
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

KPAC: Efficient Emulation of the ARM Pointer
Authentication Instructions

Illia Ostapyshyn , Gabriele Serra , Member, IEEE, Tim-Marek Thomas , and Daniel Lohmann

Abstract—ARMv8.3-A has introduced the pointer authentica-1

tion (PA) feature, a new set of measures and instructions to2

sign and validate pointers. PA is already used and supported3

by the major compilers to protect the return addresses on4

the stack as a measure against memory corruption attacks. As5

more and more SoCs implement ARMv8.3-A and code compiled6

with PA is even fully backwards compatible on CPUs without7

(where the new instructions are just ignored), we can expect PA-8

enabled binaries to become standard in the near future. This9

gives rise to the question, if and how also systems without the10

native PA could benefit from the extra security provided by11

the return address protection. In this article, we explore KPAC,12

a set of efficient software-based approaches to bring the PA-13

based return-address protection onto the platforms without the14

hardware support in an easily adoptable (binary-compatible)15

and scalable manner. Technically, KPAC achieves this by either16

a synchronous trap-based emulation inside the kernel or an17

asynchronous novel memory-based invocation of a dedicated18

CPU core. Our experiments with the CortexSuite benchmarks,19

Chromium, and Memcached on a variety of platforms running20

Linux ranging from a Xilinx ZCU102 board over a Raspberry21

Pi 4 up to an 80-core Ampere Altra demonstrate the broad22

applicability and scalability of our approach. Furthermore, we23

discuss how the principles of KPAC can be generalized to the24

other suited problem areas.25

Index Terms—Computer security - application security,26

modeling - emulation, software - embedded software, software -27

system software - operating systems.28

I. INTRODUCTION29

HARDWARE-BASED implementations for control-30

flow integrity (CFI) are becoming increasingly31

popular with Intel’s control-flow enforcement technology32

(CET) [1], [2], [3] and ARM’s pointer authentication (PA) [4]33

features being the most prominent candidates. Both provide34

measures to ensure the integrity of the programmer-intended35

control-flow by protecting the return addresses on the stack, a36

frequent target for the buffer-overflow attacks in combination37

with techniques like return- or jump-oriented programming38

Manuscript received 12 August 2024; accepted 12 August 2024. This work
was supported in part by the German Research Foundation (DFG) under Grant
LO 1719/4-1 (391395160). This article was presented at the International
Conference on Embedded Software (EMSOFT) 2024 and appeared as part
of the ESWEEK-TCAD special issue. This article was recommended by
Associate Editor S. Dailey. (Corresponding author: Illia Ostapyshyn.)

Illia Ostapyshyn, Tim-Marek Thomas, and Daniel Lohmann are with the
Institute of Systems Engineering (ISE-SRA), Leibniz Universität Hannover,
30167 Hannover, Germany (e-mail: ostapyshyn@sra.uni-hannover.de;
thomas@sra.uni-hannover.de; lohmann@sra.uni-hannover.de).

Gabriele Serra is with the TECIP Institute, Scuola Superiore Sant’Anna,
56127 Pisa, Italy (e-mail: gabriele.serra@santannapisa.it).

