Instruction Set Architecture

Contents

Instruction

Instruction set

o Number of Address

o Addressing modes

o Operand types

o Operations types
Assembly programming

Instruction

Elements
o Opcode: What to do
o Oprand(s): data source(s)/destination(s)

Representation
o Binary bits
o ™ “tim
[oposte | opem meterme | Ot ietermncr

o Symbolic representation
Add, SUB, LOAD, etc
E.G.: ADD X, Y

Instruction Length

Affected by

o Memory size/organization, register numbers, bus
structure, etc

Flexibility vs. Implementation Complexity
Memory—transfer consideration
Fixed vs. non-fixed instructions

Instruction Set

The collection of different instructions CPU can
understand and execute

Different instructions

o Number of addresses/addressing modes

o Operand types

o Operation types

Number of Addresses

3 addresses

o Operand 1, Operand 2, Result
e.g. a=b+c

2 address

o One address doubles as operand and result
e.g.a=atc

1 address

o Implicit second address (accumulator)

0 address

o All addresses are implicitly defined

o Stack based computer

Example: Y=(A-B)/(C+D x E)

Three Addresses:
SUB Y,A B #Y< A-B
MPY T,D,E # T< DxE
ADD T,T,C #T<T+C
DIV Y,Y, T #Y&YT

Two Addresses

MOV Y, A #HYE A
SUB VY,B #YEY-B
MOV T,D #T<D
MPY TE H#TECTXE
ADD T,C #TET+C
DIV Y, T #YECYIT

Example: Y=(A-B)/(C+D x E)

One Addresses:

LOAD D #ACED Sta;uks(ho agdress)
MPY E #AC< ACXE Push B
ADD C #AC& AC+C suB
STOR Y #Y&AC Push C
LOAD A #AC¢A Push D
SUB B #AC<ACB Push E
DIV Y #... MPY
STOR Y #.. ADD
DIV
Pop Y
A little bit about Stack

A list of data element

Data can be added or removed from one of
its end (top of the stack)

Static operations

o Push

o Pop

o Unary operation (such as negation)

o Binary operation (such as multiplication)

Stack Operation

T — 1
T —) 1 o — I
3 3 3 T —H Ik
1 1. 1 1
M A Al M
PN [N [P tae | |
cant Aner s e -
G

Stack Organization

In L

1 Al o tach b oy 1B T fopp elments In reghbers

How Many Addresses

More addresses
o More complex (powerful?) instructions
o More registers

Inter-register operations are quicker
o Fewer instructions per program
Fewer addresses
o Less complex (powerful?) instructions
o More instructions per program
o Faster fetch/execution of instructions

Instruction Addressing

What

o How is the address of an operand specified
Different addressing mode

o Immediate

o Direct

o Indirect

o Register

o Register indirect
o Displacement

o Stack

Immediate Addressing

Instruction

‘Opcode‘ Operand ‘

Operand is part of instruction
Operand = address field
e.g. ADD 5

o Add 5 to contents of accumulator
o 5is operand
No memory reference to fetch data
Fast
Limited range

Direct Addressing

Address field contains address of operand
Effective address (EA) = address field (A)
e.g. ADDA

o Add contents of cell A to accumulator

o Look in memory at address A for operand
Single memory reference to access data

No additional calculations to work out effective
address

Limited address space

Direct Addressing Diagram

Instruction
|Opc0de| Address A |
Memory
Operand
Indirect Addressing

Memory cell pointed to by address field

contains the address of (pointer to) the

operand

EA=(A)

o Look in A, find address (A) and look there for
operand

e.g. ADD (A)

o Add contents of cell pointed to by contents of
A to accumulator

Indirect Addressing (Cont’d)

Large address space
2" where n = word length
May be nested, multilevel, cascaded

o e.g. EA =(((A)))
Draw the diagram ?

