
Harmonic-Fit Partitioned Scheduling For Fixed-Priority Real-Time Tasks On the
Multiprocessor Platform

Ming Fan Gang Quan
Electrical and Computer Engineering Department

Florida International University
Miami, FL, 33174

{mfan001, gaquan}@fiu.edu

Abstract

One common approach for partitioned multiprocessor
scheduling problem is to transform this problem into a
traditional bin-packing problem, with the utilization of a
task being the “size” of the object and the utilization bound
of a processor being the “capacity” of the bin. However,
this approach ignores the fact that some implicit relations
among tasks may significantly affect the feasibility of the
tasks allocated to a processor. In this paper, we present
a novel multiprocessor partitioned scheduling algorithm
for fixed-priority sporadic real-time tasks based on the
Rate Monotonic Scheduling (RMS) policy. Our approach
takes advantage of the fact that harmonic tasks can achieve
a much higher processor utilization than that defined by
a utilization bound. As demonstrated in our experiment
results, when taking the task period relationship into
consideration, our algorithm can achieve a significant
improvement over previous work.

I. Introduction

As semiconductor technology continues to scale down,

the power consumption and heat generation issues sig-

nificantly affect the performance and reliability of the

computing systems [1], [2]. Thus, the development of

computing systems, particularly the embedded real-time

systems, relies more and more on multiprocessor plat-

forms [3], [4]. A major issue in the software development

for multiprocessor architecture is how to utilize the avail-

able computing resources most effectively. To this end,

we study the problem of scheduling real-time tasks on

multiprocessor architecture based on the Rate Monotonic
Scheduling (RMS) policy.

It is a well-known fact that scheduling real-time tasks

on multiprocessor platform is NP-hard [5]. Different from

uniprocessor scheduling, the multiprocessor scheduling

need to decide not only when but also where to execute

a real-time task. The optimal uniprocessor scheduling

algorithms, such as Rate Monotonic Scheduling (RMS) and

Earliest Deadline First (EDF), become no longer optimal

any more [6] on multiprocessor system.

The general multiprocessor scheduling algorithms can

be categorized into two classes [6], [7]: global scheduling

and partitioned scheduling. In the global scheduling, all

tasks are stored in a global queue, and each task can

be scheduled into any available processor when selected

from the queue. In the partitioned scheduling, each task

is assigned to a particular processor, and will be executed

on that processor without migration. Both approaches have

their own pros and cons, and none of them dominates the

other in terms of schedulability [7].

One common approach to solve the partitioned multi-

processor scheduling problem is based on the techniques

for the bin-packing problem [5]. Coffman et al. [8]present

a survey of the standard bin-packing techniques. The most

commonly used bin-packing approaches for multiprocessor

scheduling include first-fit approach, best-fit approach and

worst-fit approach. The first-fit approach allocates each

task to the first processor that can accommodate that task.

The best-fit approach assigns a task to the processor with

the largest total utilization that still can accommodate that

task. The worst-fit approach always picks up the processor

with the smallest total utilization when allocating each

task. Abdelzaher et al. [9] develop a period-based load

partitioning heuristic, which minimizes the average worst-

case response time among all tasks. Naaman et al. propose

a bin-packing based algorithm to deal with packets on

TDMA network [10].

However, the bin-packing techniques consider only the

utilization factor of a task and the utilization bound on a

single processor, and totally ignore other parameters, such

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.41

27

2011 Ninth IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.41

27

2011 IFIP Ninth International Conference on Embedded and Ubiquitous Computing

978-0-7695-4552-3/11 $26.00 © 2011 IEEE

DOI 10.1109/EUC.2011.41

27

gquan
Typewritten Text
*

gquan
Typewritten Text
* This work is supported in part by NSF under projects CNS-0969013, CNS- 0917021 and CNS-1018108.

gquan
Line

as the period (minimum inter arrival time) and execution

requirement. In fact, certain specific parameters (i.e. period

or execution time) may affect the total performance in

terms of system utilization. For example, Kuo et al. [11]

present an efficient scheduling algorithm for fixed-priority

periodic tasks on single processor, which increases the

system utilization by combining the tasks with harmonic

relation of periods to reduce the effective task number. Han

et al. [12] propose a feasibility test approach on single

processor for RMS, in which the feasibility of a given

task set can be determined by its corresponding harmonic

counterpart. Conceivably, scheduling performance can be

improved if these factors can be integrated into the multi-

processor scheduling decisions.

