
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

D-Linker: Debloating Shared Libraries by
Relinking From Object Files

Jiatai He , Pengpeng Hou , Jiageng Yu, Ji Qi , Ying Sun , Lijuan Li, Ruilin Zhao , and Yanjun Wu

Abstract—Shared libraries are widely used in software devel-1

opment to execute third-party functions. However, the size and2

complexity of shared libraries tend to increase with the need3

to support more features, resulting in bloated shared libraries.4

This leads to resource waste and security issues as a significant5

amount of generic functionality is included unnecessarily in6

most scenarios, especially in embedded systems. To address this7

issue, previous works attempt to debloat shared libraries through8

binary rewriting or recompilation. However, these works face a9

tradeoff between flexibility in usage (needs recompilation and10

runtime support) and the effectiveness of debloating (binary11

rewriting achieves insufficient file size reduction). We propose12

D-Linker, a tool that debloats shared libraries by reducing13

both code and data sections in link-time at the object level14

without recompilation. Our key insight is that object-level shared15

library debloating is especially suitable for embedded systems16

because it strikes a balance of flexibility and efficiency. D-Linker17

identifies the required ELF object files of the shared libraries18

in an application and relinks them to produce a debloated19

shared library with better-debloating effectiveness by avoiding20

the data reference analysis. Our approach achieves over 70%21

of gadgets reduction as a security benefit and an average size22

reduction of 49.6% for a stripped libc of coreutils. The results23

also indicate that D-Linker improves debloating effectiveness24

by approximately 30% compared to binary-level shared library25

debloating and incurs a 5% decrease in code gadgets reduction26

compared to source-code-level shared library debloating.27

Index Terms—Binary debloating, embedded system, shared28

library.29

I. INTRODUCTION30

SHARED libraries play a crucial role in modern software31

development by enabling code reusability and modular-32

ity [1], [2], [3]. As opposed to static libraries, which are33

susceptible to space wastage and complicated updates, shared34

libraries provide several benefits: 1) sharing a single module35

Manuscript received 12 August 2024; accepted 12 August 2024. This
work was supported in part by the National Key Research and Development
Program of China under Grant 2023YFB4503905, and in part by the HKU-
CAS Joint Laboratory for Intelligent System Software. This article was
presented at the International Conference on Embedded Software (EMSOFT)
2024 and appeared as part of the ESWEEK-TCAD special issue. This article
was recommended by Associate Editor S. Dailey. (Jiatai He and Pengpeng
Hou contributed equally to this work.) (Corresponding author: Ji Qi.)

Jiatai He and Ruilin Zhao are with the Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China, and also with the
University of Chinese Academy of Sciences, Beijing 101408, China (e-mail:
jiatai21@iscas.ac.cn; zhaoruilin22@mails.ucas.ac.cn).

Pengpeng Hou, Jiageng Yu, Ji Qi, Ying Sun, Lijuan Li, and
Yanjun Wu are with the Institute of Software, Chinese Academy
of Sciences, Beijing 100190, China (e-mail: pengpeng@iscas.ac.cn;
jiageng08@iscas.ac.cn; qiji@iscas.ac.cn; sunying@nj.iscas.ac.cn;
lilijuan@iscas.ac.cn; yanjun@iscas.ac.cn).

Digital Object Identifier 10.1109/TCAD.2024.3446712

among multiple programs eliminates the need to embed the 36

module in each program, thus minimizing space wastage and 37

2) shared libraries only require an interface, without the need 38

to recompile the program during program updating, which 39

simplifies the process and increases module independence. 40

However, the proliferation of shared libraries in diverse 41

applications [4] increases their size and complexity, because 42

of supporting for new features while maintaining the old ones. 43

For example, the shared library referenced by the CUDA 44

toolkit has grown almost five times in size from 2012 to 45

2021 [5]. These bloated portions lead to shared library bloating 46

and cause considerable waste of memory and disk space and 47

security risks, as loading a library involves mapping the entire 48

library into memory, including numerous unused functions and 49

data. A study conducted on a diverse set of 2016 programs 50

across various domains demonstrated that 95% of glibc code 51

is never used [6]. 52

Shared library bloating is a major concern, particularly in 53

scenarios with limited memory and disk storage capabilities 54

like embedded systems [7] or containers. For instance, the 55

size of the Alpine lightweight image that employs musllibc is 56

only 5.59MB, while shared libraries account for 3.9 MB [8]. 57

The bloating of shared libraries not only leads to the waste of 58

storage but also to the inefficient use of memory. Lee et al. [9] 59

demonstrated that loading an entire library, including its 60

unused components, into memory can lead to 10% RAM 61

memory wastage and 35% flush memory wastage in non- 62

MMU embedded systems due to the single address space. Even 63

systems equipped with an MMU can face memory waste due 64

to the 4KB page size and the read-ahead [10] mechanism, 65

which often results in the entire shared library being loaded 66

into physical memory. From the security perspective, failure 67

to address code bloat in shared libraries also frequently leads 68

to return-oriented programming (ROP) gadgets [11] that can 69

be stitched together by the attacker to create malicious attacks. 70

Certain critical vulnerabilities remain exploitable by attack- 71

ers despite the broadly deployed defenses [12]. To mitigate 72

these issues, the debloating of shared libraries of resource- 73

constrained scenarios like embedded systems and container 74

images is essential. 75

In resource-constrained embedded systems, different 76

systems support diverse functionalities, while each specific 77

system, such as those in the automotive or avionics industries, 78

typically requires only a subset of the functions provided 79

by shared libraries [13]. This necessitates the debloating of 80

shared libraries to address two primary considerations: 1) due 81

to the limited set of functions required by each specific 82

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0008-5570-719X
https://orcid.org/0000-0002-6480-2497
https://orcid.org/0000-0002-8548-116X
https://orcid.org/0000-0003-1313-9530
https://orcid.org/0009-0005-2701-2989
https://orcid.org/0000-0002-1823-0459