Multiple memory accesses to find operand
Hence slower

Indirect Addressing Diagram

Instruction

‘Opcode‘ Address A ‘

Memory
Pointer to operand

Operand

Register Addressing

Operand is held in register named in address
filed
EA=R
Limited number of registers
Very small address field needed
o Shorter instructions
o Faster instruction fetch

Register Addressing (cont’d)

No memory access

Very fast execution

Very limited address space

Multiple registers helps performance

o Requires good assembly programming or
compiler writing
o Compare with Direct addressing

Register Addressing Diagram

Instruction
‘Opcode‘ Register Address R

Registers

Operand

Register Indirect Addressing

EA =(R)

Operand is in memory cell pointed to by
contents of register R

o Compare with indirect addressing

Large address space (2")

One fewer memory access than indirect
addressing

Register Indirect Addressing Diagram

Instruction
‘Opcode‘ Register Address R ‘

Memory

Registers

Pointer to Operand Operand

Displacement Addressing

EA=A+(R)
Address field hold two values
o A = base value

o R = register that holds displacement
0 or vice versa

Displacement Addressing Diagram

Instruction
‘Opcode‘Register R| Address A |

Memory

Registers

Pointer to Operand + Operand

Indexed Addressing

A = base

R = displacement
EA=A+R

Good for accessing arrays
ot EA=A+R

o R++

Stack Addressing

Operand is (implicitly) on top of stack
e.g.

o ADD Pop top two items from stack
and add

Basic Addressing Mode Summary

Mol Algorithim Primsipal Advantage Principal Disadvantage
Tnmeudiate Operand = A o memory reference Limited operand magnitude
Direct EA= A Simple Limited addr
Indircet EA = (A} Multiple

EA-R Limited o
ect EA = (K} Extra mer
EA = AR Complexity
Sack EA = topofstack Mo memory reference Limited applicabality

Memory alighment

Addressing a data type large than byte must
be aligned
An access to an object of size S bytes at byte
address A is aligned if A mod s = 0.
Obxxxxxxxxxx byte (8bit) aligned
Obxxxxxxxxx0 half word (16bit) aligned
Obxxxxxxxx00 word (32bit) aligned
Obxxxxxxx000 double word (64bit) aligned
Why aligned?

Misalignment causes implementation complications

Little/Big Endian

Little Endian:
o put the least-significant byte first

Big Endian:
o put the most-significant byte first

Big/Little Endian Example

32bit data 0OXFABC0123 at address 0xFF20

0xFF20 OxFF21 O0xFF22

OxFF23

Big Endian O0xFA 0xBC 0x01

0x23

Little Endian 0x23 0x01 0xBC

OxFA

Operand Types

Numbers
o Integer
Byte, short, word, long word
Unsigned/signed
o Floating point
Float
Double
Characters

Logical Data

‘ Operation Types

= Instruction types
o Data Transfer
= Moving data among registers, memory, and 1/O devices
= Load/store
o Arithmetic
= Add, sub, multiply, etc
o Logical
= and, or, not, xor
= Logic shifting and rotating
o Conversion
System Control
a Transfer of control

(=}

| Logic Shifting and Rotating

[TTTTT === —TT7

.I. e o i i Y

Transfer of Control

= Branch
o e.g. branch to x if result is zero
= Procedure call

Branch

Unconditional branch

o One of its operands is the address of next
instruction to be executed

Conditional branch
o Using status register

Execution of an instruction may change the status, e.g.
positive, negative, overflow, ...

o Multi-address format

Branch Example

Memory
Address

200
201
> 202

203
Uncond itional

Branch

Instruction

SUB X, Y
BRZ 211

BRE R1.R2, 235

Conditional
Branch

Conditional
Branch

Procedure Call

Procedure

o Self-contained computer program incorporated

into a larger program
Economy and modularity

Procedure call
o Call instruction

Branches to the procedure

o Return instruction

Returns to the place where it was called

Call Instruction

Use register to save return address (next
instruction)

o R € PC + sizeof (instruction)

o PC& X

Save the return address at the start of
precedure

o X € PC + sizeof (instruction)

o PC € X + sizeof (instruction)

Problems?

