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Abstract—The second generation of robot operating system1

(ROS 2) received significant attention from the real-time system2

research community, mostly aiming at providing formal modeling3

and timing analysis. However, most of the current efforts are4

limited to the default scheduling design schemes of ROS 2. The5

unique scheduling policies maintained by default ROS 2 signifi-6

cantly affect the response time and acceptance rate of workload7

schedulability. It also invalidates the adaptation of the rich exist-8

ing results related to nonpreemptive (and limited-preemptive)9

scheduling problems in the real-time systems community to10

ROS 2 schedulability analysis. This article aims to design, imple-11

ment, and analyze a standard dynamic priority-based real-time12

scheduler for ROS 2 while handling shared resources. Specifically,13

we propose to replace the readySet with a readyQueue, which is14

much more efficient and comes with improvements for callback15

selection, queue updating, and a skipping scheme to avoid priority16

inversion from resource sharing. Such a novel ROS 2 executor17

design can also be used for efficient implementations of fixed pri-18

ority policies and mixed-policy schedulers. Our modified executor19

maintains the compatibility with default ROS 2 architecture. We20

further identified and built a link between the scheduling of21

limited-preemption points tasks via the global earliest deadline22

first (GEDF) algorithm and ROS 2 processing chain scheduling23

without shared resources. Based on this, we formally capture the24

worst-case blocking time and thereby develop a response time25

analysis for ROS 2 processing chains with shared resources. We26

evaluate our scheduler by implementing our modified scheduler27

that accepts scheduling parameters from the system designer in28

ROS 2. We ran two case studies–one using real ROS 2 nodes29

to drive a small ground vehicle, and one using synthetic tasks.30

The second case study identifies a case where the modified31

executor prevents priority inversion. We also test our analysis32

with randomly generated workloads. In our tests, our modified33

scheduler performed better than the ROS 2 default. Our code34

is available online: https://github.com/RTIS-Lab/ROS-Dynamic-35

Executor.36

Index Terms—Nonpreemptive earliest deadline first (EDF),37

processing chains, robot operating system (ROS) 2, ready38

queue.39
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I. INTRODUCTION 40

ROBOT operating system (ROS), an open-source frame- 41

work, has been extensively utilized in designing robotics 42

applications and autonomous systems over the past decade, 43

primarily due to their modularity and composability. Most 44

applications involving autonomous systems and robotics 45

software are associated with safety-critical systems, where 46

ensuring “timing correctness” is a prerequisite prior to deploy- 47

ment. However, despite the heavy use of ROS in these 48

applications, ROS has inherent limitations concerning real- 49

time capabilities. 50

Consequently, ROS was completely refactored in the second 51

generation, denoted as ROS 2 [1], to add real-time capabilities. 52

Casini et al. [8] first provided a formal scheduling model 53

of ROS 2 executor and developed a response time bound 54

for the ROS 2 workload (i.e., processing chains), revealing 55

a significant difference between standard real-time scheduling 56

model and default ROS 2 executor scheduling model. The key 57

source of difference is that ROS 2 executor maintains a set 58

to record callbacks (executable units), denoted as readySet, 59

with unique properties of set update and callback selection 60

policies. Since then, several works [2], [7], [9], [26], [27], [28] 61

improved the analysis of response time bound modeling the 62

ROS 2 workloads as either processing chains or a directed- 63

acyclic-graph (DAG) for the ROS 2 executor scheduling 64

model. However, most of these methods are developed for 65

a single-threaded executor and are limited to analyzing 66

the default readySet-based executor scheduling scheme. 67

Recently, Jiang et al. [16] and Sobhani et al. [24] presented 68

a scheduling model and analysis for default multithreaded 69

executor. Moreover, Jiang et al. [16] observed that if all callbacks 70

in the system shared a common resource, then the multithread 71

ROS 2 performs inconsistently (i.e., there exists a concurrency 72

bug); however, no solution was provided to resolve the issue. 73

As the scheduling model of default ROS 2 executor signif- 74

icantly differs from the standard real-time scheduling model, 75

one can hardly adapt existing results for the ROS 2 scheduling 76

problem. Therefore, one natural question arises: Is it possible 77

to modify the ROS 2 executor to adapt standard schedul- 78

ing analysis techniques without breaking the fundamental 79

properties of ROS 2? Arafat et al. [2] first attempted to 80

modify a single-threaded ROS 2 executor to apply a dynamic- 81

priority-based scheduler. This article focuses on designing, 82

implementing, and analyzing a multithreaded ROS 2 executor 83

for dynamic priority-based scheduling. 84
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One of the key obstacles to the shift toward a multithreaded85

executor is resource sharing between callbacks. ROS 2 allows86

resource sharing among callbacks by putting them in a mutu-87

ally exclusive callback group, which the user can use to protect88

critical sections and prevent deadlock. This, in addition to89

redesigning the readySet to make it priority-based sorting,90

makes designing a multithreaded executor for priority-based91

scheduling very challenging and significantly different than92

designing one for a single-threaded executor.93

Contribution: Our contributions are threefold.94

1) We design a (flexible) multithreaded ROS 2 executor95

that can be used for fixed-priority, dynamic-priority, and96

mixed-priority-based scheduling where the user can select97

a preferred scheduling policy through user input. We98

propose to have the executor maintain a queue, denoted as99

readyQueue, which replaces the readySet in ROS 2100

to record the ready callbacks. To cope withreadyQueue101

maintain compatibility with default ROS 2 architecture,102

we design callback selection, queue updating, and a103

skipping scheme to avoid priority inversion from resource104

sharing (ref. Section IV). Such a design significantly105

reduces the complexities related to the queue (or set)106

update and callback selection policies of the executor107

compared to its default design. Notably, the designed108

executor can successfully overcome the concurrency bug109

related to resource-shared callbacks that exist in the default110

ROS 2 multithreaded executor (please refer to Case Study111

2 in Section VI-A for more details).112

2) We focus on analyzing the response time for (callback-113

level) nonpreemptive earliest deadline first (EDF) for114

the multithreaded ROS 2 executor, even though our115

modified executor can be used for other schedulers. We116

identified and built a link between the scheduling of117

limited-preemption points tasks via global EDF (GEDF)118

and ROS 2 processing chain scheduling without shared119

resources. Based on this, we formally capture the worst-120

case blocking time and thereby develop a response time121

analysis (RTA) for ROS 2 processing chains with shared122

resources (ref. Section V).123

3) We evaluate our scheduler using two real-world case124

studies, and show that it improves upon the default125

executors. We identify issues with the default ROS 2126

executors and discuss how our modifications work127

around them (ref. Section VI-A). We then evaluate the128

overheads of the proposed executor and compare them129

with existing executors (ref. Section VI-B). We further130

test our RTA with synthetic workloads and show that131

it can successfully schedule more workloads than the132

default ROS 2 executors (ref. Section VI-C).133

II. BACKGROUND—MULTITHREADED ROS 2134

ROS 2 is a collection of libraries that provide a middleware135

between the operating system and application layers for136

robotics applications (Fig. 1). Specifically, ROS 2 provides a137

client library rcl with language-specific libraries (e.g., rclcpp,138

rclpy) containing the executors, and middleware library (rmw)139

Fig. 1. Simplified ROS 2 architecture.

