
1

Memory HierarchyMemory Hierarchy

Contents

Memory System Overview
Cache Memory
Internal MemoryInternal Memory
External Memory
Virtual Memory

Memory Hierarchy

Registers
In CPU

Internal or
Main memory

CacheCache
“RAM”

External
memory

Backing
store

2

Memory Hierarchy

Cost/bit
Capacity
Access time
Frequency of Frequency of
access

Why memory hierarchy

Memory-Processor Performance Gap

Why memory hierarchy

Locality
Temporal locality

The currently required data are likely to
need again in the near futureneed again in the near future

Spatial locality
There is high probability that the other data
nearby will be need soon

3

Cache Memory

Small amount of fast memory
Sits between normal main memory and CPU
May be located on CPU chip or module

Cache in processor

AMD Athlon 64 X2 (Dual
Core)

Intel Tukwila (Four Core)

Typical Cache Organization

4

Cache operation

CPU requests contents of memory
location
Check cache for this data
If present, get from cache (fast)p , g ()
If not present, read required block from
main memory to cache
Then deliver from cache to CPU

Avg memory access time = Hit timeL1 + Miss rateL1 x Miss penaltyL1

Miss PenaltyL1 = Hit time L2 + Miss rate L2 x Miss penalty L2

Example

Two levels of memory
Level 1 access time 0.01 us, Level 2
access time 0.1us
95% memory accesses are found in level 1
Average memory access time for each
word?

Cache Design

Size
Mapping Function
Replacement AlgorithmReplacement Algorithm
Write Policy
Block Size
Number of Caches

5

Size does matter

Cost
More cache is expensive

Speed
More cache is faster (up to a point)
Checking cache for data takes time

Mapping
Memory blocks
Cache Lines (blocks)
Cache Tag

Mapping

Direct
Associative
Set associativeSet associative

6

Mapping Example

Address structure
Address is in two parts (s+w)
Most Significant s bits specify one memory
block

Block address: which block should be read or
written
The s bits are split into a cache line field r and a
tag of s-r (most significant)

Least Significant w bits identify unique byte
Block shift: within the block, which byte should be read
or written

Direct Mapping

Each block of main memory maps to only
one cache line

i.e. if a block is in cache, it must be in
 ifi lone specific place

How
i=j modulo m

i: cache line number
j: memory block number
m: number of total lines in the cache

7

Example

Cache of 64kByte
Cache block of 4 bytes

i.e. cache is 16k (214) lines of
4 bytes

16MBytes main memory
24 bit address (224=16M)

4M memory blocks

Ex:Direct Mapping Address Structure

Tag s-r Line of block index r Word w

8 14 2

24 bit dd24 bit address
2 bit word identifier (4 byte block)
Total cache lines: 214 (or the number of blocks in caches)
22 bit block identifier

8 bit tag (=22-14)

Direct Mapping Cache
Organization

8

Direct Mapping pros & cons

Simple and fast
Inexpensive
Fixed location for given block

If a program accesses 2 blocks that map
to the same line repeatedly, cache
misses are very high

Fully Associative Mapping

A main memory block can load into any line of
cache
Memory address is interpreted as tag and word
T i l id tifi bl k f Tag uniquely identifies block of memory
Every line’s tag is examined for a match
Flexibility in placing data blocks
Cache searching gets expensive

Tag 22 bit
Word
2 bit

Fully Associative
Address Structure

22 bit tag stored with each 4 bytes of data
Compare tag field with tag entry in cache to check
for hit
Least significant 2 bits of address identify which
byte is required from the 4 byte block

9

Fully Associative Cache
Organization

Set Associative Mapping

Cache lines is divided into a number of groups,
i.e., sets
A given block maps to only one set, but can be
any line in the set

How
i=j modulo v

v: number of total sets in the cache
Trade off between direct mapping and fully
associative mapping

Ex: 8-way Set Associative Mapping
Address Structure

Tag s-r Set Index (r) Word w

8 14 2

24 bit dd24 bit address
2 bit word identifier (4 byte block)
22 bit block identifier
Total number of sets: 214/8 = 211

11 bit tag (=22-11)
11 bit set index

10

K-Way Set Associative Cache
Organization

Replacement Algorithms

For Associative & Set Associative
Least Recently used (LRU)
First in first out (FIFO)
Least frequently usedq y
Random

Write Policy

Why
Must not overwrite a cache block unless
main memory is up to date
Multiple CPUs may have individual Multiple CPUs may have individual
caches
I/O may address main memory directly

How
Write through
Write back

11

Write through

All writes go to main memory as
well as cache

Multiple CPUs can monitor main
ffi k l l (C)memory traffic to keep local (to CPU)

cache up to date
Lots of traffic
Slows down writes

Write back

Updates initially made in cache only
If block is to be replaced, write to main memory
only if updated

Other caches get out of syncOther caches get out of sync
I/O must access main memory through cache

Line Size

Larger blocks reduce the number of
blocks that fit into a cache.
Larger blocks make each additional

o d is less likel to be needed in the word is less likely to be needed in the
near future.

