
Instruction Set Architecture

Contents
Instruction
Instruction set

Number of Address
Addressing modes
Operand types
Operations types

Assembly programming

Instruction
Elements

Opcode: What to do
Oprand(s): data source(s)/destination(s)

Representation
Binary bitsy

Symbolic representation
Add, SUB, LOAD, etc
E.G.: ADD X, Y

Instruction Length

Affected by
Memory size/organization, register numbers, bus
structure, etc

Flexibility vs. Implementation ComplexityFlexibility vs. Implementation Complexity
Memory–transfer consideration
Fixed vs. non-fixed instructions

Instruction Set
The collection of different instructions CPU can
understand and execute
Different instructions

Number of addresses/addressing modes
O d tOperand types
Operation types

Number of Addresses
3 addresses

Operand 1, Operand 2, Result
e.g. a=b+c

2 address
One address doubles as operand and result

e g a = a+ce.g. a a+c
1 address

Implicit second address (accumulator)
0 address

All addresses are implicitly defined
Stack based computer

Example: Y=(A-B)/(C+D x E)

Three Addresses:
SUB Y, A, B # Y A-B
MPY T, D, E # T DxE
ADD T, T, C # T T+C
DIV Y, Y, T # Y Y/T

Two Addresses
MOV Y, A #Y A
SUB Y, B #Y Y-B
MOV T, D #T D
MPY T,E #T TxE
ADD T,C # T T+C
DIV Y, T # Y Y/T

Example: Y=(A-B)/(C+D x E)

One Addresses:
LOAD D # AC D
MPY E # AC ACxE
ADD C # AC AC+C
STOR Y # Y AC
LOAD A # AC A
SUB B # AC AC-B
DIV Y #

Stack (0 address)
Push A
Push B
SUB
Push C
Push D
Push E

DIV Y #...
STOR Y #...

MPY
ADD
DIV
Pop Y

A little bit about Stack

A list of data element
Data can be added or removed from one of
its end (top of the stack)
Static operationsStatic operations

Push
Pop
Unary operation (such as negation)
Binary operation (such as multiplication)

Stack Operation

Stack Organization

How Many Addresses
More addresses

More complex (powerful?) instructions
More registers

Inter-register operations are quicker
Fewer instructions per program

Fewer addresses
Less complex (powerful?) instructions
More instructions per program
Faster fetch/execution of instructions

Instruction Addressing

What
How is the address of an operand specified

Different addressing mode
Immediate
Direct
Indirect
Register
Register indirect
Displacement
Stack

Immediate Addressing

Operand is part of instruction
Operand = address field

OperandOpcode

Instruction

p
e.g. ADD 5

Add 5 to contents of accumulator
5 is operand

No memory reference to fetch data
Fast
Limited range

Direct Addressing

Address field contains address of operand
Effective address (EA) = address field (A)
e.g. ADD A

Add contents of cell A to accumulator
Look in memory at address A for operand

Single memory reference to access data
No additional calculations to work out effective
address
Limited address space

Direct Addressing Diagram

Address AOpcode
Instruction

Memory

Operand

Indirect Addressing

Memory cell pointed to by address field
contains the address of (pointer to) the
operand
EA = (A)EA = (A)

Look in A, find address (A) and look there for
operand

e.g. ADD (A)
Add contents of cell pointed to by contents of
A to accumulator

Indirect Addressing (Cont’d)

Large address space
2n where n = word length
May be nested, multilevel, cascaded

e.g. EA = (((A)))
Draw the diagram ?

Multiple memory accesses to find operand
Hence slower

Indirect Addressing Diagram

Address AOpcode

Instruction

Memory

Pointer to operand

Operand

Register Addressing
Operand is held in register named in address
filed
EA = R
Limited number of registersLimited number of registers
Very small address field needed

Shorter instructions
Faster instruction fetch

Register Addressing (cont’d)

No memory access
Very fast execution
Very limited address space
M lti l i t h l fMultiple registers helps performance

Requires good assembly programming or
compiler writing
Compare with Direct addressing

Register Addressing Diagram

Register Address ROpcode
Instruction

Registers

Operand

Register Indirect Addressing
EA = (R)
Operand is in memory cell pointed to by
contents of register R

Compare with indirect addressingCompare with indirect addressing
Large address space (2n)
One fewer memory access than indirect
addressing

Register Indirect Addressing Diagram

Register Address ROpcode
Instruction

Memory

Registers

OperandPointer to Operand

g

Displacement Addressing
EA = A + (R)
Address field hold two values

A = base value
R = register that holds displacementR = register that holds displacement
or vice versa

Displacement Addressing Diagram

Register ROpcode
Instruction

Memory

Registers

Address A

OperandPointer to Operand +

Indexed Addressing

A = base
R = displacement
EA = A + R
Good for accessing arrays

EA = A + R
R++

Stack Addressing
Operand is (implicitly) on top of stack
e.g.