In this paper, we present a new partitioned scheduling

algorithm to schedule fix-priority sporadic tasks on multi-

processor platform under RMS policy. We exploit the fact

that harmonic tasks or tasks close to harmonic can utilize

the processor more efficiently. We also conduct extensive

experiments to study the performance of our approach, and

our experimental results show that the proposed algorithm

can significantly improve the scheduling performance com-

pared with the previous work.

The rest of the paper is organized as follows. Section II

describes the task model and other background information

necessary for this paper. Section III presents our new

partitioned scheduling algorithm. Experiments and results

are discussed in Section IV, and we present the conclusions

in Section V.

II. Preliminary

In this section, we first introduce the system model

used in this paper, and then introduce some pertinent

background information and concepts necessarily for this

research. We then use an example to motivate our research.

A. System models

We first introduce the multiprocessor platform and task

model used in this paper. The multiprocessor platform

consists of M identical processors, M ≥ 2, denoted as P =
{P1,P2, ...,PM}. The task model considered in this paper

consists of N sporadic tasks, denoted as Γ= {τ1,τ2, ...,τN}.
Each task τi, where 1≤ i≤ N, is characterized by a tuple

(Ci,Ti). Ci is the worst case execution time of τi, and

Ti is the minimum inter-arrival time between any two

consecutive jobs of τi. For the sake of simplicity, we also

refer to Ti as the period of τi. In this paper, we assume

that Γ is sorted with non-decreasing period order, i.e. for

any two tasks τi,τ j ∈ Γ, Ti ≤ Tj if i < j. We also use Γk
to denote the task set on processor Pk.

TABLE I. A task set with six real-time tasks
τi Ci Ti ui

1 1 4 0.25
2 2 8 0.25
3 3 10 0.30
4 8 16 0.50
5 8 20 0.40
6 12 40 0.30

To ease our presentation, we formally define several

concepts as follows.

The task utilization of τi is denoted as ui where

ui =
Ci

Ti
(1)

The task set utilization of Γ is denoted as U(Γ) where

U(Γ) = ∑
τi∈Γ

ui (2)

Moreover, let U(Γk) represent the total utilization of all

tasks assigned to Pk.

The system utilization of a multiprocessor platform

consisting of a task set Γ and M identical processors is

denoted as UM(Γ), where

UM(Γ) =
U(Γ)

M
(3)

Liu and Layland [13] showed that a task set Γ can be

feasibly scheduled by RMS on a single processor as long

as

U(Γ)≤Θ(N) = N(21/N −1). (4)

Θ(N) is also traditionally referred to as the Liu&Layland
bound. For a multiprocessor platform with M processors,

the best known utilization bound for either global or par-

titioned fixed-priority schedule is no more than 50% [14],

[15], [16].

B. Motivation example

Before presenting our approach in detail, we first use

an example to motivate our research.

Consider a multiprocessor platform with two proces-

sors, i.e. M = 2, and a task set consisting of six tasks

with parameters shown in Table I. When scheduling those

six tasks on two processors, traditional multiple schedul-

ing techniques transform this problem to the bin-packing
problems [5]. The utilization bound on each processor is

usually used as the “capacity” of the bin, and the utilization

factor of each task is treated as the “size” of the object.

Unfortunately, it is not difficult to verify that none of the

existing bin-packing heuristics (e.g. “first-fit”, “best-fit”

and “worst-fit”) can successfully schedule the tasks listed

in Table I.

