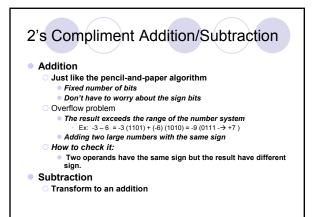
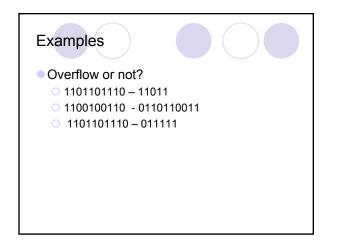
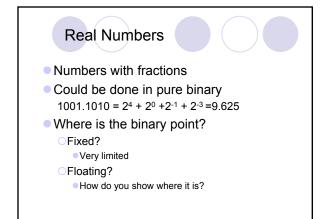
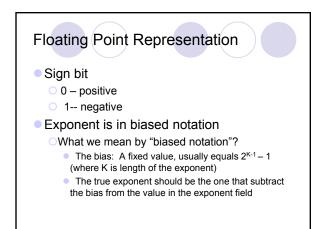

Integer Representation & Arithmetic


- Unsigned
- Signed magnitude
- 2's compliment

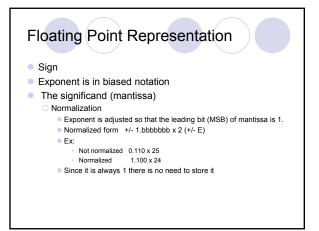

Unsigned Number • $A = \sum_{i=0}^{n-1} 2^{i} a_{i}$ • Ex: 01010101₂ = 85₁₀ 00000000₂ = 0₁₀ 11111111₂=255₁₀ • The range of the number [0, 2ⁿ-1]. (for n bits number) • For 8-bit • min: 00000000, max: 1111111 • No negative number !

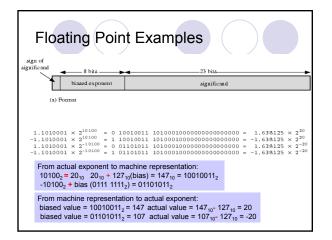


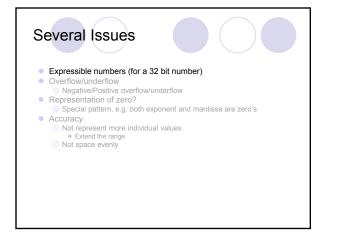


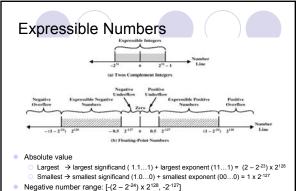
Floating Point Representation		
 Scientific notation Ex: 27600000 = 2.76 x 10⁷ 0.000000276= 2.76x 10⁻⁷ Floating point binary representation +/significand x 2^{exponent} Ex: 32-bit floating number 		
Sign bit	Exponent	Significand or Mantissa
(1)	(8)	(23)

Floating Point Representation

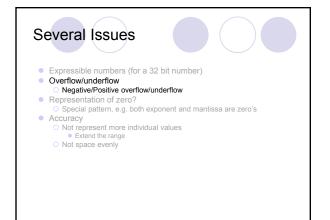

Exponent is in biased notation

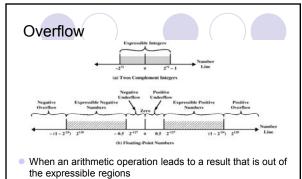

Example

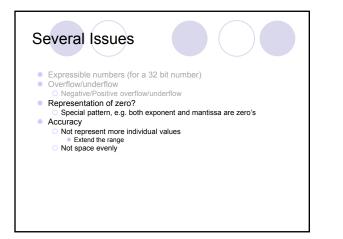

- 8 bit exponent field (K=8)
- value in the exponent field 0b10101010 = 170
- bias 2^{K-1} 1 = 127
- Pure value range 0-255, current value = 170
- Subtract 127 to get correct value, i.e. 170 127 = 43
- Range -127 to +128

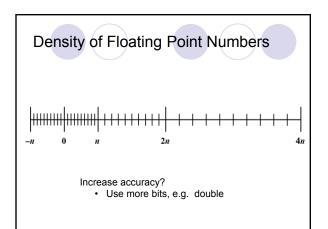

O Why biased notation?

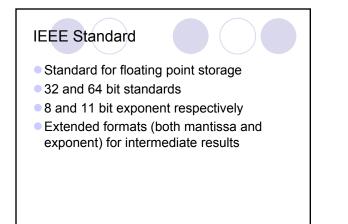
- Bias numbers can be treated similar to unsigned integers with order of the number unchanged
- Easy for comparing two floating numbers

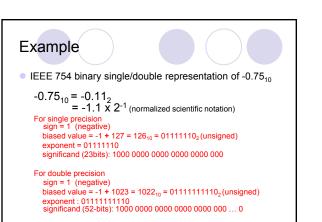


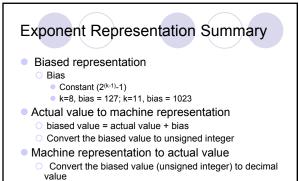





Positive number range: [2⁻¹²⁷, (2-2⁻²³)x2⁻¹², -2
 Positive number range: [2⁻¹²⁷, (2-2⁻²³)x2⁻¹²⁸]



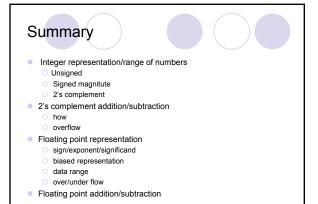

Negative/Positive overflow/underflow



IEEE 754 Fo	ormats	
hissed	-23 bits	
sign bit	-52 bits	
binsed exponent	fraction	
(b) Double format		

Example

- Decimal value for IEEE 754 binary single representation
 - ⊖ Sign 1
 - Exponent 10000001 (8bits)
 Significand 010000...0 (23bits)
- Significand = $1.01_2 = 1.25$
- Biased value = 10000001₂ (unsigned) = 129
- Actual exponent value = 129 127 = 2
- Sign = 1 (negative)
- So the decimal value = $-1.25 \times 2^2 = -5.0$



o actual value = biased value (decimal) - bias

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Arithmetic Examples • Decimal • $1.03 \times 10^{\circ} - 4.56 \times 10^{-2}$ = $1.03 \times 10^{\circ} - 0.0456 \times 10^{\circ}$ = $0.9844 \times 10^{\circ} = 9.844 \times 10^{-1}$ • Binary • $1.101 \times 2^{-1010} + 1.011 \times 2^{-1011}$ = $1.011 \times 2^{-1010} + 0.1011 \times 2^{-1010}$ = 10.0101×2^{-1001}