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

system, redundancy in shared libraries becomes significant,83

necessitating shared library debloating and 2) due to the84

diverse requirements of different types of embedded systems,85

the effort and computational cost associated with customizing86

and debloating code for each specific system are substantial.87

This necessitates efficient mechanisms for binary debloating.88

Existing work on shared library debloating can be catego-89

rized into two types: 1) source-code-level debloating [6], [14],90

[15], [16] and 2) binary debloating [13], [17], [18].91

The source-code-level debloating involves shared library92

debloating based on the source code, offering precise debloat-93

ing but incurring the need of source code and associated costs94

of compilation stage (e.g., lack of flexibility, need source code95

and runtime support). For example, piecewise compilation and96

loading (PCL) [6] embeds call graph information extracted97

from source code in binaries and uses a custom loader98

to rewrite unnecessary functions with invalid instructions at99

runtime, whereas BlankIt [14] and Trimmer [15] leverage100

additional analysis during compilation and load only necessary101

functions into the program’s memory at runtime based on the102

current execution point.103

The binary-level debloating does not need the source104

code, achieving high flexibility but at the cost of debloating105

effectiveness. These works use a variety of transforma-106

tion approaches, including creating specialized libraries via107

rewriting, to remove or blank unused functions with no-ops108

or invalid instructions [13], [17], fragmenting libraries [19],109

relocating symbols to statically link library functions [20],110

and replacing unnecessary library functions [21]. However,111

these works often face limitations in control flow analysis112

at the binary level [22], [23], [24], leading to the need of113

additional information (e.g., debug information [17] or specific114

ISAs [18]) and the insufficient reduction in file size.115

In this study, our key insight is that object-level debloating116

is especially suitable for embedded system shared library117

debloating, because it strikes a balance of flexibility and118

debloating effectiveness.119

First, object-level debloating offers higher flexibility120

compared to source-code-level debloating. In embedded envi-121

ronments, there is often a large amount of invalid or outdated122

source code that cannot support additional compilation and123

runtime mechanisms. In such cases, object-level debloating124

does not face these issues: 1) static library files are often125

more readily available than source code, allowing object-126

level debloating to use static libraries to generate debloated127

shared libraries and 2) object-level debloating is typically more128

efficient, as the cost of relinking is much lower than the cost129

of recompilation.130

Second, object-level debloating can erase more unused131

content compared to binary-level debloating, resulting in132

better-debloating effectiveness. As binary rewriting cannot133

resolve data references [22], [23], [24], binary-level debloat-134

ing only erases the functions in the code section (.text135

section) and cannot resolve the data reference for erasing the136

unused data in the data section [18]. Moreover, binary over-137

writing erases the code section by memory page granularity,138

so code erasing is limited to 4 KiB page size, which would139

leave some unused code in the library and affect the file140

size of the debloated library [13]. Compared to binary-level 141

(e.g., Nibbler [17], ELFtailor [13], µTrimmer [18]), debloating 142

shared library by object-level granularity removes unused ELF 143

object files rather than erases binary code, which reducing not 144

only the code sections [25] (e.g., .text) but also the data 145

sections (e.g., .data) and other sections (e.g., .rela.dyn), 146

resulting in further size reduction effectiveness improvement. 147

Finally, in practical scenarios, when faced with version 148

modifications or functional updates, object-level debloat- 149

ing presents several advantages over both binary-level 150

and source-code-level debloating. Unlike source-code-level 151

debloating, object-level debloating does not require source 152

code or additional runtime mechanisms when updating system 153

functionalities, significantly reducing the cost of updates. 154

Additionally, binary-level debloating needs modifications to 155

the code sections and ELF segment structures, which compro- 156

mise the maintainability of the shared library by increasing 157

the difficulty in debugging and introducing uncertainties in the 158

ELF format. In contrast, shared libraries produced by object- 159

level debloating are indistinguishable in format from native 160

shared libraries, minimizing additional maintenance costs. 161

Our insight leads to D-Linker, a tool which debloats shared 162

libraries in link-time at object-level by relinking the ELF 163

object files to the shared libraries. The debloating process 164

of D-Linker has two modes: 1) normal debloating mode and 165

2) in-depth debloating mode. In normal debloating mode, D- 166

Linker performs binary analysis on the target binary file to 167

generate its function call graph (FCG). Based on the FCG, 168

D-Linker identifies the used object files and then relinks 169

them to create the debloated shared library file with both 170

unused code and data sections eliminated. At the same time, 171

if certain fixed functionalities of the usage scenario are 172

determined, a better-debloating effectiveness can be achieved. 173

Therefore, we propose an in-depth debloating approach, which 174

involves dynamic tracking of shared libraries based on a 175

specific set of user-defined functional tests to achieve a 176

deeper debloating and ultimately obtain a better-debloating 177

effect. 178

D-Linker faces two challenges: 1) how to handle data 179

dependencies and 2) the completeness of symbol dependency. 180

These issues are typically resolved in normal debloating 181

through inherent symbol dependencies. However, in the case 182

of in-depth debloating, due to the inability to track data 183

symbols dynamically and the incompleteness of symbols 184

during linking, additional mechanisms are required to address 185

these challenges. We have adopted an object data dependency 186

analysis method to handle the data dependency issue in 187

in-depth debloating and use binary modification to address 188

symbol incompleteness in in-depth debloating. 189

We summarize our major contributions as follows. 190

1) We introduce D-Linker, an innovative technique for 191

debloating shared libraries by relinking from ELF object 192

files. Our approach offers the ability to reduce the size 193

of not only the code section but also the data and other 194

sections, achieving high-reduction effectiveness. 195

2) D-Linker efficiently leverages static libraries to extract 196

object files during the debloating process of most shared 197

libraries, resulting in no need of compilation and source 198

HE et al.: D-LINKER: DEBLOATING SHARED LIBRARIES BY RELINKING FROM OBJECT FILES 3

code (with a few exceptions, as elaborated in Section V),199

achieving high flexibility.200

3) We evaluated D-Linker and prior methods for debloat-201

ing shared libraries, focusing on key aspects, such202

as debloating effectiveness (i.e., file size reduction),203

runtime overhead, and security analysis. The results204

indicate that D-Linker improved debloating effectiveness205

by approximately 30% compared to the binary-level206

debloating and incurred only a 5% decrease of code207

gadgets reduction compared to the source-code-level208

debloating.209

II. BACKGROUND AND RELATED WORK210

Binary debloating has been a hot topic in security and211

embedded systems. Mulliner and Neugschwandtner [26] first212

proposed the specialization of shared libraries for runtime213

environments, with the core idea of keeping the functions214

needed in the shared libraries for different scenarios and215

removing the functions not needed in the shared libraries at216

load time. Existing works can be categorized into the following217

two approaches.218

Source-Code-Level Debloating: Quach et al. [6] proposed219

piecewise using llvm compiler for a compiler and loader-220

assisted mechanism to reduce executable code loaded by221

a process. They analyze the indirect points reference by222

interprocedure static value-flow analysis and saving a full-223

program dependency graph. Then they load the functions224

that are present in the dependency graph at load time. This225

approach worked well in removing useless code, but masking226

functions at load time incurs additional performance overhead,227

requiring source code and recompiling. Similar works, BlankIt228

proposed by Porter et al. [14] and Trimmer by Sharif et al. [15]229

BlankIt feed the functions that the user needs to call into a230

linked library using a decision tree predictor to reduce the231

exposed surface of the code, which reduces the code exposure232

surface by an average of 96%, but also increases the average233

runtime overhead by 18%.234

Binary-Level Debloating: The benefit of debloating shared235

libraries by binary analysis and erasing is to remove unused236