12

Number of Caches

Single or two level
Logic density increased
On-chip cache reduces the
processor’s external bus activityprocessor s external bus activity
Off-chip/external cache is still
desirable

Unified or split

Contents

Memory System Overview
Cache Memory
I t l MInternal Memory
External Memory
Virtual Memory

Internal Memory
Internal memory types
DRAM vs. SRAM

13

Semiconductor Memory Types

Dynamic RAM

Bits stored as charge in capacitors
Charges leak -> Need refreshing (and
therefore refresh circuits) even when powered
Si l iSimpler construction
Smaller per bit
Less expensive
Slower
Main memory

Static RAM

Bits stored as on/off switches
No charges to leak and therefore no
refreshing needed when powered
More complex construction
Larger per bit
More expensive
Faster
Cache

14

SRAM vs DRAM

Both volatile
Power needed to preserve data

Dynamic cell
Si l t b ild ll dSimpler to build, smaller, more dense
Less expensive
Needs refresh
Larger memory units

Static
Faster
Cache

Read Only Memory (ROM)

Permanent storage
Nonvolatile

Usage
Library subroutines
Systems programs (BIOS)
Function tables

Types of ROM

Written during manufacture
Programmable (once)

PROM
Needs special equipment to programNeeds special equipment to program

Read “mostly”
Erasable Programmable (EPROM)

Erased by UV
Electrically Erasable (EEPROM)

Takes much longer to write than read
Flash memory

15

Contents

Memory System Overview
Cache Memory
I t l MInternal Memory
External Memory
Virtual Memory

Contents

Memory System Overview
Cache Memory
I t l MInternal Memory
External Memory
Virtual Memory

External Memory

Types of external memory

16

Types of External Memory

Magnetic Disk
RAID (Redundant Array of Independent Disk)
Removable

OpticalOptical
CD-ROM
CD-Recordable (CD-R)
CD-R/W
DVD

Magnetic Tape

Magnetic Disk

Read and Write Mechanisms
Recording and retrieval via conductive coil called a
head

May be single read/write head or separate ones
During read/write, head is stationary, platter rotates
Write

Current through coil produces magnetic field
Pulses sent to head
Magnetic pattern recorded on surface below

Data Organization and Formatting
Concentric rings or
tracks

Gaps between tracks
Reduce gap to
increase capacityincrease capacity
Same number of bits
per track (variable
packing density)

Tracks divided into
sectors

17

Performance

Seek time
Moving head to correct track (ts)

Average (Rotational) latency
Waiting for data to rotate under headWaiting for data to rotate under head
tr= 1/2r (r: rounds per second)

Transfer time: tt=b/(rN)
b: number of bytes to be transferred
r: rounds per second
N: number of bytes per track

Total disk access time = ts+tr+tt

Example
Seek time = 4ms
Rotation speed = 7500rpm
512 bytes/sector, 500 sectors/track
A file with total 2500 sectors
Assume:

S ti ll t d Sequentially stored
Randomly stored

1. Ts= 4ms, Max Tr = 60/7500=8ms
2500 sectors 5 tracks Tt for each track = b/rN =8ms
Total disk access time = (4 + 8 + 8) + 8 * 4 = 52 ms
(assume no seek and rotation time except for the first track)

2. Ts = 4ms, Avg Tr= 4ms,
Tt for each sector =

(1x 512) * 60 /(7500 * (500 x 512)) = 8/500 ms
Total disk access time = 2500 x (4 + 4 + 8/500) = 20.04 sec

Contents

Memory System Overview
Cache Memory
I t l MInternal Memory
External Memory
Virtual Memory

18

Virtual Memory
Virtual Memory

A technique of using secondary storage
such as disks to extend the size limit of
physical memoryphysical memory

Memory Paging

Split memory into equal sized, small chunks -
page frames
Allocate the required number page frames to a
process
O i S i i li f f fOperating System maintains list of free frames
A process does not require contiguous page
frames
Use page table to keep track

Virtual Memory

Demand paging
Do not require all pages of a process in
memory
Bring in pages as requiredBring in pages as required

Page fault
Required page is not in memory
Operating System must swap in required page
May need to swap out a page to make space
Select page to throw out based on recent
history

19

Bonus

We do not need all of a process in memory for it
to run
We can swap in pages as required
So - we can now run processes that are bigger
than total memory available!than total memory available!

Main memory is called real memory
User/programmer sees much bigger memory -
virtual memory

Thrashing

Too many processes in too little memory
Operating System spends all its time swapping
Little or no real work is done
Disk light is on all the timeg

Solutions
Good page replacement algorithms
Reduce number of processes running
Fit more memory

Translation Lookaside Buffer
(TLB)

Two physical memory
accesses/virtual memory
reference

P t blPage table
Desired data

TLB
A special cache for page table
entries

20

TLB Operation