282828

(a) Processor 1

(b) Processor 2

Fig. 1. Assign tasks based on their harmonic
relationship and tasks in Table I can be
scheduled successfully on two processors.

Note that, current bin-packing based approaches allo-

cate real-time tasks solely based on their utilization factors

and simply ignore other factors such as the task period,

which can significantly affect the schedulability of a real-

time task. For example, it is a well known fact [11], [12]

that a harmonic task set, i.e. the tasks with periods being

integer multiples of each other, can have a much higher

schedulability than other non-harmonic task sets. If we

take this factor into consideration and assign τ1, τ2 and τ4

to one processor, and τ3, τ5 and τ6 to another processor,

as shown in Figure 1(a), the task set in Table I can be

perfectly scheduled on two processors.

Since tasks with harmonic relationship have much

higher feasibility on a single processor, the direct and intu-

itive idea for partitioned multiprocessor scheduling would

therefore be the one to group harmonic tasks together

and assign them to one processor. However, there are few

problems needed to be solved. First, since not all tasks

are exactly harmonic in a task set, how to determine if

they are close to harmonic. Second, how to incorporate

the harmonic information into the allocation decision. In

what follows, we present a novel partitioned scheduling

algorithm, i.e. Harmonic-Fit Partitioned Scheduling, that

can take the advantage of harmonic relationship among

tasks.

III. New algorithm

The Harmonic-Fit Partitioned Scheduling (HFPS) al-

gorithm is a harmonic-aware multiprocessor partitioned

scheduling algorithm developed for fixed-priority sporadic

tasks. When employing the harmonic relationship to im-

prove the scheduling performance, it is not necessary that

all tasks in the task set are strictly harmonic.

To this end, we first establish a metric, namely the

harmonic ratio, to quantify the degree of harmonic for a

task set. Then, we present our new partitioned scheduling

algorithm based on this harmonic metric, and study the

feasibility of the new algorithm.

A. Quantifying the harmonic

Since not all tasks in a given task set are harmonic, it is

desirable that we can quantify the harmonic of a task set.

Conceivably, the higher the harmonic of a task, the higher

the system utilization can be. To achieve this goal, we first

introduce the following concept.

Definition 1: Given a task set Γ= {τ1,τ2, ...,τN} where

τi = (Ci,Ti), let Γ′ = {τ′1,τ′2, ...,τ′N} where τ′i = (Ci,T ′i),
T ′i ≤ Ti, and T ′i |T ′j if i < j. (Note a|b means “a divides b”

or “b is an integer multiple of a”.) Then Γ′ is called a sub
harmonic task set of Γ.

For a real-time task set and its sub harmonic task sets, it

is not difficult to prove the following theorem [12].

Theorem 1: [12] Let Γ′ be a sub harmonic task set of

Γ. Then Γ is feasible on single processor under RMS if

U(Γ′)≤ 1.

Moreover, for a given task set, there may be infinite

numbers of different sub harmonic task sets. There is one

type of sub harmonic task sets that is of most interest to

us, which we call the primary harmonic task set and is

formally defined as follows.

Definition 2: Let Γ′ = {τ′1,τ′2, ...,τ′n} be a sub harmonic

task set of Γ. Then Γ′ is called a primary harmonic task
set of Γ if there exists no other sub harmonic task set (i.e.

Γ′′ = {τ′′1 ,τ′′2 , ...,τ′′n}) such that T ′i ≤ T ′′i for all 1≤ i≤ n.

One approach to identify primary harmonic task sets

for a given task set is to employ the DCT algorithm [12].

For example, with respect to τi, the DCT approach can be

briefly described as below.

C′j = Cj

T ′j =

⎧⎪⎪⎨
⎪⎪⎩

Tj, if j = i,
T ′j−1 · �Tj/T ′j−1�, if j > i,

T ′j+1

�T ′j+1/Tj	 , if j < i.
(5)

We are now ready to define a metric, i.e. the harmonic
ratio, to measure the harmonicity of a task set with

its counterpart after harmonic transformation in terms of

period.

