

– When n -> infinite

k
nk
nk

T
TS
k

k ≈
−+

==
)1(

1

Pipeline Hazards
• Pipeline, or some portion of pipeline, must stall
• Also called pipeline bubble
• Types of hazards

—Resource
– Two (or more) instructions in pipeline need same resource
– Ex: both instructions need multipliers

—Data
– Data dependency
– Ex: one instruction needs the results from the previous

one that has not been available yet
—Control

– The next instruction is not at PC+1
– Ex: Branch, procedure call and return

Pipeline Principles

• Pipelining doesn’t help latency of a single
task, it helps throughput of entire workload

• The pipeline rate limited by slowest pipeline
stage

• Multiple tasks operating simultaneously
• Potential speedup = Number of pipe stages
• Sometimes, pipeline has to be stalled due to

the pipeline hazard

Example

• Assume an unpipelined computer
—1 ns clock cycle
—Branches and ALU ops take 4 cycles
—Memory ops take 5 cycles
—Instruction mix:

– 20% branch, 40% ALU, 40% mem
• Enhanced with a 5 stage pipeline

—.2 ns overhead for clock skew and register delay
—Assume that each stage takes 1 clock cycle

• Speedup?

Outline

• Processor structure and instruction cycles
• Pipelining basic
• Interrupt
• Buses

Interrupt Mechanism

• What
—Mechanism by which other modules (e.g. I/O)

may interrupt normal sequence of processing
—A way to improve processing efficiency

• Why
—Processor usually much faster then the I/O

devices
—Waste of processor to wait I/O operations

done

Interrupt Mechanism
• How

—Interrupt request from I/O module
—Processor acknowledges the request
—Suspending current program
—Save the context

– values of PC, registers, etc
—Go to service routine (interrupt handler)
—Restore the context
—Resume the program

Program Flow Control

Program Timing
Short I/O Wait

Program Timing
Long I/O Wait

Interrupt Cycle
• Added to instruction cycle
• Processor checks for interrupt

—Indicated by an interrupt signal

• If no interrupt, fetch next instruction
• If interrupt pending:

—Suspend execution of current program
—Save context (ex: registers, PC, etc)
—Set PC to start address of interrupt handler routine
—Process interrupt
—Restore context and continue interrupted program

Instruction Cycle with Interrupts

Instruction Cycle (with Interrupts) -
State Diagram

Multiple Interrupts
• Disable interrupts

—Processor will ignore further interrupts whilst
processing one interrupt

—Interrupts remain pending and are checked
after first interrupt has been processed

—Interrupts handled in sequence as they occur

• Define priorities
—Low priority interrupts can be interrupted by

higher priority interrupts
—When higher priority interrupt has been

processed, processor returns to previous
interrupt

Multiple Interrupts - Sequential

Multiple Interrupts – Nested

Efficiency

• Ex:
—User program with 1,000,000 instructions
—One print job (I/O operation) requiring 5

seconds
—Processor speed at 1Ghz, 1 cycle per

instruction
—Interrupt handler 10,000 instructions
—Ignore interrupt overhead (context saving, etc)
—Speedup w/o interrupt ?

Outline

• Processor structure and instruction cycles
• Pipelining basic
• Interrupt
• Buses

What is a Bus?
• A communication pathway connecting two

or more devices
• Usually broadcast
• Often grouped

—A number of channels in one bus
—e.g. 32 bit data bus is 32 separate single bit

channels

• Power lines may not be shown

Bus Interconnection Scheme

Data Bus
• Carries data

—Remember that there is no difference between
“data” and “instruction” at this level

• Width is a key determinant of
performance
—8, 16, 32, 64 bit

Address bus
• Identify the source or destination of data

—e.g. CPU needs to read an instruction (data)
from a given location in memory

• Bus width determines maximum memory
capacity of system
—e.g. 8080 has 16 bit address bus giving 64k

address space

Control Bus
• Control and timing information

—Memory read/write signal
—Interrupt request
—Clock signals

Bus Hierarchy
• Lots of devices on one single bus leads to:

—Propagation delays
– Long data paths mean that co-ordination of bus use

can adversely affect performance
– If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to
overcome these problems

High Performance Bus

Bus Types
• Dedicated

—Separate data & address lines

• Multiplexed
—Shared lines
—Address valid or data valid control line
—Advantage - fewer lines
—Disadvantages

– More complex control
– Ultimate performance

Bus Arbitration
• More than one module controlling the bus
• e.g. CPU and DMA controller
• Only one module may control bus at one

time
• Arbitration may be centralised or

distributed

Centralised or Distributed Arbitration
• Centralised

—Single hardware device controlling bus access
– Bus Controller
– Arbiter

—May be part of CPU or separate

• Distributed
—Each module may claim the bus
—Control logic on all modules

Summary
• Processor structure and instruction cycles

—High level view of processor, program execution,
instruction cycles

• Pipelining basic
—Overlap execution of multiple instruction
—Pipeline principles

• Interrupt
—What/why/how
—Instruction cycles with interrupt
—Multiple interrupts

• Buses
—What
—Data/address/control
—Dedicated/multiplexed, centralized/distributed