containing the publisher-subscriber mechanism for interpro- 140

cess communication to the data distribution service (DDS). 141

ROS 2 integrates with open source and commercially available 142

DDS systems [10], [11], [13]. 143

The minimum executable unit of the ROS 2 application 144

layer is called callback. There are four types of callbacks in 145

ROS 2, such as timer, subscriber, service, and client, with a 146

semantic priority order: timer � subscriber � service � client. 147

For ease of presentation, throughout this article, we refer to 148

nontimer callbacks as regular callbacks. Callbacks can be 149

run in response to messages, service calls, or timers in the 150

ROS 2 system. Callbacks are organized into nodes, which 151

separate related callbacks into logical groups. In ROS 2, 152

applications are typically composed of a series of individual 153

nodes distributed in the application layer. Nodes use DDS 154

for real-time message exchange through a publish-subscribe 155

mechanism. Nodes can listen for messages from other nodes 156

(including itself) using subscribers. Service calls are an exten- 157

sion of messages, where a service provider responds to all 158

incoming messages with a response message. Nodes use timers 159

to run callbacks at specific periods. 160

Callbacks are usually arranged into chains, where each chain 161

starts with a timer, and each callback in the chain sends a 162

message that starts another callback until the last callback, 163

which produces a result or controls an actuator. 164

Multiple nodes can be launched within a single process, 165

where the callbacks are managed and run by an executor. The 166

executor maintains a set, denoted as readySet, for ready 167

callbacks. The executor continuously polls the readySet for 168

an eligible callback to run. By default, the executor searches 169

the readySet in order of callback type [8], [27]. readySet 170

maintains the default priority order of the callbacks in the set. 171

Callbacks of the same type are ordered by registration order. 172

ROS 2 offers two default executors: 1) a single-threaded 173

executor and 2) a multithreaded executor. Fig. 2 shows the 174

callback selection flow of a multithreaded executor. The 175

multithreaded executor spins on multiple cores. ROS 2 offers 176

the concept of callback groups, such as mutually exclusive 177

callback groups, where an executor will only run one callback 178

from each mutually exclusive group at a time, and reentrant 179

callback group, where an executor is allowed to run multiple 180

instances of a callback at any given time. Mutually exclusive 181

callback groups affect how the readySet is managed. If 182

a callback from a mutually exclusive group is currently 183
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Fig. 2. Thread workflow inside the default ROS 2 executor.

running, callbacks in the same group are considered not184

eligible, even if one of them is in the readySet.185

There is a drawback to the default ROS 2 multithreaded186

executor: the callbacks in the readySet are only refreshed187

in two cases: 1) when the readySet is empty or 2) when188

all callbacks in the readySet are not eligible. We show this189

point in Fig. 2. In previous works, this refresh is known as a190

polling point. To refresh the readySet, the default executor191

clears all the lists and attempts to retrieve one message (or timer192

release) for each callback. Since a polling point does not happen193

every callback execution, there can be cases where response194

times are increased [16]. Additionally, if the multithreaded195

executor cannot find a callback to run due to mutually exclusive196

callback groups, the executor clears the readySet and adds197

only callbacks that can be run at that instant. Callbacks that198

were removed from the readySet will only be added back199

to the readySet at the next polling point.200

III. SYSTEM MODEL201

This section presents the formal analytical model for ROS 2202

workload and default executor scheduler. We consider a set of203

n processing chains.1 � = {C1, C2, . . . , Cn} as the workload204

of ROS 2. Each processing chain (in short, chain) consists205

of a sequence of callbacks. Executors select and dispatch the206

callbacks in threads to execute following scheduling policies.207

Our focus in this article is limited to scheduling ROS 2208

workloads inside a single “multithreaded” executor. Without209

loss of generality, we consider integer time instances only210

aligned with the granularity of the processor clock tick. All211

the notations used in this article are listed in Table I.212

Callbacks: Each callback belongs to a processing chain.213

Let us denote the jth callback of ith processing chain as ci,j.214

The worst-case execution time (WCET) of ci,j is denoted215

as ei,j. Callbacks are scheduled to execute nonpreemptively.216

The priority of a callback is determined by its semantic217

1In ROS 2 workload graph, a callback can be shared by multiple chains.
However, due to decomposing the workload graph as independent processing
chains, each will contain an independent replica of a shared callback [8].

TABLE I
NOTATION SUMMARY

priority and registration order. Each callback can potentially 218

release infinitely many instances where the timer callback 219

is periodically released, and regular callbacks are event- 220

triggered. 221

A ROS 2 callback system has a single reentrant callback 222

group and may have multiple mutually exclusive callback 223

groups. Each callback either belongs to the reentrant call- 224

back group or belongs to one of the mutually exclusive 225

callback groups. For notational simplicity, we index the call- 226

back groups by integers where index 0 denotes the reentrant 227

callback group, and each of the positive integers denotes a 228

mutually exclusive callback group. Then, we define G(ci,j) as 229

a function that takes a callback ci,j as an argument and returns 230

the index of the callback group the callback ci,j belongs to. 231

Then, θi = ∪1≤j≤|Ci|∧G(ci,j) �=0{G(ci,j)} is the set of indices of 232

all mutually exclusive callback groups to which a callback in 233

chain Ci belongs. 234

Chains: A chain Ci = {ci,1, ci,2, . . . , ci,|Ci|} is a sequence 235

of |Ci| callbacks, where ci,1 is the first callback and ci,|Ci| 236

is the last callback of the chain. Depending on the type of 237

first callback, a chain can be classified as time-triggered (i.e., 238

ci,1 is timer callback) or event-triggered (i.e., ci,1 is a regular 239

callback) chain. Except for the first callback, any ci,j can only 240

become ready to execute once ci,j−1 finished its execution 241

since each callback is released by the previous callback in 242

the chain publishing its results (i.e., intermediate callbacks in 243

the chain cannot be time-triggered callback). A chain Ci is 244

characterized via tuple (Ei, Di, Ti), where 245

1) Ei =∑
∀j ei,j is the WCET of the chain Ci, which is the 246

sum of its callbacks’ WCET. 247

2) Ti is the minimum interarrival time (period) between 248

two chain instances. A time-triggered chain Ci will be 249
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periodically released every Ti time instants. A chain can250