Nested Procedure Calls

Addresses Main Memory
4000 l
4100 CALL Proct Main —
a0 | ——— | Program 9
aso0 [————— ‘-—»l
4600 CALL Proc2 o«
4601 | = | Procedure
4650 CALL Proc2 Procl
650 | — - TR
RETURN l A
4500
| Procedure
| Fr2
RETURN /
(a) Calls and returns (b) Execution sequence
Use of Stack
2601 4651
4101 4101 4101 4101 4101
(@) Initial stack (b} After {c) Inidal (d) After (e} Aler N ARer (g1 After
whtents CALL pProcl CALL Proc? RETURN CALL Proc2 RETURN RETURN

Last procedure call returns first (LIFO)

Pass parameters
o Stack frame

Stack Frame

vi . stack
: Pulier
"
| O Framme Poduter { Frams:
T Painter
Restairn Pelnt
stack
* Pulnier
1 0
001 Frase Pointer | o Frame 0l Frase Polnter |4
Puinter
Pl Hetarn Pt P Return Poim
(21 Pl active (b 1 s ol 1

Assembly Programming

Use symbolic representations of instructions to program a computer.

Case Study: the MIPS Architecture

General purpose registers/Load-store

o Registers
32 GPR: RO, ..., R31
RO is always 0
32 floating point registers (FPR): FO, ..., F31
Special purpose registers
0 e.g. status register.
Data types
a 8,16, 32, 64 bit
Ex: LB R1, 40(R2)
LH R1, 40(R2)

LW R1, 40(R2)
LD R1,40(R2)

MIPS Addressing

Can be big/little endian
All memory access must be aligned

Addressing modes

o Register indirect
Ex: JRR1

o Displacement
Ex: ST R1, 100(R2)

Addressing modes encoded in opcode

Encoding MIPS64 ISA

Fixed length encoding — 32 bits
o I-type instructions
o R-type instructions
o J-type instructions

I-type instructions

|-Type instruction:

6 bits 5 bits 5 bits 16 bits

‘ Op code ‘ rs ‘ rt immediate

Encodes:
o Loads and stores of bytes, half words, words, dwords
o Condition branch
Example
o LWRT1, 32(R4)
100011 00100 00001 0000000000100000

o BENQRO, R1, -1
000101 00000 00001 1111111111111111

R-type instructions

R-Type instruction:

6 bits 5 bits 5 bits 5 bits 11 bits
‘ Op code rs rt ‘ rd func
Sourcigislers/' Des!ina!ioré;isler Op co:jh'ianl

Register-Register ALU operations

o rd €rsfuncrt

o Function encodes data path operation: add, sub, slt, and

o Read/write special registers and moves
Example

o DADD R2,R3,R4

000000 00011 00100 00010 00000 100000

J-type instructions

J-Type instruction:

6 bits 26 bits
‘ Op code ‘ immediate
Encodes:

o Jump and jump & link
o Trap and return from exception
Example
o J 0x300
000010 00000000000000001100000000

MIPS Operations

Simple instructions

o Load/store, add, subtract, multiply, divide, shift, ...
o Ex: DADD, DADDI, DADDU

Control Flow

o Compare equal/not equal, compare less, ...

o Ex: BEQZ, JR

Floating point

o Load/store, add, subtract,...

o Ex: ADD.D, ADD.S, MUL.D, MUL.S

’ Load/Store

e

Daa runsers Move data berween registers and memory, or between the integer and FP or special
registrs; only memory address mode is 16-bit displacement + contents of g GPR

18,180, Lo by, Ioad byt unsigned, stoee byte tofrom nteger regites)

L0, 54 Load half word, oad baif woed unsigned, siore hal word (offrom ineger regisers)

[LALTAY Load word, load word unsigned, stone woed (1nffrom integer regisiers)

1,50 Load doubile woed, store double word (1o/from integer registers)