code without source code and recompilation, which can be237

used in more scenarios than debloating during compilation.238

Ziegler et al. [13] proposed ELFtailor, which debloats shared239

libraries in two steps: 1) running binary static analysis using240

capstone [27] and dynamic analysis using uprobes [28] to241

obtain the FCG of the application and 2) overwriting and242

erasing the functions not in the FCG and reorganizing the243

shared libraries. A similar work is proposed by Ioannis et al.244

Nibbler [17], which obtains FCG of shared library unstripped245

statically. Then, Zhang et al. [18] proposed an MIPS-based246

shared library debloating tool µTrimmer. Due to the MIPS247

instruction set, indirect pointer calls to functions can be248

thoroughly analyzed statically in shared libraries stripped,249

which is a big step forward in binary analysis. µTrimmer250

almost reaches the upper limit of the code debloating of shared251

libraries. At the same time, these works also mention that252

although the code section is debloated, they still cannot resolve253

data reference, which means binary rewriting cannot debloat 254

the data section of the shared library. 255

III. OVERVIEW OF D-LINKER 256

A. Overview 257

We present D-Linker, a tool that aims to debloat shared 258

libraries by relinking the ELF object files. 259

Debloating Modes: Our debloating process has two modes: 260

1) normal debloating mode and 2) in-depth debloating mode. 261

In the normal debloating mode, the set of object files that are 262

used is selected based on the dependencies between them, and 263

then relinked to create the debloated shared library with both 264

unused code and data sections eliminated. However, during 265

the debloating process, there may still be unused object files 266

in the set due to the presence of redundant dependencies. In 267

order to further improve the debloating effect, we introduce 268

the in-depth debloating mode. This mode involves leveraging 269

the test suite of the target program and employing binary 270

rewriting techniques to identify and eliminate unused object 271

files. By employing this approach, we aim to achieve more 272

effective debloating effectiveness. We will conduct a more 273

detailed analysis of this in following sections. 274

Challenges: To achieve the above design, we encountered 275

two challenges, which will be discussed in Section IV-B. 276

Challenge 1 (Data Reference): In the process of in-depth 277

debloating, we need to erase the references to the unused 278

object files identified by dynamic analysis. However, dynamic 279

analysis is inherently limited to detecting called functions and 280

does not adequately address data references. This limitation 281

presents a significant challenge: How can we precisely identify 282

object files that contain critical data references and therefore 283

cannot be removed during in-depth debloating? To address this 284

challenge, we employ a method to handle data reference when 285

removing object files. 286

Challenge 2 (The Completeness of Symbol Dependency): 287

Another challenge is to address the issue of symbol depen- 288

dency completeness, which primarily needs to be resolved 289

in in-depth debloating. Relinking the object files tracked by 290

dynamic analysis requires breaking dependencies between 291

some object files to achieve a better-debloating effectiveness. 292

To address this issue, we employ binary rewriting to modify 293

symbol attributes, thereby breaking dependencies between 294

certain objects. 295

Overview: Our methodology consists of three main steps. 296

First, we generate the FCG by conducting static and dynamic 297

binary analysis, with dynamic analysis performed for in-depth 298

debloating mode. Second, we identify the used object files 299

and their dependencies. Finally, we modify and relink the 300

necessary object files to generate the debloated library. Fig. 1 301

provides a visual representation of our approach, which com- 302

prises three components: 1) FCG reconstruction; 2) identifying 303

object files; and 3) relinking. Together, these components 304

involve 7 steps, with steps 3 and 6 only applicable in cases 305

where in-depth debloating is necessary. 306

FCG Reconstruction—Steps 1–4: To reconstruct the FCG 307

of the application and shared library, we employ a four-step 308

process. First, we analyze the dependency between shared 309

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Overview of D-Linker.

libraries by identifying the required shared libraries and their310

dependencies based on the .dynamic section of binary311

(step 1, Fig. 1 1). Second, we perform static binary anal-312

ysis and disassemble the application and shared libraries to313

generate the FCG of the shared libraries (step 2, Fig. 1 2).314

Third, if in-depth debloating is required by user, we validate315

the used functions of the shared libraries through dynamic316

analysis using uprobes (step 3, Fig. 1 3). Finally, we merge317

the results from Step 2 and Step 3 (if applicable) to obtain a318

comprehensive FCG (step 4, Fig. 1 4).319

Identifying Object Files—Step 5: After establishing the FCG320

of the shared libraries in Step 4, the subsequent step is to321

identify the used object files based on the guaranteed FCG. In322

cases where in-depth debloating is required, we also pinpoint323

the redundant symbol dependency between object files (step324

5, Fig. 1 5).325

Relinking—Steps 6 and 7: The relinking process consists of326

two steps. First, if in-depth debloating is necessary, we modify327

the object files identified in Step 5 and eliminate any redundant328

symbol dependencies (step 6, Fig. 1 6). Finally, we relink329

the used object files to generate debloated shared libraries,330

discarding unused object files that contain both unused data331

and code (step 7, Fig. 1 7).332

Debloating Shared Libraries of the Total System: Debloating333

shared libraries within an total system (e.g., IoT devices,334

containers) is a common use case of D-Linker, particularly in335

the context of embedded systems that encompass numerous336

binaries. D-Linker takes all the binaries of the embedded337

system as input, following a procedure analogous to the338

debloating of a single binary. The resultant debloated shared339

libraries are relinked using the union of the object files340

requisite for all binaries. In Section VI, we demonstrate the341

efficacy of D-Linker in such scenarios by debloating the342

shared libraries of an Alpine Linux system running vsftpd,343

showcasing its significant effectiveness improvements in this344

context.345

IV. DETAILED DESIGN OF D-LINKER 346

A. FCG Reconstruction 347

The reconstruction of the FCG involves three steps. First, a 348

shared libraries dependency analysis is performed to discover 349

all required shared libraries and their dependencies relevant 350

to the target application. This step ensures a comprehensive 351

understanding of the libraries required. Second, a static binary 352

analysis is conducted using disassembly tools to establish the 353

FCG of the shared libraries. However, it should be noted 354

that static analysis tools may not be able to detect all used 355

interfaces. Thus, further runtime dynamic analysis is necessary 356

when in-depth debloating is required and the result of dynamic 357

analysis would be combined with the FCG established by static 358

analysis. 359

Shared Libraries Dependency Analysis: The method used 360

for shared libraries dependency analysis involves two steps. 361

First, after loading the application, D-Linker detects the 362

dependent shared libraries based on the information stored in 363

DT_NEEDED, which is an item in the .dynamic section. 364

This step ensures that the directly dependent shared libraries 365

are identified. Second, the shared libraries identified in the 366

previous step recursively search for their own dependent 367

shared libraries using the same method. This recursive process 368

continues until a complete shared library dependency graph is 369

established, encompassing all the dependencies. 370

Once the shared library dependency graph is obtained, D- 371

Linker proceeds to detect the undefined symbols in both 372

the shared libraries and the application. This step involves 373

identifying symbols that are referenced but not defined within 374

the code. By identifying these undefined symbols, D-Linker 375

is able to gather detailed reference information about how the 376

shared libraries rely on each other. This information helps in 377

understanding the relationships and interactions between the 378

shared libraries, which is crucial for the debloating process. 379

Static Binary Analysis: During static binary analysis, the 380

initial step involves disassembling both the applications and 381

HE et al.: D-LINKER: DEBLOATING SHARED LIBRARIES BY RELINKING FROM OBJECT FILES 5

Fig. 2. Reference of object files. (a) Symbols in FCG require symbols in same object. (b) Symbols not in FCG require symbols in same object. (c) Symbols
in FCG require symbols in another object but in the same shared library. (d) Default global system not in FCG require symbols in another object but in the
same shared library. (e) Hidden global symbol not in FCG require symbols in another object but in the same shared library. (f) Symbols in FCG require
symbols in another shared library. (g) Symbols not in FCG require symbols in another shared library.