potentially release infinite instances, and kth instance of251

chain Ci is denoted as Ck
i .252

3) Di is the relative deadline of the chain and Di ≤ Ti.253

The response time of Ck
i , R(Ck

i ), is the time difference254

between the release instant of its first callback ck
i,1 and the255

completion time instant of the last callback ck
i,|Ci|. The worst-256

case response time (WCRT) is the maximum response among257

all possible release instances of the chain, Ri = max∀k R(Ck
i ).258

A chain is considered schedulable if all its instances meet259

the deadline, i.e., Ri ≤ Di. A ROS 2 workload � will be260

schedulable if all chains are schedulable, i.e., ∀i, Ri ≤ Di.261

Executor: We consider a multithreaded executor E consist-262

ing of m working threads E = {π1, π2, . . . , πm}. Aligning with263

previous works in multithreaded executor for ROS 2 [16], [24],264

we consider the one-to-one assignment of each thread πi to265

a processor core for maximizing the concurrent executions266

of callbacks. We assume processing cores are homogeneous.267

We further assume a dedicated resource supply to each thread268

from the corresponding processing core and, without loss of269

generality, all processing cores as unit-speed cores. Therefore,270

the total resource supply for m threads is m.271

Default Scheduling Model for Executor: Any callback ci,j in272

a chain Ci can only be ready once ci,j−1 completes in execu-273

tion. The default ROS 2 executor maintains a readySet to274

record ready callback instances that can be selected for execu-275

tion. However, a ready callback instance cannot directly enter276

the readySet. Instead, it can only enter the readySet277

once the readySet becomes empty or any thread in the278

executor is idle. A callback instance is ready but waiting279

to enter the readySet is denoted as “pending.” The set280

of pending callbacks is known as wait_set. The readySet281

update instances are known as polling points, and the duration282

between the two consecutive polling points is known as283

polling window. Once a callback instance is selected from the284

readySet, it begins executing nonpreemptively.285

A pending callback instance can also be in the state of286

“not eligible” to be in the readySet depending on the287

membership of a mutually exclusive callback group. For288

instance, only one callback from each mutually exclusive289

group can enter the readySet at a time. A callback of a290

mutually exclusive group can receive two types of blocking291

from other members of the group. First, if a callback is292

pending but cannot enter to readySet due to the presence293

of another callback from the same mutual exclusive callback294

group, then the blocking is denoted as “pending and blocked”295

(i.e., P-blocked). Second, if a callback is currently in the296

readySet but cannot be selected if another callback from the297

same mutual exclusive group is executing in any thread. This298

blocking is denoted as “ready and blocked” (i.e., R-blocked).299

IV. DYNAMIC-PRIORITY-BASED EXECUTOR300

This section presents the design and scheduling model of a301

dynamic-priority-based ROS 2 executor.302

A. Design of Dynamic-Priority-Based Executor303

We extend the default multithreaded executor by replac-304

ing the readySet with a readyQueue, where the305

readyQueue is implemented as a PriorityQueue. Each 306

callback instance is wrapped in a struct that contains the 307

scheduling parameters of the callback, as well as its type. 308

The readyQueue stores these structs and sorts them using 309

a custom comparator. The comparator sorts the callback 310

instances in order of their absolute deadline,2 placing earlier 311

deadlines first. Callbacks without explicitly defined scheduling 312

parameters3 are placed last. Similar to ROS 2’s default 313

executor, ties are broken by the registration order. However, 314

unlike the default ROS 2 scheduler, our comparator does 315

not consider the callback type; i.e., all callback types are 316

considered equally. The executor also respects the overload 317

handler in timers, which is a default ROS 2 feature that detects 318

if a timer callback is blocked for more than one period, and 319

moves the next release forward by one period. This prevents 320

two successive timer callback executions, allowing in-progress 321

chains to complete in an overloaded system. If this happens, 322

the executor adjusts the chain’s deadline to reflect the new 323

timer release. The readyQueue is defined as follows: 324

Definition 1: (readyQueue �) is maintained in the 325

executor to record the ready callbacks similar to readySet 326

in default ROS 2. However, readyQueue is always updated 327

before any executor thread selects a callback to run. The 328

priority of the callbacks in readyQueue is set based on 329

the deadline of each callback, where a callback with an 330

earlier deadline has a higher priority than the one with a later 331

deadline. 332

To account for the fact that the first callback on the 333

readyQueue may not be executable (due to mutually exclu- 334

sive callback groups), we use a custom queue implementation 335

that allows iterating through its elements. 336

We now discuss three key components and principles related 337

to the design of a dynamic-priority-driven executor. 338

1) Callback Selection: Algorithm 1 presents the details 339

related to the callback selection policies from readyQueue. 340

At the very beginning, the executor starts some worker threads, 341

where the number of threads is specified by the user. Each 342

worker thread is pinned to a CPU core. Each worker thread 343

polls for callbacks similarly to that of the single-threaded 344

executor. A mutex lock protects the readyQueue so that 345

only one worker thread can update it at a time. When a 346

thread becomes idle, it attempts to take the lock, update the 347

readyQueue, and select a callback. If another thread is hold- 348

ing the lock, the thread is blocked until the lock is available. 349

To select a callback, it selects the highest-priority callback 350

that is currently eligible to execute. The executor removes the 351

selected callback from the readyQueue, releases the lock, 352

and begins to execute the selected callback nonpreemptively 353

(ref. line 21). Once the lock is released, other worker threads 354

can access the readyQueue. Callbacks that are not selected 355

for execution immediately are kept in the readyQueue and 356

can be run later. To prevent race conditions caused by callback 357

groups running in other threads, if a callback is running as 358

2The comparator can be replaced by the user to use different comparison
metrics, such as fixed callback-level priorities or mixed scheduling policies,
where some callbacks have dynamic priorities and some have fixed priorities.

3This may include automatically created callbacks by ROS 2, such as the
one for the parameter system.
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Algorithm 1: Callback Selection From readyQueue
Data: readyQueue, mutex

1 if lock(mutex) = success then
2 refresh(readyQueue);
3 skippedGroups ← [];
4 foundExecutable ← false;
5 iter ← readyQueue.iter();
6 while !iter.empty() && !foundExecutable do
7 executable ← next(iter);
8 if executable.group in skippedGroups then
9 continue;

10 end
11 if !executable.group.can_be_run() then
12 // can_be_run() is false if the group is mutually

exclusive, and another callback instance is running.
It is always true for reentrant groups
skippedGroups.append(executable.group);

13 continue;
14 end
15 readyQueue.remove(executable);
16 foundExecutable ← true;
17 break;
18 end
19 unlock(mutex);
20 if foundExecutable then
21 executable.run();
22 end
23 end

part of a group at any point during the callback selection359

process, the group will always be skipped (ref. line 8), even360

if the offending callback stops execution during the selection361

process.362

2) Readyqueue Updating: To update the readyQueue,363

the executor checks all callbacks in the system for newly364

released instances and adds them to the readyQueue. The365

executor also updates the positions of callbacks that are366

already in the readyQueue, if any new callback instance367

is added to the queue. To maintain the assumptions and368

restrictions of ROS 2’s DDS interface,4 the readyQueue is369

restricted to hold one and only one instance of each callback370

at a time. This does not affect the execution order – all371

instances of the same callback have the same scheduling372

parameters. Once an executor removes a callback instance373

from the readyQueue, another instance of the callback will374

re-enter the queue the next time an executor updates the queue375

(if another callback instance exists). Algorithm 2 presents the376

pseudo-code related to the readyQueue updating.377

Depending on the DDS configuration, published messages378

may not immediately appear in the ready queue, even though379

they are refreshed during callback selection. By default, ROS 2380

DDS runs in asynchronous mode, where message transport381

happens in a separate thread. If a message is published382

at the end of a callback, the DDS thread running in the383

background may not complete before the executor threads384

poll the readyQueue. To ensure that recent publications385

always appear on the readyQueue, the DDS must be set386

4Due to API design, the DDS interface only exposes whether it has at least
one message available per topic.