LLDS.S5,5.0 Load S float, boad DP float, store SP floa, store DP floal

L] Copy fromAo GPR. 1nfrom a special regisier

W5, M00.0 Cogy one SP or DP FP register to anather FP register

LR Cogy 32 bits fromyio FP registers to/from integer registers

Load/Store

Example Meaning
D A1,30(82) Load double word Rega [R1] =y el 1
Lo R, 1000{R0) Load double word Regs [R1] gy Mem[1000+0]
WL 8w Load word Hegs (A1) ey (Hem[60+Regs (#2110 " 17 Henl (21
1B 1, 30(R3) Losd byic “Regs(Rlleg, (Wom[40+Regs[R311)" 99 S
A Mem [40+5egs (R3] N
18 1, 40(R3) Load bytc umsigned __ Regs (A1) 0% 19 Mem[20Regs [R3]]
W31, 80(R3) Load half ward Bega[Ril gy (Menl10eRegs [R311,)7 4
m[wom‘ml]_um[u'neaafu:}]
T Losd FP single Regs [FO] oy, Mem[SOvRegs[R3]] ## OF
L0 70, 50(R2) Load FP double Regs [F0) g, Mem[50+Regs[R2]]
@1, 500{Re) Stvre double wond 95 (4]] =gy Megs[R3]
S_3,500(R8) Store word w500 Regs (7]]o—rp RegslRl]
Store FP single Men[80+Regs (R3] 1+ Regs[F],
Swore FP double Men[40+#egs [R3]]+—ys Regs [FO]
Store Mem(502+Regs [R2]] 14 Regs[RT)ay_es
Store hyte Mem[41+#egs [R3] 14—y Regs[R2]y, g

‘ Arithmetical/Logical

Anthmeticllogical
1400, 0A01, DADOU, DADOTU
1508, D5K8Y

ML, DML, DOIY,
10140, MA00

g, kol

(%, 081,08, ORI

w

UL, DGR, DSRA, DSLLY,
TGALY DSAY
T80TS0, 5T

Operations on integer orlogical data in GPR; igned arithmetic trap on overfiow
Add, 38 immediate (all immediates are 16 bis); signed and unsignod
Subtract; signed and unsigned

Muliply and dvide, sigoed and unsigned; maliiply-add: ll operations teke and yield 64-
bit values

And, and immediate

Or, or immediate, exclusive or, exclusive or immediate

Load upper immedise;loads it 321047 ofregister wit immedise thensign-<xiends
Shifs: bosh immediae (05 _) and variabl form (0S_V}; shifisare hift eft logical,
right bogical, right arithmetic

Set bss than, set less than immediate, signed and unsigned

‘ Arithmetical/Logical

Exampleinstruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs [R1] Regs [R2) +Regs R3]
DADDIU R1,R2Z,#3 Add immediate unsigned Regs [R1] —Regs[R2]+3

I R, Load upper immediate Regs [RI]-0%4pazsi0®® |
DSLL RI,R2,#5 Shift left logical Reqs[R1] Regs [R2] <<5

ST RILRZ,R3 Setless than if (Regs[R2] <Regs[3))

Regs[R1]«1 else Regs[R1]e0

| Floating point

hating point EP aperations on P and SP formats
A00.0,40,5,A00.75 Add DP, SP numbers, and pairs of SP nambers

8.0, 5085, A00. P Subiract DP, SP nimbers, and pairs of SP pumbers
WLOMLSMLPS Moliply DR SPAouing oint od pairs of SPnumbers
WOD.0, 00,5, 00,75 Mulriply-add DP, SP nambers and pairs of SP numbers
DIV.0,004.5,01,P5 Divide DP, SP floating poént, and pairs of SP numbers

.., Convertinstructions: (VT . converts from type X to type y, where xand y wre L
. {4t integer), N (32-bitinteger), D (DP), or § (SP). Both operands are FPRs.
| L DL .S DP and SP compures: *_"= LT,6T, LE, GE, EQ, N, sets bt in FP stadus register

‘ Control Flow

Example

instruction Instruction name Meaning

d name Jump P“C._u_:,,d-nam_e

JAL name Jump and link Regs[R31]«-PC+a; PCy, gpe—name;
S ((PC+a)-27") < name < ﬁp:+a;+2”}
JALR R2 Jump and link register Regs [R31]«—PC+4; PCe—Regs [R2]

JR R3 Jump register PCe—Regs [R3]

BEQZ R4, name Branch equal zero if (Regs[R4]==0) PLe—name;

((PC+4)-2"7) < name < ((PC+4)+2")

BNE R3,R4,name Branch mot equal zero 1f (Regs[R3]!= Regs[R4]) PCe—name;
((PC+4)-217) < name < ((PC+4)+2V7)

MOVZ R1,R2,R3 Conditional move 17 (Regs[R3]==0) Regs[R1]—Regs(R2]
if zero

MIPS Assembly Programming

“MIPS Assembly Language Programming”,
http://www.eecs.harvard.edu/~ellard/Courses/cs50-asm.pdf

Summary

Instructions

Instruction set

o Number of Address

o Addressing modes

o Operand types

o Operations types
Assembly programming