shared libraries. Subsequently, the call relationships within the382

execution path of the binary file are determined by examining383

its disassembly code and symbolic information. These findings384

are then utilized to reconstruct the FCG. It is important to385

note that the FCG solely encompasses global symbols from386

the shared libraries, as the handling of local symbol references387

is performed by our object-level debloating technique.388

The FCG described here is adequate for generating neces-389

sary object files to produce normal debloating shared libraries,390

thanks to the symbolic dependencies. However, in cases where391

in-depth debloating is needed, dynamic analysis becomes392

necessary.393

Dynamic Binary Analysis: Dynamic binary analysis serves394

as a complementary counterpart to static binary analysis by395

detecting all used functions through runtime dynamic analysis396

using uprobes. To detect functions called by function pointers397

and virtual functions in C++ that cannot be found through398

static analysis, uprobes are deployed to all the global symbols399

of shared libraries required by the application. The uprobes are400

triggered upon executing the application’s test suite, resulting401

in a list of called functions. This list is then merged with the402

FCG obtained through static binary analysis to yield the final403

FCG for the shared libraries. To obtain a precise representation404

of the target use case, it is necessary for the dynamic analysis405

test suite to cover all functionalities essential in the final406

system. This goal can be achieved by adhering to strictly407

defined procedures for interacting with the system and utilizing408

extensive test suites, as required for certification purposes.409

This requirement is particularly relevant in industries, such as410

automotive engineering.411

Dynamic analysis is employed to facilitate in-depth412

debloating, which aims to eliminate unnecessary runtime413

dependencies and improve the effectiveness of debloating414

outcomes. However, it is important to note that dynamic415

analysis relies on the coverage provided by the test suite. 416

Consequently, it cannot guarantee the proper functioning of 417

functions that are not covered by the tests. This limitation can 418

result in certain stability compromises. 419

B. Relinking 420

After obtaining the FCG in shared libraries, we select the 421

used object files based on the FCG to relink the debloated 422

shared libraries. In this section, we will discuss how D- 423

Linker handles the reference between object files especially 424

the data reference (Challenge 1) and relinks the object files 425

with incomplete symbol dependency (Challenge 2). 426

Symbols in Object Files: Symbols within object files are 427

classified into two types: 1) symbols included in the FCG 428

and 2) symbols not included in the FCG, as shown in 429

Fig. 2. 430

Resolve Challenge 1: We employ a method to generate a 431

set of used object files with safe data reference. The method 432

for generating a set of used object files is outlined as follows: 433

First, we categorize the dependencies into two types: 1) data 434

dependencies, which refer to references to data type symbols 435

and 2) function dependencies, which refer to references to 436

function type symbols. 437

Second, we generate a full dependency set, encompassing 438

both function and data dependencies, and a data depen- 439

dency set for each object file. This process is described in 440

Algorithm 1 as follows: for every object file, we add its 441

dependent object files to the dependency set, continuing this 442

process for all object files in the set until there are no 443

more references to external object files. When constructing 444

the full dependency set, we consider both function and data 445

dependencies. However, when forming the data dependency 446

set, we focus exclusively on data dependencies. 447

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Algorithm 1 Get Full Dependency Set and Data Dependency
Set
Require: Object files of a shared library O;
Ensure: full dependency set F and data dependency set D;

1: function DFSFINDDEPENDENCY(o, dependency)
2: if dependency == full then
3: F(o).add(o)

4: /* x is a object file referenced by o */
5: for x ∈ fullreference(o) do
6: if x �∈ F(o) then
7: DFSFINDDEPENDENCY(x, full)
8: F(o).add(F(x))
9: end if

10: end for
11: else if dependency == data then
12: D(o).add(o)

13: /* x is a object file data referenced by o */
14: for x ∈ datareference(o) do
15: if x �∈ D(o) then
16: DFSFINDDEPENDENCY(x, full)
17: D(o).add(D(x))
18: end if
19: end for
20: end if
21: end function
22: for o in O do
23: DFSFINDDEPENDENCY(o, full)
24: DFSFINDDEPENDENCY(o, data)
25: end for