Algorithm 2: Updating the readyQueue
Data: readyQueue, callbacks

1 for callback ← callbacks do
2 if not callback.ready then
3 continue;
4 end
5 if callback instance in readyQueue then
6 update position;
7 else
8 add the callback instance to the queue;
9 end

10 end

TABLE II
THREAD INTERLEAVE: A RACE CONDITION RESULTED IN PRIORITY

INVERSION (FOR EASE OF PRESENTATION IN THE TABLE, WE USE

{c1, c2, c3} AS MUTUALLY EXCLUSIVE CALLBACKS WITHOUT

MATCHING NOTION FOR CALLBACK DEFINED EARLIER)

to synchronous mode, which causes calls to publish to block 387

until the message is ready to be processed. 388

3) Preventing Priority Inversion From Race Conditions: 389

During callback selection, additional steps are required to 390

avoid priority inversion (where a lower-priority task is incor- 391

rectly selected over a higher-priority task). We illustrate how 392

race conditions can occur and how to prevent priority inversion 393

via a toy example. Let us consider a thread-interleaving 394

diagram for the race condition presented in Table II, where the 395

status of the search of readyQueue is indicated by putting 396

the callback in bold. Suppose on a two-thread (π1, π2) system, 397

there are three callbacks (c1, c2, c3) sharing the same resource 398

and thus belong to the same mutually exclusive group; c1 399

is executing on the thread π1, and the other two are in the 400

readyQueue. The thread π2 searches the readyQueue 401

for a callback to run. It reaches the first callback (c2) 402

in the readyQueue, but skips it due to its membership 403

in a currently executing callback group. During the time 404

instant between checking c2 and c3, the thread π1 finishes its 405

callback and sets the callback group to eligible. The thread 406

π2 then checks the callback c3 in the readyQueue, finds 407

it eligible, and selects it for execution, even though c2 (who 408

has higher priority) in the readyQueue is now also eligible, 409

preventing the c2 on the readyQueue from running. To 410

prevent this racing scenario during callback selection from 411

the readyQueue, as a design principle, the executor should 412

skip any callbacks that are part of a callback group that was 413

running at any point during the readyQueue search. Once 414

the executor encounters a blocked callback group, it adds it to 415

a set and skips any callbacks that are part of a group in the set, 416
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even if those callbacks are eligible later in the search. This is417