Definition 3: Given a task set Γ, let ΓP represent the set

of all prime harmonic task sets of Γ. Then the harmonic

292929

ratio of Γ, denoted as H(Γ), is defined as

H(Γ) = min
Γ′∈ΓP ∑

τi∈Γ
(1− ΔTi

Ti
) (6)

where ΔTi = Ti−T ′i .

Intuitively, the harmonic ratio represents the relative dis-
tance of a task set to its prime harmonic task sets. In what

follows, we introduce how we develop the our proposed

Harmonic-Fit approach based on the above harmonic ratio.

B. Harmonic-Fit Partitioned Scheduling

In this subsection, we introduce a new multiprocessor

partitioned scheduling algorithm, Harmonic-Fit Partitioned
Scheduling (HFPS), to schedule fixed-priority sporadic

tasks under RMS policy. The most significant differences

between HFPS and the traditional bin-packing based ap-

proaches, (i.e. first-fit, best-fit and worst-fit), are that: 1) we

take the period relation into consideration when allocating

tasks. 2) instead of allocating tasks one by one, we allocate

tasks group by group. To take advantage of the harmonic

relationship among tasks, it is desirable to allocate tasks

with high harmonic ratio to the same processor.

The basic idea of HFPS can be briefly described as

below:

• For each task τi, construct a sub harmonic task set Γ′
based on Equation (5).

• Pick up Ki tasks, denoted as ΓKi , from high harmonic

ratio to low harmonic ratio by maximizing U(ΓKi)
while keeping U(Γ′Ki

)≤ 1.

• Find the Γopt such that U(Γopt) = maxN
i=1 ΓKi .

• Allocate Γopt to an empty processor.

The HFPS is described in more details in Algorithm 1. Γ
contains all unassigned tasks, and P contains all available

processors. We assume that Γ is sorted with non-decreasing

period order. When both Γ and P are not empty, we pick up

a group of tasks with optimal combination, in terms of total

utilization, and allocate them to one empty processor(from

line 1 to line 17). In each iteration of the “while” loop, we

first get the number of unassigned tasks from Γ (line 2). Let

Uopt denote the utilization of the optimal task group picked

up in this iteration and initialized to minus infinity in line

3. The “for” loop (from line 4 to line 13) contains three

steps: 1) transforming each task in Γ based on Equation

(5); 2) picking up Ki tasks with the higher harmonic

relation according to the harmonic ratio under the three

constrains, which can guarantee the feasibility of those

Ki tasks while maximizing the processor utilization; 3)

among all n harmonic transformations, choosing the group

that has the maximum utilization in order to optimize the

total system utilization. After finding the optimal group

of tasks by the “for” loop, assign the corresponding tasks

to the same processor (line 14). Consequently, update the

Algorithm 1 Harmonic-Fit Partitioned Scheduling (HFPS)

Require:
1) Task set :Γ = {τ1,τ2, ...τN};
2) Multiprocessor : P = {P1,P2, ...,PM};

1: while Γ
= /0 and P
= /0 do
2: n = |Γ|;
3: Uopt =−∞;

4: for i = 1 to n do
5: T ′i = Ti
6: for j = i+1 to n do T ′j = T ′j−1 · �Tj/T ′j−1�;
7: for j = i−1 downto 1 do T ′j =

T ′j+1

�T ′j+1/Tj	 ;
8: ΓKi = pick up Ki tasks from Γ such that

(1) U(Γ′Ki
)≤ 1 and

(2) H(ΓKi) is maximized

(3) U(ΓKi) is maximized;

9: if U(ΓKi)>Uopt then
10: Uopt =U(ΓKi);
11: Γopt = ΓKi ;

12: end if
13: end for
14: pick up Pk ∈ P , and assign Γopt to Pk;

15: Γ = Γ\Γopt ;

16: P = P \Pk;

17: end while
18: if Γ = /0 then
19: return “success”;

20: else
21: return “failure”;

22: end if

unassigned task set by removing the optimal task group

from Γ (line 15), and update the available processors by

removing the occupied one for P (line 16). The algorithm

succeeds if all tasks could be allocated, otherwise, it fails

(from line 18 to line 22). In what follows, we conduct

further feasibility analysis for this algorithm.