ADD Pop top two items from stack
and addand add

Basic Addressing Mode Summary

Memory alignment

Addressing a data type large than byte must
be aligned
An access to an object of size S bytes at byte
address A is aligned if A mod s = 0.

0bxxxxxxxxxx byte (8bit) aligned0bxxxxxxxxxx byte (8bit) aligned
0bxxxxxxxxx0 half word (16bit) aligned
0bxxxxxxxx00 word (32bit) aligned
0bxxxxxxx000 double word (64bit) aligned

Why aligned?
Misalignment causes implementation complications

Little/Big Endian

Little Endian:
put the least-significant byte first

Big Endian:
put the most significant byte firstput the most-significant byte first

Big/Little Endian Example

32bit data 0xFABC0123 at address 0xFF20

0xFF20 0xFF21 0xFF22 0xFF23
Big Endian 0xFA 0xBC 0x01 0x23

Little Endian 0x23 0x01 0xBC 0xFA

Operand Types

Numbers
Integer

Byte, short, word, long word
Unsigned/signed

Floating point
Float
Double

Characters
Logical Data

Operation Types

Instruction types
Data Transfer

Moving data among registers, memory, and I/O devices
Load/store

Arithmetic
Add, sub, multiply, etc

Logical
and, or, not, xor
Logic shifting and rotating

Conversion
System Control
Transfer of control

Logic Shifting and Rotating

Transfer of Control

Branch
e.g. branch to x if result is zero

Procedure call

Branch

Unconditional branch
One of its operands is the address of next
instruction to be executed

Conditional branchConditional branch
Using status register

Execution of an instruction may change the status, e.g.
positive, negative, overflow, …

Multi-address format

Branch Example

Procedure Call

Procedure
Self-contained computer program incorporated
into a larger program

Economy and modularity

Procedure call
Call instruction

Branches to the procedure
Return instruction

Returns to the place where it was called

Call Instruction

Use register to save return address (next
instruction)

R PC + sizeof (instruction)
PC XPC X

Save the return address at the start of
precedure

X PC + sizeof (instruction)
PC X + sizeof (instruction)

Problems?

Nested Procedure Calls

Use of Stack

Last procedure call returns first (LIFO)
Pass parameters

Stack frame

Stack Frame

Assembly Programming
Use symbolic representations of instructions to program a computer.

Case Study: the MIPS Architecture
General purpose registers/Load-store

Registers
32 GPR: R0, …, R31
R0 is always 0
32 floating point registers (FPR): F0, …, F31
Special purpose registersSpecial purpose registers

e.g. status register.

Data types
8, 16, 32, 64 bit

Ex: LB R1, 40(R2)
LH R1, 40(R2)
LW R1, 40(R2)
LD R1, 40(R2)

MIPS Addressing

Can be big/little endian
All memory access must be aligned
Addressing modes

Register indirectRegister indirect
Ex: JR R1

Displacement
Ex: ST R1, 100(R2)

Addressing modes encoded in opcode

Encoding MIPS64 ISA

Fixed length encoding – 32 bits
I-type instructions
R-type instructions
J-type instructionsJ type instructions

I-type instructions

I-Type instruction:

Op code rs rt immediate
6 bits 5 bits 5 bits 16 bits

Encodes:
Loads and stores of bytes, half words, words, dwords
Condition branch

Example
LW R1, 32(R4)

100011 00100 00001 0000000000100000

BENQ R0, R1, -1
000101 00000 00001 1111111111111111

R-type instructions

R-Type instruction:

Op code rs rt rd func
6 bits 5 bits 5 bits 5 bits 11 bits

Register-Register ALU operations
rd rs func rt
Function encodes data path operation: add, sub, slt, and
Read/write special registers and moves

Example
DADD R2, R3, R4

000000 00011 00100 00010 00000 100000

Source registers Destination register Op code variant

J-type instructions

J-Type instruction:

Op code immediate
6 bits 26 bits

Encodes:
Jump and jump & link
Trap and return from exception

Example
J 0x300

000010 00000000000000001100000000

MIPS Operations

Simple instructions
Load/store, add, subtract, multiply, divide, shift, …
Ex: DADD, DADDI, DADDU

Control FlowControl Flow
Compare equal/not equal, compare less, …
Ex: BEQZ, JR

Floating point
Load/store, add, subtract,…
Ex: ADD.D, ADD.S, MUL.D, MUL.S

Load/Store

Load/Store

Arithmetical/Logical

Arithmetical/Logical

Floating point

Control Flow

MIPS Assembly Programming

“MIPS Assembly Language Programming”,
http://www.eecs.harvard.edu/~ellard/Courses/cs50-asm.pdf

Instructions
Instruction set

Number of Address
Addressing modes

Summary

Addressing modes
Operand types
Operations types

Assembly programming