done using the skippedGroups set in Algorithm 1. From418

this point, the executor can either (1) pick a ready callback that419

is not part of the callback group, or, (2) if none exists, restart420

the readyQueue selection process, and pick the highest-421

priority task from that callback group. Note that choosing the422

first option does not cause priority inversion by selecting a423

lower-priority task—remember that the thread π1 will also be424

in task selection, and will not skip the callback group.425

Remark 1: The callback eligibility defined in our426

proposed method differs from the one defined for the427

default multithreaded executor in [16]. In our proposed428

readyQueue, blocking for a callback due to a mutually429

exclusive group membership is checked only once before430

dispatching to a thread. Once a callback becomes pending, it431

will always enter the readyQueue in the following update432

instant. However, in the default readySet-based scheduling433

scheme, there are two ways of blocking a callback from a434

mutually exclusive callback group. A callback can receive435

blocking before entering the readySet (i.e., P-blocked) as436

well as after entering the readySet (i.e., R-blocked).437

Remark 2: Once a callback enters the readyQueue, it438

will remain in the queue until being dispatched to a thread,439

which implies that the readyQueue is built only once. Then,440

in updating instances, the readyQueue needs to update the441

priority of newly entrant callbacks. However, in the case of442

readySet, it needs to be empty before updating with new443

callback instances by either dispatching all exiting callbacks444

to threads or returning them to the wait_set again. Therefore,445

the maintenance cost of readyQueue (e.g., O(log n)) is446

significantly less than the readySet (e.g., O(n log n)); where447

n is the number of callbacks.448

B. Dynamic Scheduling Model for Executor449

Our proposed executor maintains a readyQueue � during450

runtime to record the dynamic priority of all eligible callbacks.451

The dynamic priority of a callback ci,j is determined using452

the absolute deadline of chain Ci, i.e., all callbacks within a453

chain share the same deadline. For instance, if the arrival time454

of chain instance Ck
i is ak

i , then the absolute deadline of the455

chain instance is dk
i = ak

i + Di. Now, any callback ck
i,j (for456

1 ≤ j ≤ |Ci|) will have an absolute deadline of dk
i . A callback457

with an earlier deadline has a higher priority than the one458

with a later deadline. In other words, the callback scheduling459

decisions are determined following the EDF algorithm.460

An executor thread is either “busy” if a callback instance is461

executing on it, or “idle” if no callback instance is executing on462

the thread. A dispatch point occurs whenever a thread becomes463

idle. At the dispatch point, the � is updated with all pending464

callbacks. Among the callbacks in �, callbacks are checked one465

by one, following the priority order (i.e., the highest-priority466

one is selected first). The idle thread selects the highest-priority467

callback that is eligible to run. A callback runs nonpreemptively468

as soon as it is selected. A thread sleeps if it fails to find469

a callback, while it can be waked by the release of the next470

callback, which leads to a repetition of the process.471

To update �, the executor checks all callback types in the 472

system for eligible callbacks. Any new releases will be placed 473

in � according to the priority provided by the scheduling 474

parameters. Callbacks in the � persist between updates so that 475

the queue does not need to be entirely rebuilt during updates. 476

Note that not all callbacks in � are eligible to run. 477

Depending on the membership of callback groups, a callback 478

instance ci,j in � is either “eligible” or ready and blocked 479

(R-blocked). 480

1) If the callback ci,j is a member of the reentrant callback 481

group, as soon as ci,j enters �, it is eligible to run. 482

2) If the callback ci,j is a member of a mutually exclusive 483

callback group, there can be two cases. Case A: If 484

there are no other callbacks (including an instance of 485

ci,j itself) from the same mutually exclusive group in 486

� or currently executing in a thread, then the callback 487

becomes eligible as soon as it enters �. Case B: 488

Otherwise, the callback ci,j is R-blocked and skipped 489

during task selection. 490

V. RESPONSE TIME ANALYSIS 491

A. RTA Without Callback Groups 492

To avoid deriving the RTA for ROS 2 workloads with- 493

out callback groups from the first principles, we will 494

directly utilize the existing state-of-the-art (SOTA) analysis 495

for GEDF [31] with fixed preemption points in homogeneous 496

multiprocessors. Notably, such usage of existing results was 497

the motivation for our novel executor design of ROS 2. 498

First, we will state the scheduling model, denoted as FPP- 499

GEDF, for a workload with fixed preemption points for each 500

task scheduled on homogeneous multiprocessors following the 501

GEDF algorithm. Then, we will prove the equivalence of our 502

proposed ROS 2 scheduling model and FPP-GEDF. We then 503

state the SOTA RTA presented by Zhou et al. [31] for FPP- 504

GEDF. Then, we will expand the RTA for ROS 2 workloads 505

with callback groups, which is the focus of this article. 506

FPP-GEDF Scheduling Model: A set of n tasks T = 507

{τ1, . . . , τn} with constrained deadlines, where each task 508

has a fixed number preemption point, are scheduled on m 509

homogeneous processors following the GEDF algorithm. If 510

ith task τi has k preemption point, then there are k + 1 511

nonpreemptive regions in τi which higher-priority tasks cannot 512

preempt once they start executing. In addition, priority is 513

dynamically assigned to each instance of a task, not to each 514

nonpreemption region of a task instance. 515

Proposition 1: FPP-GEDF scheduling model and the 516

proposed ROS 2 scheduling model without considering the 517

callback groups are equivalent. 518

Proof: We will establish a bijection by mapping the FPP- 519

GEDF scheduling model to the ROS 2 scheduling model and 520

vice versa to prove the equivalence of the scheduling models. 521

FPP-GEDF to ROS 2: Each task τi can be mapped as a 522

ROS 2 chain Ci, where each nonpreemptive region of τi would 523

work as a callback in Ci. Therefore, if a task τi in FPP- 524

GEDF has k preemption points, then corresponding chain Ci 525

in ROS 2 has k+1 callbacks. Now, m homogenous processors 526



AL ARAFAT et al.: DYNAMIC PRIORITY SCHEDULING OF MULTITHREADED ROS 2 EXECUTOR 7

can be mapped to m threads in a ROS 2 executor as each thread527

is assigned to an individual core. Therefore, the scheduling528

problem of the workload T in m processors following global-529

EDF can directly reduce to the scheduling problem of a set530

processing chains � on m threads using GEDF in ROS 2.531

ROS 2 to FPP-GEDF: Using a similar argument, we can532

show that the scheduling problem of a set of processing chains533

� on m threads using GEDF directly reduces to the problem534

of a task set T on m processors using GEDF.535

Hence, the scheduling model of FPP-GEDF and ROS 2536

processing chains without callback groups are equivalent.537

We will leverage SOTA RTA for FPP-GEDF proposed by538

Zhou et al. [31] for RTA of ROS 2 processing chain without539

callback groups. First, we report the supporting results in540

Lemmas 1–3 to use the RTA from [31].541

Let us consider the jth instance of chain Ck, Cj
k, as the542

chain instance under consideration for RTA. As soon as Cj
k543

is released at aj
k, the first callback cj

k,1 is also released and544

becomes eligible. The subsequent callbacks of Cj
k will become545

ready once the preceding callbacks complete their execution.546

Let us define the problem window for Cj
k for RTA as follows:547

Problem Window: Given a chain instance Cj
k, denote t′ as the548

start time of the last callback with priority lower than ck,l (for549

1 ≤ l ≤ |Ck|) that starts its execution before aj
k, and denote550

t′′ as the earliest time instant satisfying that all processors are551

busy in [t′′, ak
j ). Then, a problem window of Cj

k is [t0, t1),552

where t0 = max{t′, t′′} and t1 ∈ [aj
k + Ek − ek,|Ck| + 1, dj

k].553

Let us denote the problem window for Cj
k as SAk

t , where554

t = t1 − t0 and Ak = aj
k − t0. We denote a chain as carry-in555

if it releases an instance before t0 and has a deadline after t0;556

others are noncarry-in chains.557

Next, we will bound the work done by the carry-in and558

noncarry-in chains in the problem window of SAk
t .559

Lemma 1 [31]: Given a chain instance Cj
k with a problem560

window SAk
t , the interference on Cj

k by any chain Ci as561

noncarry-in chain and i �= k in SAk
t is upper bounded by562

INC
i,k (t, Ak), satisfying following equation:563

INC
i,k (t, Ak) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊
t

Ti

⌋
Ei +min{t mod Ti, Ei}

if α ≤ L⌊
t

Ti

⌋
Ei +min{γ, t − β}

if α > L and β < Ak⌊
t

Ti

⌋
Ei +min{λ, t − β}

if α > L and β ≥ Ak

(1)564

where L = Ak + Dk, α = (t/Ti)�Ti + Di, β = (t/Ti)�Ti,565

γ = ∑min{|Ci|,|Ck|}
l=1 ei,l − min{|Ci|, |Ck|} + 1, and λ =566

∑min{|Ci|,|Ck|−1}
l=1 ei,l −min{|Ci|, |Ck| − 1}.567

Lemma 2 [31]: Given a chain instance Cj
k with a problem568

window SAk
t , the interference on Cj

k by any chain Ci as a569

carry-in chain and i �= k in SAk
t upper bounded by ICI

i,k (t, Ak),570

satisfying following equation:571

ICI
i,k (t, Ak) =

⎧
⎪⎪⎨

⎪⎪⎩

A+ B, if α ≥ 0 and β ≤ L
max{C,D}, if α ≥ 0 and β > L
min{t, Ei}, if α < 0 and γ ≤ L
max{E,F}, if α < 0 and γ > L

(2)572

here L = Ak + Dk; α = t − Ei − Ti + Ri; 573

β = Ei + Ti − Ri + (α/Ti)�Ti + Di; γ = Ei + Di − Ri; 574

A = (α/Ti� + 1) · Ei; B = min{α mod Ti, Ei}; 575

C = A + min{∑min{|Ci|,|Ck|}
l=1 ei,l − min{|Ci|, |Ck|} + 576

1, α mod Ti}; 577

D = (L − Di)/Ti�Ei + min{Ti − L + t, Ei} + max{(L − 578

Di) mod Ti − Ti + Ri, 0}; 579

E = max{min{L− Di + Ri, t}, 0}; and 580

F = min{∑min{|Ci|,|Ck|−1}
l=1 ei,l −min{|Ci|, |Ck| − 1}, t}. 581

So, by Lemmas 1 and 2, we get the noncarry-in and carry- 582

in interference from any chain Ci (i �= k) on Cj
k in SAk

t . 583

Now, the following lemma will bound noncarry-in and carry-in 584

interferences from the instances of Ck. 585

Lemma 3 [31]: Given a chain instance Cj
k with a problem 586

window SAk
t , the noncarry-in interference and carry-in 587

interference on Cj
k by Ck upper bounded by INC

k,k (t, Ak) and 588

ICI
k,k(t, Ak), respectively 589

INC
k,k (t, Ak) = ICI

k,k(t, Ak) 590

= max
{
min{Ak − Tk + Rk, ek,|Ck|}, 0

}
. (3) 591

Lemma 4 [31]: Given a ROS 2 workload � scheduled on 592

m-threads in an executor using deadline-based readyQueue 593

and a chain instance Cj
k with a problem window SAk

t , the 594

noncarry-in and carry-in interference on Cj
k by any chain Ci 595

in SAk
t are upper bounded by FINC

i,k (t, Ak) and FICI
i,k(t, Ak), 596

respectively 597

FINC
i,k (t, Ak) = min

{
INC

i,k (t, Ak), t − Ek + ek,|Ck|
}

(4) 598

FICI
i,k(t, Ak) = min

{
ICI

i,k (t, Ak), t − Ek + ek,|Ck|
}
. (5) 599

Now, we can calculate the total inference from all carry- 600

in and noncarry-in chains on Cj
k in SAk

t . Let FIdiff
i,k (t, Ak) = 601

max(FICI
i,k(t, Ak)− FINC

i,k (t, Ak), 0) and F(t, Ak, x) as the sum 602

of the first x items of nonincreasing order of FIdiff
i,k (t, Ak) for all 603

Ci. Then following are two upper bound of the interferences, 604

�1(t) and �2(t), on Cj
k by all chains in �: 605

�1(t) =
∑

∀Ci∈�
FINC

i,k (t, Ak)+ F(t, Ak, m− 1) (6) 606

�2(t) = m · Ak + 607
∑

i �=k

max{FICI
i,k(t − Ak, 0), FINC

i,k (t − Ak, 0)}. (7) 608

Now, the response time of chain Ck can be determined using 609

the following theorem: 610

Theorem 1 [31]: Given a ROS 2 workload � to be 611

scheduled on a m-threaded executor following EDF (without 612

considering the callback groups among callbacks), the last 613

callback of any chain instance Cj
k with a problem window SAk

t 614

must be executed before aj
k + t′, where t′ is the minimum 615

solution of: 616

Ek − ek,|Ck| + 1+
⌊

min{�1(x+ Ak),�2(x+ Ak)}
m

⌋

≤ x 617

+ Ak. (8) 618

Then, the WCRT of Ck is 619

Rk = t′ + ek,|Ck| − 1. (9) 620
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B. RTA With Callback Groups621