Finally, the used object set in normal debloating consists448

of the object files that contain the symbols appearing in the449

FCG and their associated full dependency set. In the context of450

in-depth debloating, the used object set comprises the object451

files for all symbols present in the FCG, obtained from both452

static and dynamic analysis, as well as their corresponding453

data dependency sets.454

It is significant to highlight the dependencies that were elim-455

inated during the debloating process. We specifically consider456

single-step references between object files, as recursive single-457

step references can resolve the overall dependency. In Fig. 2,458

the references to symbols within object files are depicted.459

Fig. 2(a) and (b) correspond to references within the same460

object file, but these do not need to be taken into account due461

to the object-level granularity of debloating. Fig. 2(c) contains462

two types of symbol references in the FCG: 1) references463

to symbols exported by the shared library in other objects464

and 2) references to symbols not exported by the shared465

library in other objects. These references will be retained after466

debloating. Additionally, Fig. 2(d) and (e) illustrate additional467

references of symbols that are not present in the FCG but exist468

within the same object file as the symbols in the FCG. These469

references arise due to the object-level debloating granularity470

and will be kept in normal debloating. In cases where in-depth471

debloating is required, these references will be eliminated472

through binary rewriting. When dealing with cross-shared473

libraries, it is necessary to distinguish between the references474

TABLE I
REDUCTION OF LIBRARY TOTAL SIZE

from symbols in the FCG to other shared libraries (Fig. 2(f) 475

should not be removed) and the references from symbols 476

not in the FCG to other shared libraries (Fig. 2(g) should 477

be removed). In normal debloating, Fig. 2(g) will also be 478

retained, but this kind of reference will be removed through 479

binary rewriting when in-depth debloating is required. 480

Resolve Challenge 2: To remove the references in in-depth 481

debloating, we need to perform binary rewriting to change 482

the attribute of undefined symbols which reference symbols 483

in removed object files from “undefined” to “weak”. 484

This is necessary to ensure that we avoid causing “symbol 485

undefined” errors when we load the library linked from 486

the object files into memory. After performing the binary 487

rewriting, we can proceed to relink the object files and obtain 488

the debloated library. 489

C. Data Reference (Compared to Binary-Level Debloating) 490

One notable advantage of D-Linker over previous binary- 491

level debloating methods is that we utilize object files to 492

debloat various sections in binary besides code section, such 493

as data sections and relocation tables. In this section, we will 494

introduce how D-Linker reduces the size of the data sections in 495

shared libraries. 496

Limitation to Binary Analysis Debloating Tools: Prior 497

debloating tools that rely on binary analysis and rewriting 498

are unable to reduce data sections due to several challenges. 499

One of the primary difficulties lies in the fact that runtime 500

operations often involve references to data and updates to 501

pointers. Existing binary analysis techniques have difficulty in 502

providing an accurate analysis of the indirect control flow of 503

data access, making it challenging to reduce data sections [18], 504

HE et al.: D-LINKER: DEBLOATING SHARED LIBRARIES BY RELINKING FROM OBJECT FILES 7

[22], [23], [24]. Additionally, conventional methods, such505

as deploying probes, that set breakpoint instructions at the506

function entry point are insufficient to detect access to data507

blocks. These limitations make it challenging to resolve data508

references using symbol tables and disassembly code with509

existing techniques. Hence, debloating data sections with such510

tools has been a significant challenge.511

Why D-Linker can Debloat Data Sections? D-Linker512

employs an innovative method to debloat shared libraries513

through relinking from object files. This allows direct debloat-514

ing of data sections and circumvents the complexities of515

analyzing control flows of data access. In object files, functions516

access data either via symbolic tables from other object files517

or within the object itself. Upon linking a shared library, these518

data blocks consolidate, leading to runtime calculations and519

updated pointers, complicating reference resolution via binary520

analysis.521

D-Linker addresses this by utilizing symbol reference anal-522

ysis between object files, eliminating the need to examine523

consolidated data blocks within shared libraries. Additionally,524

by debloating at the object level, D-Linker mitigates concerns525

about data access within object file. Consequently, by selecting526

necessary data blocks and discarding redundant object files527

before linking, D-Linker effectively reduces data section sizes528

without delving into indirect control flow analysis.529

V. IMPLEMENTATION530

In this section, we provide details on the implementation of531

D-Linker.532

Binary Analysis: We use static and dynamic binary analysis533

to generate the complete FCG: the static analysis part uses cap-534

stone [27] and objdump for binary disassembly; the dynamic535

analysis part is done by using uprobes to get the triggered536

functions. We use python and nm [29] to read the symbol table537

of ELF files and resolve dependencies between object files.538

For the shared library files opened by dlopen(), D-Linker539

needs to know in advance the shared libraries and their object540

file locations that need to be opened. Static analysis cannot541

guarantee the correctness of its FCG, and dynamic analysis is542

required to ensure its correctness.543

Obtain the Object Files: Due to the fact that the majority of544

shared libraries have corresponding static libraries, D-Linker545

can extract object files from the static libraries, which enables546

D-Linker to debloat shared libraries without source code in547

most cases. In our evaluation, aside from libc, which required548

additional object files for dynamic linking (e.g., dlstart.o), all549

other shared libraries were debloated by relinking the object550

files extracted from the static libraries without the source code.551

VI. EVALUATION552

We conducted an evaluation of D-Linker on Ubuntu 20.04,553

which is a Linux operating system running on x86-64554

architecture. To test the effectiveness, we executed various555

applications, including Nginx (v1.9.2), Coreutils (v9.1), Sqlite556

(v3.40.0), Openssh (v7.3), and Vsftpd (v3.03), to evaluate557

their effectiveness in reducing bloat. All of the aforementioned558

applications were implemented using musllibc (v1.2.3) [30] as 559

the C library. 560

For in-depth debloating, we selected Vsftpd, which is a 561

lightweight and secure FTP server for Unix-like systems, used 562

in debloating evaluation of prior work [13] and a complete 563

Alpine [8] system which is often used in docker and IoT as 564

our evaluation targets. We developed a testing script for Vsftpd 565

(both normal and in-depth debloating), encompassing various 566

tasks, including user login, logout, file upload, and download, 567

with SSL transfers facilitated by Vsftpd. During the dynamic 568

analysis phase, this script was deployed on both a standalone 569

Vsftpd application and a whole Alpine system equipped with 570

Vsftpd. Following the debloating procedure, we persistently 571

employed this script as a test case to authenticate the accuracy 572

of our in-depth debloating methodology. 573

Following is the structure of this section. In Section VI-A, 574

we analyze the file size of debloated shared libraries. In 575

Section VI-B, we discusses the effectiveness of debloating 576

object files and functions, evaluating the dependencies of the 577

object files. In Section VI-C, we analyze the debloating of 578

data sections. In Section VI-D, we carried out an investigation 579

into the dependencies among object files within multiple 580

shared libraries to conduct further analysis of our debloating 581

results. In Sections VI-E and VI-F, we evaluate the security 582

benefits of D-Linker by analyzing reduction of gadgets and 583

compare D-Linker with related works. In Section VI-F, we 584

quantitatively compared the code debloating capabilities of D- 585

Linker and ELFtailor [13], as well as the security benefits 586

observed with D-Linker and piecewise. Finally, we evaluated 587

D-Linker’s effectiveness against other debloating techniques in 588

terms of file size reduction, runtime availability, and security 589

analysis, demonstrating D-Linker’s superior advantages in 590

embedded scenarios. 591

A. Reduction of File Size 592

Reduction of Normal Debloating: Table I presents the 593

file sizes of shared libraries for both debloated and base- 594

line (stripped) versions across various target applications(the 595

unannotated applications are normal debloating, and the same 596

applies to the following tables). The Program column denotes 597

the shared libraries associated with each target application 598

case, noting that Vsftpd does not debloat libgcc_s. D-Linker 599

achieved the highest reduction in Nginx, minimizing 77.4% 600

of its shared library size, whereas Openssh had the lowest 601

reduction at 21.2%. The variation in debloating efficacy among 602

different applications primarily stems from the disparate effec- 603

tiveness in debloating their dependent libraries, which we will 604

elaborate on. Specifically, D-Linker consistently performed 605

best with libc across all cases, achieving a reduction of 606

72.3% for Nginx and 49.6% for Coreutils. This efficacy is 607

attributed to musllibc’s extensive set of functions, including 608

multithreading and mathematical libraries, which are largely 609

unused and thus removable. Other notable results include an 610

86.4% reduction in libcrypto for Nginx. In contrast, debloating 611

is less effective for libraries closely aligned with application 612

requirements; for example, libreadline used in Sqlite was only 613

reduced by 3%. This limited reduction is due to the significant 614

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE II
REDUCED OBJECT FILES OF THE LIBRARY