Digital Object Identifier 10.1109/TCAD.2024.3443773

(ROP/JOP) [5], [6], [7]. The hardware-based implementations 39

overcome the most significant acceptance limitations of 40

software-based CFI techniques: poor performance [8] and 41

issues regarding the protection of the protection measure 42

itself [9], [10], [11], [12]. While the ARMv8.3-A PA feature is 43

long supported by standard compilers [13], [14] and the Linux 44

kernel (in contrast to the Intel’s CET, which only very recently 45

made it into Linux [15]), for the last five years only Apple’s 46

A12/M1 actually implemented it. However, this is currently 47

changing with Qualcomm’s Snapdragon 8cx Gen 3 [16], 48

which includes the PA support. As the PA-enabled binaries 49

are fully backwards compatible (the special new instructions 50

inserted by the compiler to encode/decode return addresses 51

resolve to NOPs on CPUs without), we can expect to see 52

a much broader adoption in the near future. Therefore, we 53

consider it worthwhile to explore how and at what costs it 54

would be possible to emulate the PA feature for the return 55

address protection on the platforms without native PA. 56

A. About This Article 57

In this article, we provide, discuss, and evaluate four 58

different approaches to emulate the PA-based return-address 59

protection on the ARM processors without the PA support. We 60

compare our results to the only attempt in this direction we 61

are aware of, which is PAC-PL of Serra and colleagues [17], 62

who employed an FPGA for the hardware-based encryp- 63

tion/decryption of return addresses. While PAC-PL provides 64

an acceptable performance impact (negligible in many cases, 65

up to 3× in some cases), it also comes with a number of 66

drawbacks. First, PAC-PL is not binary compatible, as the 67

code has to be compiled with a custom GCC extension. 68

Furthermore, it requires the availability of an FPGA, which 69

alone makes it unsuitable for many application scenarios. 70

Consequently, their work triggered our attempt to look for 71

more efficient software-based and, if possible, also binary- 72

compatible approaches. 73

In a nutshell, we present a 2 × 2 matrix of software-based 74

approaches that either require recompilation (like PAC-PL) or 75

are binary compatible (via code patching) and either execute 76

synchronously (by trapping) or asynchronously (by employing 77

a dedicated CPU core) and compare them to kpacpl , a 78

reimplementation of PAC-PL by its author. Our results show 79

that with the extra core (which in real-world settings is 80

arguably more available/affordable than the on-board-FPGA), 81

we outperform the programmable logic (PL)-based approach 82

in all the cases. Without the extra core, the synchronous and 83

binary-compatible variant comes at a worst-case overhead of 84

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0007-3057-1356
https://orcid.org/0000-0003-0225-6731
https://orcid.org/0009-0000-8197-2423
https://orcid.org/0000-0001-8224-4161

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. PA mechanism.