Due to the presence of callback groups and the prevention622

of concurrent execution of callbacks from a mutually exclu-623

sive group, an additional blocking (for a mutually exclusive624

callback group) must be considered in the RTA.625

Let us first derive the maximum blocking received by a626

callback solely for the membership in a mutually exclusive627

callback group,628

Lemma 5: A callback ck,j ∈ Ck of a mutually exclusive629

callback group with index G(ck,j) �= 0 can receive a maximum630

blocking of max∀G(ci,l)=G(ck,j){ei,l}, where callback ci,l from631

any chain Ci ∈ � \ Ck.632

Proof: Following the readyQueue design, a callback only633

experiences the blocking from other members of a mutually634

exclusive callback group by the “R-blocked” state. As an R-635

blocked callback can be selected to execute as soon as the636

currently executing callback (that is also a member of the same637

mutually exclusive callback group), the maximum blocking638

due to the member of a mutually exclusive callback is equal639

to the maximum execution time of a callback in that group.640

Note that if there exist callbacks in a mutually exclusive641

group with publisher-subscriber relation (i.e., from the same642

callback chain), then the additional blocking due to precedence643

constraint for those callbacks is not required to take in the644

account as these callbacks cannot be ready at the same time.645

However, Theorem 1 already includes blocking for precedence646

constraints. Therefore, the maximum blocking of a ci,j callback647

from a mutually exclusive group callback is by the one that is648

not in the same callback chain Ci.649

Let IX
k be the total blocking received by the callbacks of650

chain instance Cj
k. Using Lemma 5651

IX
k =

∑

1≤j≤|Ck|∧G(ck,j)∈θk

max
∀G(ci,l)=G(ck,j)

{ei,l} (10)652

where callback ci,l can be from any chain Ci.653

Finally, we state the following theorem for ROS 2 process-654

ing chains scheduling on a m-threaded executor with mutually655

exclusive callback groups.656

Theorem 2: Given a ROS 2 workload � to be scheduled657

on a m-threaded executor following EDF, the last callback of658

any chain instance Cj
k with a problem window SAk

t must be659

executed before aj
k + t′, where t′ is the minimum solution of:660

Ek − ek,|Ck| + 1+ IX
k661

+
⌊

min{�1(x+ Ak),�2(x+ Ak)}
m

⌋

≤ x+ Ak. (11)662

Then, the WCRT of Ck is given by663

Rk = t′ + ek,|Ck| − 1. (12)664

Proof: The proof of the theorem follows a similar approach665

for Theorem 1 except for the inclusion of blocking due to666

the mutually exclusive callback groups. Note that the effective667

blocking received by chain Ck for m-threads is m · IX
k , as668

in the worst case, even if m − 1 threads are idled, and one669

thread is executing one callback from the group, others cannot670

Fig. 3. Layout of the workloads used in the experiment with F1Tenth car.
Each box is a callback. In the driving chain, each callback is in its own
node, except get_candidates and pathfinding, which share a node.
convert_controls splits the control output from pathfinding into
two messages, a steering and acceleration message, which is sent to the appro-
priate hardware driver nodes. The chain is considered complete once both
steering_driver and throttle_driver have completed. Besides the
driving chain, we used two dummy chains with similar configurations.

execute. So total blocking added in the L.H.S. of (12) is 671

m · IX
k /m = IX

k . 672

It is obvious that for a schedulability check of the workload 673

�, one must verify the WCRT of each processing chain is 674

on greater than the deadline. i.e., a ROS 2 workload � is 675

schedulable on an m-threaded executor following EDF if the 676

following inequality holds for any chain Ci: Ri ≤ Di; ∀i, where 677

Ri is given by (12). 678

VI. EVALUATION 679

A. On-Board Case Studies 680

We run our case studies on an Nvidia Jetson Xavier AGX 681

in MAXN mode, where the main frequency of all CPU 682

cores is fixed at 2.2 GHz. Executor threads are set to run 683

using the SCHED_FIFO class at the highest priority (99). For 684

multithreaded executors, each thread is pinned to a unique 685

CPU core. Other implementation details can be found in 686

Section IV. The workloads are controlled to run no longer 687

than their specified WCETs. 688

1) Case Study 1: To show a real-world use case, we use 689

ROS 2 executor to schedule tasks that drive an F1Tenth car. 690

Experimental Setup: We use our modified ROS 2 executor 691

implementation to schedule a taskset that drives the F1Tenth 692

car around a track. Nodes in the system poll a LIDAR sensor, 693

process the incoming LIDAR data, make driving decisions, 694

and pass actions to motor controllers. Together, the callbacks 695

in these nodes form a chain, which we refer to as the driving 696

chain, as shown in Fig. 3. Each callback is in its own mutually 697

exclusive callback group. The driving chain and dummy chains 698

represent most of the load on the system, but some auxiliary 699

tasks exist as well, which produce odometry output and 700

other system statistics. These auxiliary tasks have a collective 701

utilization of 0.07. The auxiliary tasks are configured as fixed 702

priority tasks, where deadline tasks always take precedence. 703

We ran this test with two dummy chains to increase the 704

utilization of the system. Each chain uses implicit deadlines, 705

so the driving chain has a deadline of 25 ms, and the dummy 706

chains have a deadline of 35 ms. Running the system with the 707

modified executor decreases the average and maximum latency 708

of the main driving chain, and improves the latency of the 709

dummy chains in an overload scenario. 710
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Fig. 4. Average and maximum latencies for each chain in the case study
system. We tested the default executor and our executor with 1 and 2 threads.
The driving chain performed better under our executor compared to the
default, especially in single-core mode, where the system is overloaded. In the
overloaded single thread case under the fixed priority executor, the maximum
latency of the second dummy chain was 8660 ms, due to the second dummy
chain having the lowest priority in the system.

Observations: Using the modified executor, we observed711

improved response time of the driving chain in both the one712

and two-core tests and all three chains in the single-core tests713

(Fig. 4). In the two-core test, the driving chain had a maximum714

latency of 46.16 ms on the default executor and 19.23 ms715

on our executor. With fixed priorities, the driving chain had a716

worst-case latency of 17.25 ms.717

In the single-core case, where the system is overloaded,718

the driving chain had a maximum latency of 208.19 ms on719

the default executor and 66.48 ms on ours. When running720

under the fixed-priority executor, the second dummy chain was721

frequently blocked by the driving chain and first dummy chain,722

and had a maximum response time of 8.66 s.723

We also ran a single core test with just the driving chain724

and the auxiliary system tasks. In this case, the driving chain725

had a maximum latency of 21.43 ms on the default executor,726

and 20.00 ms on ours. This improvement comes from the fact727

that our executor will not preempt the driving chain to service728

callbacks from auxiliary tasks.729

2) Case Study 2: We use the same workload defined730

in [16], which inspired our earlier discussion on callback731

group concurrency bugs. The workload is presented again in732

Table III. All chains are placed in a single mutually exclusive733

callback group, ensuring that only one callback, and therefore734

one thread, can execute at any time.735

Experimental Setup: We ran two tests: one with the736

ROS 2 multithreaded executor (using two threads) and another737

with the single-threaded executor (using one thread), both738

modified with our task selection process. The Fixed-Priority739

and EDF schedulers always refresh the readyQueue before740

selecting a callback to run and, therefore, behave the same741

within both the single-threaded and multithreaded executors,742

meeting deadlines in both situations.743

Observations: The results are shown in Fig. 5. The default744

scheduler behaves differently due to the fact that the default745

multithreaded executor will clear the readySet if none of746

the callbacks are eligible to run due to membership in callback747

groups.748

TABLE III
CASE STUDY 2

Fig. 5. Demonstration of a weakness of ros’s default multithreaded executor.
The callback group assignments only allow one thread to perform work at any
given time. The same workload performs worse in the default multithreaded
executor than in the default single-threaded executor (although intuitively
and theoretically, they should perform the same, as all callbacks are in the
same group). The fixed priority and deadline-based schedulers, which refresh
the ready queue before every callback execution, behave similarly in single-
threaded and multithreaded mode.