functional overlap between the library and application, coupled615

with the dense distribution of functions and data blocks within616

the library’s object files, leading to a retention of many617

superfluous functions.618

Reduction of Indepth Debloating: The results of the in-depth619

debloating experiment demonstrate a significant improvement620

in the overall reduction effect of vsftpd, by approximately621

23.8%, compared to normal debloating. Regarding the reduc-622

tion of libraries, the libcrypto library was identified as the623

most significant, resulting in an additional reduction of approx-624

imately 38%. The libssl library also achieved a reduction of625

above 29.1%, which achieved an implementation above 20%626

compared to normal debloating.627

Overall, D-Linker’s normal debloating and in-depth debloat-628

ing achieved satisfactory results in most cases, demonstrating629

D-Linker’s effectiveness in file size reduction. However,630

certain shared libraries (e.g., libssl) do not exhibit similar631

effectiveness in debloating. This issue will be discussed in632

detail in Section VI-D.633

B. Reduction of Object Files and Functions634

Reduction of Normal Debloating: Tables II and III summa-635

rize the normal debloating results for object files and function636

symbols across five applications. Our method showed signifi-637

cant reductions, particularly with libc, which was reduced by638

66%-74% in object files and approximately 70% in functions.639

Similarly, libcrypto usage in Nginx was reduced by 95.5%,640

requiring only 25 out of 556 object files. In contrast, libssl641

and libreadline demonstrated minimal reduction, with libssl in642

Vsftpd and libreadline in Sqlite having only 8 and 9 object643

files debloated, respectively, and this will be discussed in 644

Section VI-D. 645

Reduction of Indepth Debloating: In the case of in- 646

depth debloating, the reduction of function symbols achieved 647

a 42.2% improvement and the reduction of object files 648

achieved a 20.2% improvement compared to normal debloat- 649

ing. Furthermore, it was evident that the reduction of libcrypto 650

surpasses that of libssl. This will be discussed in Section VI-D. 651

Overall, we can observe that D-Linker removed plenty of 652

redundant object files, thereby eliminating redundant func- 653

tions. This indicates that, in most scenarios, some redundant 654

object files are linked into the shared libraries. Therefore, 655

for resource-constrained environments, object-level debloating 656

proved to be an efficient approach. 657

C. Reduction of Data Sections 658

A clear advantage of D-Linker over previous works is 659

that D-Linker can debloat data sections (e.g., .data and 660

.rodata sections) in a shared library, bypassing the accurate 661

analysis of the control flow of data access. 662

Tables III and IV summarize the number of data symbols 663

and the size of the data section debloated by D-Linker. 664

The data symbols were counted from the symbol table 665

of the shared library; the size of the data section was read 666

from the .data and .rodata sections (in addition to the 667

code and data sections, other sections, such as .rela.dyn, 668

were also debloated, and here, we are only concerned with 669

the debloating of the data part). In normal debloating, nginx 670

achieved the most efficient reduction above 70% in data size 671

and 78% in data symbol. 672

In the case of in-depth debloating, the in-depth debloating 673

technique achieved an improvement of 20.6% in data symbol 674

reduction and 11.3% in size reduction compared to normal 675

debloating. In summary, the effectiveness in the libc library 676

was excellent both in terms of number (about 70% on average) 677

and size (about 80% on average), while the effectiveness in 678

the libssl (6% on number and 10% on size) and libreadline 679

(almost no debloating) were not noticeable. The reason of this 680

will also be discussed in Section VI-D. 681

Overall, we can observe that, through object-level debloat- 682

ing, D-Linker effectively debloated the data sections in shared 683

libraries. 684

D. Analysis of Object File Dependency 685

As the analysis from above sections, the effectiveness 686

of D-Linker on the different shared libraries was different. 687

The main reason is the different organization of object file 688

dependence in shared libraries, and this section analyzes the 689

object file dependencies in different libraries to evaluate the 690

unequal effectiveness of debloating is related to the object file 691

dependence in shared libraries. 692

Tables I–III show that shared libraries, such as libc, had a 693

more excellent debloating effectiveness. In contrast, libraries 694

such as libssl and libreadline were poor, mainly related to the 695

dependencies of object files in shared libraries. The reasons 696

are as follows. 697

HE et al.: D-LINKER: DEBLOATING SHARED LIBRARIES BY RELINKING FROM OBJECT FILES 9

TABLE III
REDUCED SYMBOLS OF THE LIBRARY

TABLE IV
REDUCED DATA OF THE LIBRARY

Number of Symbols in Object Files: The number of object698

files and functions in shared libraries is not proportional;699

libraries with fewer symbols per object file exhibit better-700

debloating effectiveness. For instance, libc, the shared library701

Fig. 3. Distribution of symbols in Libssl and Libc.

with the most object files (1341), has 1670 exported functions, 702

whereas libcrypto has 556 object files but 3563 functions, and 703

libssl has 46 object files with 489 functions. Consequently, 704

libc’s sparser distribution of functions results in superior 705

debloating effectiveness. Detailed analysis (Fig. 3) shows that 706

libc’s object files uniformly contain fewer symbols (within 5), 707

while libssl has object files with many symbols, such as 708

ssl_lib.o with 148 symbols. This dependency on heavily 709

populated object files renders libssl essential to the shared 710

library, leading to poor debloating effectiveness. 711

Reference Graph of the Library: We also analyzed the 712

reference graph of libssl, as shown in Fig. 4, the reference 713

graph between the object files in libssl; we can see that most of 714

the nodes have a large degree of entry and exit, which causes 715

the entire graph to be distributed more aggregated and thus 716

the number of complete subgraphs (smallest subgraph without 717

undefined symbols) is small. As shown in Fig. 5, in libssl, 718

80% of the object files are in the subgraph with more than 719

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Reference graph of Libssl.

Fig. 5. Object files in the subgraph of Libssl.

35 object files, which makes access to the symbols in these720

objects necessarily dependent on most of the object files in721

libssl and also causes poor debloating effectiveness because722

the subgraphs contain numerous nodes (object files).723

E. Security Evaluation724

We used D-Linker to measure four common gadget725

types [11]: 1) syscall; 2) stack pointer update (SPU);726

3) jump-oriented programming (JOP); and 4) call-oriented pro-727

gramming (COP). As shown in Table V, D-Linker performed728

exceptionally well in removing the syscall gadget class, with729

its reduction ratio far exceeding that of the corresponding code730

reduction. We found that most of the erased syscall instruc-731

tions come from unused functions in musllibc. The reduction732

for SPU and JOP types was similar to our achieved code733

reduction. Overall, this experiment indicated that D-Linker can734

significantly increase the costs for adversaries to launch code-735

reuse attacks. Furthermore, the security benefits of D-Linker736

will be compared with piecewise [6, Sec. VI-F].737

F. Comparative Analysis With Prior Work738

We divide our comparative experiments into three parts.739

In the first part, we aim to validate the effectiveness740

of our embedded pruning approach by comparing it with741

Elftailor [13], which also targets embedded scenarios. We742

will evaluate the shared library size, memory usage, code743

section size, and the amount of dead code executable code. In744

the second part, we assess the security benefits of our approach745

by comparing it with piecewise, a prior debloating work that746

also targets musllibc, in order to demonstrate the security747

TABLE V
GADGETS REDUCTION OF D-LINKER

Fig. 6. Comparison with ELFtailor, remain code means code not debloated
and overwritten in shared libraries, baseline is the original musllibc.