17.37×, which is orders of magnitude below the costs for85

the software emulation reported so far [17]. For instance,86

Chromium on a Raspberry Pi 4 receives an actual slowdown by87

7.13× in the JetStream benchmark, which could be considered88

as acceptable for the security-critical Web applications.89

In particular, we claim the following contributions.90

1) We describe KPAC, an approach for efficient software-91

based and optionally ARMv8.3-ABI-compatible PA as92

an extension to the Linux kernel.93

2) We provide the remote-core system call (RCSC), a novel94

mechanism for efficient and safe interaction between the95

user-mode threads and dedicated kernel cores.96

3) We explore and evaluate the design space for the KPAC97

on a variety of benchmarks and platforms.98

The remainder of this article is organized as follows.99

Section II presents the ARM PA mechanism and Serra100

et al.’s [17] implementation based on the programmable logic.101

Section III describes the assumed threat model, Section IV102

our approach, and Section V the concrete implementation.103

In Section VI we evaluate the implementation variants and104

discuss our findings in Section VII. Finally, we review the105

further relevant literature in Section VIII and conclude this106

article in Section IX.107

II. BACKGROUND108

A. ARMv8.3-A Pointer Authentication109

pointer authentication (PA) is an approach to protect110

the code and data pointers with negligible footprint in111

performance, memory, and hardware. The key idea is to utilize112

the free bits in the unused upper part of pointers to store a113

cryptographic hash of the pointer value as its signature, so114

that unintended modifications can easily be detected. Typical115

memory configurations on AArch64 require only 48-bit virtual116

addresses, which leaves 16 bits for the signature, called the117

pointer authentication code (PAC) [4]. The signature algo-118

rithm is left to the implementation; ARMv8.3-A suggests the119

QARMA block cipher [18], which can efficiently be realized120

in hardware.121

The mechanism features instructions for the creation and122

validation of these signatures. Fig. 1(a) visualizes the signing123

instructions using the mnemonic PAC. These instructions take124

three values, the 64-bit pointer itself, a 128-bit key (implicitly),125

and a 64-bit context information to produce a pointer with126

a PAC in its upper bits. The ARM implementation features 127

five keys: two for instructions and data pointers each, and one 128

general-purpose key. They are stored in the system control 129

registers that are accessible only by higher privilege levels (i.e., 130

the operating system kernel) and, thus, kept secret from the 131

user applications requesting authentication. Linux, Windows, 132

and XNU [16], [19], [20] manage these keys on a perprocess 133

basis for the systems with the PA extension; Linux 5.7+, and 134

XNU even support PA inside the kernel itself [21]. 135

After the pointer has been signed using PAC instructions, 136

their counterparts based on the mnemonic AUT are responsible 137

for verification of signature before usage [Fig. 1(b)]: The AUT 138

instructions take the authenticated pointer, recompute the PAC, 139

and compare the result with the code stored in the signed 140

pointer. If the signature matches, the PAC is stripped from 141

the pointer. Otherwise a trap will occur, either immediately 142

(ARMv8.6-A) or upon dereferencing of the pointer. 143

GCC and LLVM compilers already employ PA [13], [14] to 144

protect the function return addresses (the backward edges of 145

the control flow) that might be stored on the stack, where they 146

would become vulnerable for the buffer overflow attacks. This 147

is done by inserting PACIASP and AUTIASP instructions, 148

operating on the link register (LR/X30) with the stack pointer 149

(SP) as the context value in the function prologues and 150

epilogues, respectively. In the ARM ISA, these instructions 151

are located in the NOP instruction space, which ensures the 152

backward compatibility of newly compiled programs with 153

CPUs lacking the PA extension. As leaf functions never push 154

their return address onto the stack, the standard setting is to 155

omit the PA instructions in them. 156

However, half a decade following the introduction of the PA 157

mechanism in the ARM specification and despite ubiquitous 158

compiler and OS support, only few systems are readily avail- 159

able that implement it in hardware. Most notably, the A12 chip 160

presented by Apple in 2018 and all its successors come with 161

PA [22] mechanism. This has only recently be complemented 162

by Qualcomm’s Snapdragon 8cx Gen 3 SoC [16], which 163

brings the PA also to the Windows and Android domains. 164

Nevertheless, we face a plethora of systems with no support 165

for the PA and adoption will continue to be slow, especially 166

in the embedded domain. 167

B. PA Using FPGA: The PAC-PL Approach 168

As a solution for this, Serra et al. [17] implemented the PA 169

mechanism on an SoC featuring an field programmable gate 170

array (FPGA). Since, we base our work on theirs and use a 171

reimplementation as a comparison point, we briefly present 172

and discuss it here.1 173

The main idea of PAC-PL is to perform the signing and 174

authentication of pointers using PL on the SoC. Its architecture 175

consists of two components: 1) a QARMA block cipher [18] 176

crypto engine and 2) an AXI subordinate device, which 177

handles interaction between the crypto engine and the host 178

over the AXI bus via the memory-mapped registers, which 179

are mapped into the kernel- and user-level address spaces, 180

1Unfortunately, the original PAC-PL code underlies the IP restrictions, but
its author provided us with a personal reimplementation of its core features.