To understand how this affects execution, assume all three 749

callbacks have been released. The default multithreaded execu- 750

tor runs c1,1 on Thread 1. During this time, Thread 2 attempts 751

to find an eligible callback to run, but cannot as c2,1 and c3,1 752

are both in the same mutually exclusive callback group as c1,1. 753

Thread 2 clears the readySet, and since no callbacks are 754

eligible to run, the readySet remains empty. This continues 755

until c1,1 completes, making c2,1 and c3,1 eligible to run. Since 756

the readySet is now empty, a thread (whichever takes the 757

mutex lock first) refreshes the readySet and places c2,1 and 758

c3,1 back. This cycle repeats with c2,1 instead of c1,1. During 759

c2,1’s execution, c1,1 is released again. Since the idle thread 760

clears the readySet, the readySet gets rebuilt with one 761

of c1,1 and c2,1 taking priority over c3,1. 762

In the single-threaded executor, ineligible callbacks are not 763

removed from the readySet, and there is no second thread 764

to refresh the readySet, so after c1,1 and c2,1 starts to run, 765

c3,1 is the only item in the readySet, even though c1,1 may 766

have been released again during c2,1. Only after c3,1 runs, does 767

the executor refresh the readySet. 768

The Fixed Priority and Deadline-based executors avoid 769

this problem by 1) storing ready callbacks in a queue, and 770

2) keeping callbacks in the queue, even if they are not imme- 771

diately runnable due to membership in a mutually exclusive 772

callback group. In this case, like the default multithreaded 773

executors, only one thread can be running a callback at 774

any given time, but the idle thread does not manipulate the 775

readyQueue, except for when the timers release, where it 776

simply adds the released callback to the queue. When the 777

working thread finishes executing the callback, either thread 778

(whichever takes the lock first) will perform another check 779

for newly released callbacks, and select the callback with the 780

highest priority or earliest absolute deadline. By not clearing 781

the readyQueue/readySet, our modified executor behaves 782

more consistently than the default executors when running in 783

single-threaded and multithreaded modes, preventing deadline 784

misses, which can occur when using the default executor. 785
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TABLE IV
ASYMPTOTIC OVERHEAD FOR QUEUE/SET REFRESH AND CALLBACK

SELECTION FOR DIFFERENT EXECUTORS

B. Overhead Analysis786

Table IV reports the asymptotic overhead of executor’s787

queue/set refresh, and callback selection for ours, default788

ROS 2, and existing fixed-priority [24] executors.789

To empirically measure the overhead of our modified execu-790

tor, we compare it to existing works by Sobhani et al. [24]791

(denoted as “Fixed Priority”) and RTeX [19], and default792

ROS 2 executor. We measure the end-to-end latency of a793

system with a timer callback publishing to multiple subscriber794

callbacks. To accurately represent the effects of the different795

executors, we use the publicly available implementations796

of [19] and [24].797

The Fixed Priority executor selects callbacks by searching798

the readySet for the highest-priority eligible callback. The799

RTeX executor removes the locks held during the queue800

refresh step, and replaces the readySet with a concurrent801

linked-list. The RTeX executor is unique in that immediately802

after a callback is run, the executor adds the subsequent803

callback in the chain to the queue directly, avoiding the need804

to refresh the queue and poll the DDS layer. This significantly805

decreases the overhead of the RTeX executor, but at the806

expense of DDS compatibility. To support receiving messages807

from other processes or over the network, users of the RTeX808

executor need to use an additional thread to listen for incoming809

messages and add them to the queue. For a fair comparison810

with RTeX, we also test a variant of our executor (EDF-NO-811

DDS), which updates the queue similarly to RTeX, where812

published messages are placed directly into the readyQueue,813

removing the need for queue refreshes.814

Workloads: We take the test parameters from [19]. Each815

callback has an execution time of 0 ms, and the end-to-end816

latency is the time between timer releases and the completion of817

the last subscriber callback. Our test uses two threads. Because818

the callbacks themselves do not perform any work and only819

publish to the next callback in the chain, the end-to-end latency820

reflects the time taken to receive, sort, and select the callbacks.821

Observations: We show the results of this test in Fig. 6.822

Since no callback groups exist, the default executor and823

our executor always exhibit the best-case callback selection824

performance. Due to the extra overhead in queue refreshes,825

and a refresh is always performed before each callback826

selection, our executor’s response time increases quickly as827

more callbacks are added to the system. The NO-DDS version828

of our executor is competitive with the default executor and829

RTeX.830

The additional work required during the queue refreshes831

means that our modified executor has a larger overhead,832

especially as the number of callbacks in the system increases,833

but the case study demonstrates that using the readyQueue834

Fig. 6. End-to-end latency of multiple subscribers on a single topic. Each
subscriber has an execution time of 0 ms, so the effects of executor are evident
in the end-to-end times.

and dynamic priorities allows the executor to make decisions 835

that reduce the overall system latency. 836

Compatibility of Executor With Default ROS 2 Architecture: 837

Our modified executor is implemented as a ROS 2 package, 838

and does not outright replace the default ROS 2 multithreaded 839

executor. Instead, it uses subclasses of existing data structures, 840

so it does not interfere with packages that rely on the default 841

ROS 2 data structures and classes. The package can be placed 842

in any ROS 2 workspace and called from user code when 843

required. It does not change any of the existing data structures 844

in rclcpp or rmw, and does not require any modification 845

of the DDS layer, allowing the use of both open-source and 846

proprietary DDS systems. 847

Not all callbacks need to have explicitly declared deadlines, 848

but callbacks without deadlines are always given a lower 849

priority than callbacks with deadlines. 850

C. Schedulability Evaluation via Synthetic Workload 851

Experimental Setup: We use the workload parameters 852

from [16]. Workloads are randomly generated from parame- 853

ters: m: the number of threads the workload will be run on, 854

n: the maximum number of chains in the workload, b: the 855

maximum number of callbacks in any chain, Unorm: the uti- 856

lization of the workload, g: the maximum number of mutually 857

exclusive callback groups, and α: the ratio of callbacks that 858

will be members of a mutually exclusive callback group. The 859

total utilization of the workload is m ·Unorm. The utilization of 860

each chain is found with UUnifast-discard. Chain utilizations 861

above 1 are set to 1. For each chain, generate the utilization 862

of each callback with UUnifast-discard. Each chain’s period 863

is randomly selected from [50, 200]. The chain’s period is 864

also its deadline. Each callback’s WCET is the chain’s period 865

multiplied by the callback’s utilization. Callback WCETs are 866

rounded to the nearest integer. Chains not in a mutually 867

exclusive callback group are assigned to their own reentrant 868

callback group. The number of groups in the workload is 869

randomly chosen from [0, g], and the number of callbacks in 870

any group is |C| ·α. We randomly select |C| ·α callbacks, and 871

distribute them to the callback groups. 872

We compare our schedulability test with the test given 873

in [16] and [24]. The workload parameters are m = 4, n = 8, 874
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(a) (b) (c)