improvements achieved by D-Linker. In the third part, we 748

conduct a functional comparison of our pruning methodology 749

with all known binary pruning techniques to elucidate the 750

advantages and limitations of D-Linker. 751

Comparison With ELFtailor: To validate the advantages of 752

D-Linker in terms of disk space and memory savings, we com- 753

pare it with ELFtailor [13], a prior approach that also targets 754

binary scenarios and utilizes dynamic and static analysis. As 755

illustrated in Fig. 6, we utilized D-Linker and ELFtailor to 756

debloat shared library (not stripped because of symbol number 757

analysis) of coreutils, with the test cases derived from the 758

coreutils test suite. The comparison encompasses four aspects: 759

1) total file size; 2) code section size; 3) unused code size; 760

and 4) memory usage. 761

From the experimental results, it can be observed that due 762

to ELFtailor’s reliance on binary rewriting, it encounters lim- 763

itations related to 4KB block size constraints and an inability 764

to eliminate data sections. This granted D-Linker a significant 765

advantage above 30% over ELFtailor in terms of file size 766

HE et al.: D-LINKER: DEBLOATING SHARED LIBRARIES BY RELINKING FROM OBJECT FILES 11

TABLE VI
COMPARING WITH PIROR WORKS

Fig. 7. Reduced gadgets comparison with piecewise, baseline is the original
musllibc.

Fig. 8. Load time comparison with piecewise, baseline is the original
musllibc.