After successfully partitioning all tasks by HFPS, the

RMS policy is used on each processor. Theorem 2 for-

mally guarantees that a real-time task is feasible if it is

successfully allocated with HFPS.

Theorem 2: If a task set Γ is successfully partitioned by

HFPS on M processors and scheduled according to RMS,

then all tasks can meet their deadlines.

Proof sketch: Consider any arbitrary processor Pk and

the corresponding task set Γk. According to HFPS in

Algorithm 1, we know that if HFPS finishes successfully,

then all tasks in Γk are partitioned by group. Moreover,

there must exist a harmonic task set of Γk, denote as Γ′k,

such that

U(Γ′k)≤ 1 (7)

According to Theorem 1, we know that Γk is feasible on

303030

single processor under RMS. Thus, we see the task set

of any processor is feasible. Therefore, all tasks can meet

their deadline. �

IV. Experiments and results

In this section, we investigate the performance of our

proposed algorithm HFPS with experiments. We compare

our approach with three well-known bin-packing based

algorithms: first-fit (FF), best-fit (BF) and worst-fit (WF).

The simulation models and results are represented below.

We conducted two sets of experiment. In the first

one, we varied the task number from 20 to 200 with an

increment of 20. In the second one, we varied the system

utilization within [0.5,1.00]. For both experiments, test

cases were randomly generated based on the number of

processors, i.e. m = 4,8, and 16. And for each test point,

we generated 1,000 task sets. The minimum inter-arrival

time of each task (Ti) was uniformly distributed within

[50,500]. The utilization of each task (ui) was randomly

generated with uniform distribution within [0.02,1.00].
Then the execution time (Ci) was calculated by Ci = Ti ·ui.

We only chose task sets with system utilization within

[0.5,1.00] since task sets with smaller utilizations could

be easily schedulable. The success ratios by different

approaches, i.e. the ratio between the number of feasible

tasks and the total number of tasks, under a particular

setting were recorded correspondingly. Final results of both

sets of experiment were plotted in Figure 2 and Figure 3,

respectively.

Figure 2(a), 2(b) and 2(c) show the simulation results

for 4, 8 and 16 processors, respectively. From these figures,

we can readily observe that the proposed algorithm HFPS

outperforms others.

First, we can see that as the number of tasks increases,

HFPS achieves higher success ratio than other approaches.

For example, in Figure 2(a), when task number is 120, the

success ratio of HFPS is 80%, while that ratios of FF,

BF and WF are no larger than 70%. This is because the

more of tasks, the higher probability of HFPS to increase

the system utilization by grouping high harmonic task

together. Second, we can also see that as the number of

processors increases, the success ratio for the same task

number increases. Note that, in Figure 2(b), HFPS achieves

90% success ratio when task number equal to 120, which

is 10% greater than that in Figure 2(a). This is because

the more processors we have, the more harmonic groups

we can find. This provides us more chance to partition

the strong harmonic tasks into the same group and thus

utilize the processor efficiently. Therefore, we see that in

the experiment based on task number, HFPS outperforms

the previous work.