(f)(e)(d)

Fig. 7. Schedulability ratio (percentage of schedulable tasksets) comparisons by varying one parameter at a time. (a) Unorm. (b) n. (c) b. (d) g. (e) α. (f) m.

b = 5, Unorm = 0.3, g = 2, and α = 0.2. We ran 2000 task875

sets per data point.876

Observations: Fig. 7 shows how varying each parameter877

affects the percentage of schedulable tasksets for the deadline-878

based, static priority, and default ROS 2 executors. For879

most situations, the deadline-based analysis schedules more880

workloads than the default ROS 2 executor by a significant881

margin. Varying Unorm [Fig. 7(a)] results in expected behavior—882

workloads with higher utilization are less likely to be883

schedulable. Increasing n [Fig. 7(b)], the maximum number884

of callbacks in a workload, caused a slight decrease in885

schedulability for each executor. The default executor was886

largely invariant to changes in b [Fig. 7(c)], the maximum887

number of callbacks in any chain. This is likely due to the fact888

that the default ROS 2 executor tries to make progress along889

all running chains. In contrast, the priority-based executors890

will run a higher-priority chain to completion at the cost of891

blocking others. The results in Fig. 7(d) are best understood892

when remembering that the ratio of callbacks that are within893

some group compared to those not in any group is constant894

(α = 0.2). The exception is that when g is 0, there are no895

mutually exclusive callback groups, and no callback group896

blocking can occur. When g is 1, 20% of the callbacks are in one897

mutually exclusive group, so the chances of callbacks blocking898

each other are high. As the number of mutually exclusive groups899

increases, there is a smaller chance that any two callbacks will900

block each other. Cases where more than 60% of callbacks are901

in a mutually exclusive group are an exception—the analysis902

of the default ROS 2 multithreaded executor by [16] handles903

these cases especially well, as shown in Fig. 7(e).904

VII. RELATED WORKS905

Earlier works related to the ROS mostly focused on improv-906

ing the real-time performance [20], [21], [30]. Satio et al. [20]907

developed a priority-based message transmission algorithm for908

publishers to send data to multiple subscribers; [14] performed909

an empirical study and measured WCRT between nodes for910

ROS 2; [30] proposed RT-ROS to run two OS—one for911

nonreal-time tasks and another for real-time tasks.912

Several works have been done analyzing and improving 913

the performance of ROS 2’s executor system following the 914

pioneering work of Casini et al. [8]. Casini et al. [8] first 915

formally modeled the ROS 2 executor scheduling policies and 916

figured out the unique scheduling strategy of ROS 2. [8] also 917

developed the first RTA of ROS 2 processing chains. Later, 918

Tang et al. [27] improved the previous analysis by observing 919

the properties of polling points and processing windows of 920

default ROS 2 executor. Blaß et al. [7] further improved the 921

response time, exploiting the execution time uncertainties and 922

starvation properties of ROS 2 callbacks. Teper et al. [28] 923

developed end-to-end response-time analysis for ROS 2 con- 924

sidering the data age and reaction time between sensor outputs 925

and actuation. Tang et al. [26] presented the analysis modeling 926

ROS 2 workload as the DAG workload model. All these works 927

model the ROS 2 workload using default priority orders and 928

types of callbacks. Choi et al. [9] added unique priorities to 929

each processing chain and the callbacks instead of using the 930

default priority order among callbacks. They also designed 931

a static callback-thread assignments policy. [9] demonstrated 932

that designing fixed-priority orders among callbacks reduces 933

the self-blocking of a processing chain by its past and future 934

instances and improves the processing chains’ response time. 935

Recent works [16], [24] presented the scheduling model 936

and analysis frameworks for multithreaded ROS 2. Their 937

works demonstrated significant differences between the single- 938

and multithreaded scheduling policies, mainly for adding 939

complexities for multiple threads and introducing callback 940

groups. Sobhani et al. [24] further enhanced the callbacks with a 941

fixed-priority order similar to PiCAS [9] to further improve the 942

timing performance. Compared with existing works, our work 943

falls under the customized multithreaded ROS 2 executor. We 944

present a modified executor to support a priority-based scheduler 945

without breaking the key properties of ROS 2. However, 946

earlier, Arafat et al. [2] presented the modified single-threaded 947

executor for dynamic-priority-based scheduling. Compared with 948

this work, designing a multithreaded executor involves more 949

challenges than a single-threaded one, such as issues related 950

to the callback groups, necessitating careful “update policy 951
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design,” concurrency and/or racing bugs that only exist for a952

multithreaded one.953

Besides the scheduling analysis of ROS 2 executor,954

Blass et al. [6] discussed the benefits, challenges, and opportu-955

nities related to ROS 2; Li et al. [17] analyzed timing disparity956

between messages. Moreover, Suzuki et al. [25] developed957

ROS extension on CPU/GPU mechanism, and Li et al. [18]958

developed a real-time ROS 2 GPU management framework.959

VIII. CONCLUSION960

This article presented the design, implementation, and anal-961

ysis of a dynamic-priority-driven scheduler for a multithreaded962

ROS 2 executor. Our proposed executor has the flexibility to963

support user-defined scheduling schemes. With such freedom,964

one can easily develop a formal timing verification method965

to verify the timing correctness of the to-be-implemented966

scheduler by leveraging the rich existing schedulability results.967

Specifically, we developed an efficient queue updating pol-968

icy for ready callbacks and callback selection policies for969

dispatching to threads without priority inversion. Finally,970

we developed a RTA for nonpreemptive callback scheduling971

using the EDF algorithm and implemented it via both case972

studies and synthetic workload. We compared our RTA with973

the default ROS 2 executor and another priority-enhanced974

executor, finding that ours allows for schedulable workloads.975

We believe our modified executor design opens the door to976

designing more efficient middleware, allowing ROS 2 to adapt977

standard real-time scheduling models, enabling existing results978

to be used ROS 2 systems.979

Limitations and Challenges: By checking for new callback980

releases before all selections, our modified executor adds981

additional overhead compared to the default executor. Users982

of our modified executor must carefully select deadline values983

in order to ensure safe behavior of the system. It is the984

user’s responsibility to declare callback chains, and determine985

appropriate deadlines for each.986

Since ROS 2 already supports changing the executor987

behavior by using a subclass of rclcpp::Executor, the988

modified executor could be added as a component of rclcpp,989

or added as a separate optional package. Our executor adds990

additional complexity to the executor implementation, so991

inclusion in the default ROS 2 distribution could add work992

to documentation, testing, and maintenance tasks, including993

our executor in the default ROS 2 distribution, is made easier994

by the fact that our executor does not require changes to the995

existing data structures in rclcpp.996
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