reduction. Consequently, ELFtailor’s advantage in code size767

reduction was not as prominent when compared to D-Linker.768

However, ELFtailor’s finer-grained binary analysis enabled769

it to replace unused code with NOP operations, offering770

advantages above 10% over D-Linker in terms of unused771

code elimination. In terms of memory usage, D-Linker’s772

file size reduction can be effectively reflected in memory773

utilization, leveraging the existing Linux memory management774

mechanisms. Additionally, the debloating of the data sec-775

tion translates to significant memory savings in multiprocess776

scenarios, surpassing the capabilities of ELFtailor and other777

related works.778

Comparison With Piecewise: To evaluate the security779

performance of D-Linker, we compared its effectiveness in780

reducing gadgets with that of piecewise [6]. Piecewise opti-781

mizes the compilation process at the source code level during782

linking, thereby minimizing the amount of unused code loaded783

into memory and enhancing security benefits. As illustrated in784

Fig. 7, our analysis of various gadgets showed that although785

piecewise, due to its source-level optimizations, had certain786

advantages above 5% over D-Linker, and the requirement for787

source code and the additional costs incurred during load788

time (as shown in Fig. 8) make D-Linker highly attractive for789

security optimizations in embedded scenarios.790

Comparison With Other Works: Finally, we compared exist- 791

ing shared library pruning tools and evaluated their features 792

against those of D-Linker. As shown in Table VI, we assessed 793

each tool based on several criteria: requirement for source 794

code, need for additional runtime mechanism support, debloat- 795

ing granularity, introduction of runtime overhead, security 796

evaluation, and ability to debloat data sections. Approaches 797

we compared included piecewise [6] and ELFtailor [13], 798

as previously mentioned, along with BlankIt [14] and 799

µTrimmer [18]. We observed that source-based optimizations 800

by piecewise and BlankIt offer apparent advantages in code 801

debloating, reflected in security assessments. However, these 802

come at the cost of increased runtime overhead. Additionally, 803

ELFtailor, while effective, is less efficient than D-Linker in 804

reducing shared library size due to the overhead introduced by 805

binary-level rewriting, as previously discussed. Both ELFtailor 806

and D-Linker employ dynamic analysis during the debloating 807

process, whereas µTrimmer avoids dynamic analysis but is 808

limited to the MIPS instruction set. Among all the tools eval- 809

uated, only D-Linker effectively debloats data sections. Based 810

on the above evaluations, we find that D-Linker’s object-file- 811

level debloating offers several advantages: reduced disk and 812

memory usage, elimination of the need for a compilation 813

process during linking, no introduction of runtime overhead, 814

and significant security benefits. These advantages make 815

D-Linker more suitable for embedded scenarios compared to 816

prior works. 817

VII. DISCUSSION 818

In this section, we discuss D-Linker’s effectiveness, limita- 819

tions, and future works. 820

Analysis of D-Linker’s Effectiveness: The advantage of 821

D-Linker in terms of debloating, compared to other works, 822

mainly stems from its object file-based debloating granularity. 823

This approach ensures that many unnecessary sections beyond 824

the code segments, such as relocation information, symbol 825

information, and data section, are omitted from the binary. This 826

advantage becomes particularly evident in in-depth debloating 827

scenarios. However, the number of object files that can 828

be debloated is heavily dependent on the interdependencies 829

among object files within shared libraries. For instance, in 830

musllibc, most functions correspond to individual object files, 831

enabling D-Linker to achieve nearly function-level debloating 832

granularity, resulting in better outcomes. This distinction 833

accounts for the variation in debloating effectiveness across 834

different shared libraries and underscores why D-Linker, with 835

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

its object file-based debloating approach, achieves superior836

reduction in size compared to previous works.837

D-Linker’s Limitations: D-Linker debloats shared library by838

object-level granularity, which causes more reduction effec-839

tiveness than other tools [13], [17], [18] that only debloat the840

code section. However, D-Linker still has two limitations.841

First, due to the poor code design or other reasons, there are842

always software or shared libraries with high coupling between843

code modules, resulting in a tight dependency between the844

object files in the shared libraries, and more symbols are845

contained in the same object file, which can affect the846

effectiveness of D-Linker. Anyhow, for this case, it is still847

possible to use other binary-level debloating tools to debloat848

the shared library after being debloated by D-Linker, which849

is in principle better than any binary-level debloating tool.850

Second, as for the in-depth debloating, the tradeoff for its851

superior debloating effect over static linking is that it can only852

guarantee effectiveness within the scope of the test cases.853

Future Work: D-Linker only relinks the object files without854

making further binary-level changes and does not use the855

reference information of applications and libraries completely.856

In future work, further analysis of dependencies and unused857

code between object files during the debloating process can858

reduce useless dependencies between objects by wiping out859

symbols, binary rewriting, etc., which will further improve the860

debloating effectiveness.861

VIII. CONCLUSION862

In this article, we propose a object-level debloating863

approach to enhance debloating effectiveness while ensuring864

flexibility of usage. The object-level debloating offers higher865

flexibility compared to the source-code-level debloating,866

and is more precise compared to the binary-level debloat-867

ing, resulting in a better-debloating effectiveness. Based868

on this approach, we also propose D-Linker, a tool that869

debloats shared libraries by reducing both code and data870

sections at object-level without recompilation. D-Linker effec-871

tively extract object files from the corresponding static library872

of shared libraries, thereby eliminating the need of compilation873

and source code. We have applied D-Linker to debloat shared874

libraries of vsftpd and our approach achieves an average875

reduction in size of 27.6% for shared libraries, a maximum876

reduction of vsftpd in size of 44.9% when specific features877

are identified. The results indicate that D-Linker improves878

debloating effectiveness by approximately 30% compared to879

binary-level shared library debloating. Additionally, in terms880

of security, it incurs a 5% decrease in code gadgets reduction881

compared to source-code-level shared library debloating.882

REFERENCES883

[1] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity.884

Cambridge, MA, USA: MIT Press, 2000.885

[2] A. N. Habermann, L. Flon, and L. Cooprider, “Modularization and886

hierarchy in a family of operating systems,” Commun. ACM, vol. 19,887

no. 5, pp. 266–272, 1976.888

[3] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of software in distributed889

embedded automotive systems,” in Proc. 4th ACM Int. Conf. Embed.890

Softw., 2004, pp. 203–210.891

[4] J. Larus, “Spending moore’s dividend,” Commun. ACM, vol. 52, no. 5, 892

pp. 62–69, 2009. 893

[5] “Shared library loading.” Accessed: Aug. 30, 2022. [Online]. Available: 894

https://os.educg.net/2022CSCC?op=6 895

[6] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece- 896

wise compilation and loading,” in Proc. 27th USENIX Security Symp. 897

(USENIX Security), 2018, pp. 869–886. [Online]. Available: https:// 898

www.usenix.org/conference/usenixsecurity18/presentation/quach 899

[7] H. Lekatsas and W. Wolf, “Code compression for embedded systems,” 900

in Proc. 35th Annu. Design Autom. Conf., 1998, pp. 516–521. 901

[8] “Alpine official image.” DockerHub. 2022. Accessed: Aug. 30, 2022 902

from [Online]. Available: https://hub.docker.com/_/alpine 903

[9] J. Lee, J. Park, and S. Hong, “Memory footprint reduction with quasi- 904

static shared libraries in MMU-less embedded systems,” in Proc. 12th 905

IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2006, pp. 24–36. 906

[10] “readahead(2)—Linux manual page.” 2022. Accessed: Aug. 30, 2022. 907

[Online]. Available: https://www.man7.org/linux/man-pages/man2/ 908

readahead.2.html 909

[11] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented 910

programming: Systems, languages, and applications,” ACM Trans. Inf. 911

Syst. Security (TISSEC), vol. 15, no. 1, pp. 1–34, 2012. 912

[12] “BlueKeep vulnerability (CVE-2019-0708): National vulnerability 913

database.” NIST. 2019. [Online]. https://nvd.nist.gov/vuln/detail/CVE- 914

2019-0708 915

[13] A. Ziegler, J. Geus, B. Heinloth, T. Hönig, and D. Lohmann, “Honey, 916

I shrunk the ELFs: Lightweight binary tailoring of shared libraries,” 917

ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, pp. 1–23, Oct. 2019. 918

[Online]. Available: https://doi.org/10.1145/3358222 919

[14] C. Porter, G. Mururu, P. Barua, and S. Pande, “Blankit library debloating: 920

Getting what you want instead of cutting what you don’t,” in Proc. 921

41st ACM SIGPLAN Conf. Program. Lang. Design Implement., 2020, 922

pp. 164–180. 923

[15] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “TRIMMER: 924

Application specialization for code debloating,” in Proc. 33rd 925

ACM/IEEE Int. Conf. Autom. Softw. Eng., 2018, pp. 329–339. 926

[16] B. Shteinfeld, “LibFilter: Debloating dynamically-linked libraries 927

through binary recompilation,” Undergraduate Honors Thesis, Brown 928

Univ., Providence, RI, USA, 2019. 929

[17] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and 930

G. Portokalidis, “Nibbler: Debloating binary shared libraries,” in Proc. 931

35th Annu. Comput. Security Appl. Conf., 2019, pp. 70–83. 932

[18] H. Zhang, M. Ren, Y. Lei, and J. Ming, “One size does not fit 933

all: Security hardening of MIPS embedded systems via static binary 934

debloating for shared libraries,” in Proc. 27th ACM Int. Conf. Archit. 935

Support Program. Lang. Oper. Syst., 2022, pp. 255–270. 936

[19] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven 937

software debloating,” in Proc. 12th Eur. Workshop Syst. Security, 2019, 938

pp. 1–6. 939

[20] I. Grammatech. “Binary reduce.” 2022. [Online]. Available: https:// 940

grammatech.github.io/prj/binary-reduce/ 941

[21] A. Turcotte, E. Arteca, A. Mishra, S. Alimadadi, and F. Tip, “Stubbifier: 942

Debloating dynamic server-side JavaScript applications,” Empir. Softw. 943

Eng., vol. 27, no. 7, p. 161, 2022. 944

[22] A. Altinay et al., “BinRec: Dynamic binary lifting and recompilation,” 945

in Proc. 15th Eur. Conf. Comput. Syst., 2020, pp. 1–16. 946

[23] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without 947

control flow recovery,” in Proc. 41st ACM SIGPLAN Conf. Program. 948

Lang. Design Implement., 2020, pp. 151–163. 949

[24] X. Meng and W. Liu, “Incremental CFG patching for binary rewriting,” 950

in Proc. 26th ACM Int. Conf. Archit. Support Program. Lang. Oper. 951

Syst., 2021, pp. 1020–1033. 952

[25] “Executable and linkable format.” 2022. Accessed: Aug. 8, 953

2022. [Online]. Available: https://en.wikipedia.org/wiki/ 954

Executable_and_Linkable_Format 955

[26] C. Mulliner and M. Neugschwandtner, “Breaking payloads with runtime 956

code stripping and image freezing,” presented at Proc. Black Hat USA, 957

2015. 958

[27] A. Q. Nguyen. “Capstone: The ultimate disassembler.” 2019. Accessed 959

: Jul. 30, 2019. [Online]. Available: https://www.capstone-engine.org/ 960

[28] J. Keniston, A. Mavinakayanahalli, P. Panchamukhi, and V. Prasad, 961

“Ptrace, utrace, uprobes: Lightweight, dynamic tracing of user apps,” in 962

Proc. Linux Symp., 2007, pp. 215–224. 963

[29] “nm.” 2022. Accessed: Aug. 30, 2022. [Online]. Available: https://linux. 964

die.net/man/1/nm 965

[30] “Musl libc.” Accessed: Aug. 30, 2022.[Online]. Available: https://www. 966

musl.libc.org/ 967

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