From the experiment results of Figure 3, we can see that

(a) Processor number m = 4

(b) Processor number m = 8

(c) Processor m = 16

Fig. 2. Experiment results for general task
sets

313131

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
tio

system utilization

FF
BF
WF
HFPS

(a) Processor number m = 4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
tio

system utilization

FF
BF
WF
HFPS

(b) Processor number m = 8

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
tio

system utilization

FF
BF
WF
HFPS

(c) Processor m = 16

Fig. 3. Experiment results for general task
sets

the success ratio of HFPS also outperforms the other three

approaches for task sets with different task utilizations. The

larger the task utilization is, the more improvement that our

approach can achieve. For example, in Figure 3(b), when

system utilization is 0.85, the success ratio of HFPS is

up to 60%, which is at least 20% more than any of other

three approaches. Thus, we see by taking the harmonic re-

lation into account during partitioned scheduling, the new

algorithm can obtain a better outcome than the traditional

bin-packing based approaches.

V. Conclusions

In this paper, we present a new multiprocessor parti-

tioned scheduling algorithm, HFPS algorithm, for fixed-

priority sporadic task systems. Our approach can take the

advantage of the harmonic relations among the tasks and

improve the feasibility. Particularly, HFPS allocates tasks

group by group in order to find the optimal combination

in terms of system utilization with respect of period. We

also present the feasibility analysis of HFPS. Furthermore,

our extensive experiment results demonstrate that the pro-

posed algorithm can significantly improve the scheduling

performance compared with the traditional work.

References

[1] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” ICSA, pp.
2–13, 2003.

[2] L.-T. Yeh and R. C. Chu, Thermal Management of Microelectronic
Equipment: Heat Transfer Theory, Analysis Methods, and Design
Practices. New York, NY: ASME Press, 2002.

[3] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A high-performance sparc cmt
processor,” Micro, IEEE, vol. 29, no. 2, pp. 6 –16, March-April
2009.

[4] W. Wolf, “Multiprocessor system-on-chip technology,” Signal Pro-
cessing Magazine, IEEE, vol. 26, no. 6, pp. 50 –54, November
2009.

[5] K. Shin and P. Ramanathan, “Real-time computing: a new discipline
of computer science and engineering,” Proceedings of the IEEE,
vol. 82, no. 1, pp. 6 –24, Jan 1994.

[6] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, no. 1, pp. pp. 127–140, 1978.
[Online]. Available: http://www.jstor.org/stable/169896

[7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” in Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation
algorithms for bin packing: a survey. Boston, MA, USA:
PWS Publishing Co., 1997, pp. 46–93. [Online]. Available:
http://portal.acm.org/citation.cfm?id=241938.241940

[9] T. Abdelzaher and K. Shin, “Period-based load partitioning and
assignment for large real-time applications,” Computers, IEEE
Transactions on, vol. 49, no. 1, pp. 81 –87, jan 2000.

[10] N. Naaman and R. Rom, “Packet scheduling with fragmentation,”
in INFOCOM 2002. Twenty-First Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 1, 2002, pp. 427 – 436 vol.1.

[11] T.-W. Kuo and A. Mok, “Load adjustment in adaptive real-time
systems,” in Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, Dec 1991, pp. 160 –170.

[12] C.-C. Han and H.-Y. Tyan, “A better polynomial-time schedulability
test for real-time fixed-priority scheduling algorithms,” in Real-Time
Systems Symposium, 1997. Proceedings., The 18th IEEE, Dec 1997,
pp. 36 –45.

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, pp. 46–61, January 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[14] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%,” in Principles of Distributed
Systems, ser. Lecture Notes in Computer Science, T. Baker, A. Bui,
and S. Tixeuil, Eds. Springer Berlin / Heidelberg, 2008,
vol. 5401, pp. 73–88, 10.1007/978-3-540-92221-6 7. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-92221-6 7

[15] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling
on multiprocessors,” in Real-Time Systems Symposium, 2001. (RTSS
2001). Proceedings. 22nd IEEE, Dec 2001, pp. 193 – 202.

[16] B. Andersson and J. Jonsson, “The utilization bounds of partitioned
and pfair static-priority scheduling on multiprocessors are 50%,” in
Real-Time Systems, 2003. Proceedings. 15th Euromicro Conference
on, July 2003, pp. 33 – 40.

323232