OSTAPYSHYN et al.: KPAC: EFFICIENT EMULATION OF THE ARM POINTER AUTHENTICATION INSTRUCTIONS 3

respectively. Instead of using the ARMv8.3-A PAC/AUT181

instructions, the signing/authentication of pointers is triggered182

by writing into the corresponding registers, which lets the PAC-183

PL accelerator generate, remove, and check the PAC. Hence,184

the approach is not binary-compatible: the software has to185

be compiled with a custom GCC plugin that generates the186

necessary instructions.187

Since, QARMA is designed to be particularly fast in188

hardware, the overheads are dominated by the communication189

latency, which is costly due to the mismatch in the clock190

frequencies between the FPGA and the host CPU. While191

calculating the cipher itself only requires ten host cycles, a192

complete PAC/AUT operation takes at least 426 cycles. In our193

measurements on a Xilinx ZCU102 at 1.2 GHz this approach194

leads (with the most strict PA application mode all explained195

later) to an average overhead of 34% for the CortexSuite [23]196

benchmarks. The operation time is bounded, making it suitable197

for the real-time systems.198

In the paper [17], the utilization of an FPGA is partly199

justified by comparing it to the performance results from200

a software-based emulation of their approach, which bears201

much higher (up to five orders of magnitude!) overheads.202

However, this extremely high overhead is likely caused by203

the employed user-kernel interface, which induces two page204

faults per PAC/AUT transaction (hence, the four page faults per205

protected function) to emulate a PAC-PL device. Furthermore,206

while QARMA is optimized for the hardware implementa-207

tions, another cipher might be more suitable for a CPU-based208

software implementation. Last but not least, the work does not209

evaluate nor mention support of the multithreaded applications.210

In the remainder of this article, we explore the options for211

more efficient and optionally binary-compatible PA emulation212

that scales well in concurrent environments.213

III. SECURITY OBJECTIVES AND THREAT MODEL214

ARMv8.3 pointer authentication was developed to accom-215

plish the pointer integrity. Intuitively, pointer integrity seeks to216

prevent the alterations to pointers while residing in memory,217

ensuring that the value of a pointer at the time of its use218

(i.e., dereferencing) remains consistent with the value intended219

during its creation or storage. Control-flow attacks and numer-220

ous other data-oriented attacks hinge on manipulating the221

susceptible pointers. Consequently, the enforcement of pointer222

integrity defends against these attacks. The security objective223

of ARMv8.3 PA, therefore, consists of preventing the attacker224

from forging pointers used by a vulnerable program.225

Likewise, KPAC pursues the same security guarantees. Our226

approach shall satisfy the following functional requirements.227

1) Pointer Integrity: Prevent and detect the use of the228

corrupted code or data pointers.229

2) Attack Resistance: Resist attempts to forge the valid230

pointers and resist pointer reuse attacks.231

Further, we identify nonfunctional requirements, which232

allow wider compatibility as follows.233

1) Compatibility: Enabling pointer integrity protection of234

existing programs without interfering with their opera-235

tion even without dedicated hardware support.236

2) Performance: Minimize run-time overhead by providing 237

configurable protection scopes as a tradeoff between the 238

hardening and performance. 239

The following assumptions define the attacker’s capability, 240

consistent with the prior works in this area ([24], [25]). Our 241

adversary model reckons with an attacker as follows. 242

1) With unrestricted user-space memory read and write 243

capabilities, constrained exclusively by the data exe- 244

cution prevention (DEP) mechanism, therefore with 245

the ability to read any program memory and write 246

to the nonexecutable segments exploiting the input- 247

controlled memory corruption errors in the victim 248

process (e.g., controlling return addresses, function 249

pointers, or VTable pointers). 250

2) Disposes of a full knowledge of the process memory 251

layout and has successfully bypassed the address space 252

layout randomization (ASLR), if present. 253

3) With no control over privilege levels higher than the user 254

level, meaning without the ability to access the kernel 255

space or higher privilege levels. 256

Note that, assumptions 1 and 2 rule out the feasibility of 257

randomization-based defenses susceptible to the information 258

disclosure, such as stack canaries, ASLR, or software shadow- 259

stacks. KPAC was designed to maintain its effectiveness even 260

when the complete memory layout of the victim process is 261

disclosed as long as the assumption 3 holds. Therefore, the 262

attacker cannot deduce the keys, which are located in memory 263

not directly readable from the user space. 264

According to the presented threat model, KPAC is as secure 265

as ARMv8.3 PA. The PAC-PL Serra et al. [17] have obsoleted 266

the assumption 3 by employing ARM TrustZone, which cre- 267

ates isolated secure environments to protect the sensitive data 268

for the key management. This extra protection is applicable to 269

KPAC as well, but not further explored in this article. 270

IV. KPAC APPROACH 271

A key point of the ARMv8.3-A PA (also mimicked by PAC- 272

PL) is that it delegates key management to the OS running 273

on the EL1 privilege level (the supervisor mode) ensuring 274

higher protection. In order to stay true to this property, KPAC 275

delegates key management and exception handling to the OS 276

kernel. As a corollary, the partial interpretation of the PAC 277

and AUT operations by software has to take place inside the 278

kernel, which generally induces the significant overhead, as 279

every operation thereby comes with a minimum of two user– 280

kernel context switches. Mitigating this overhead as far as 281

possible is one key to an efficient software implementation. 282

The other key is the overhead of the signing algorithm itself. 283

The central component of KPAC is a Linux kernel extension, 284

which implements the PA backend. Since, QARMA is not 285

suitable for the fast software implementation, SipHash [26] has 286

been selected as the cryptographic hashing algorithm instead. 287

It is designed to be efficient and secure with short inputs 288

to compute a 64-bit message authentication code, which is 289

truncated to the unused bits of the pointer. 290

The kernel extension exposes two interfaces for the user- 291

space applications to request the PA (Fig. 2) as follows. 292

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b)

Fig. 2. Application requesting PA by making (a) an svc request followed
by (b) a kpacd request.

TABLE I
PROPERTIES OF PRESENTED EMULATION APPROACHES

1) Synchronous system calls (svc requests), which execute293

the PA within the invoking thread. This is the canonical294

way to implement an user kernel interaction.295

2) RCSC, a novel asynchronous communication protocol296

based on the per-CPU shared memory, which executes297

the PA on a dedicated kernel core running the kpacd298

daemon. This (kind of) mimics the idea of PAC-PL to use299

extra hardware (here a CPU core instead of an FPGA)300

for the PA.301

To instrument applications with either invocation scheme,302

two methods have been investigated as follows.303

1) Static instrumentation by a compiler plugin (as in PAC-304

PL). This is, assumingly, the most run-time efficient way,305

as it facilitates static optimization of the code and also306

provides configurable protection scopes for the overhead307

mitigation.308

2) Load-time instrumentation by a dynamic library (libkpac)309

that is applied by the LD_PRELOAD feature of the310

system’s dynamic loader and patches at load time all311

PACIASP/AUTIASP instructions in the code to invoke312

KPAC instead. This provides full binary compatibility for313

ARMv8.3-A binaries that were compiled with PA support.314

Table I briefly summarizes the resulting four KPAC variants,315

together with PAC-PL and a native ARMv8.3-A processor. The316

given overhead numbers should be considered as a ballpark317

figure only. They describe the geometric mean over all the318

CortexSuite benchmarks on a Xilinx ZCU102 at 1.2 GHz.319

Our experiments with Apple’s M1 Ultra did not yield any320

measurable overhead for the native ARMv8.3-A PA.321

V. IMPLEMENTATION322

We integrated KPAC into the Linux kernel version 6.1. The323

compiler support for the static instrumentation is provided as324

a GCC 12.2 plugin.325

A. svc: The Synchronous System Call Interface 326

The AArch64 instruction set defines the SVC (supervisor 327

call) instruction, which transfers the control flow to the EL1 328

privilege level running the OS kernel. This instruction is used 329

across the operating systems to implement the system calls 330

and has a 16-bit immediate argument. On Linux, the system 331

call number is passed in the W8 register and the immediate 332

argument of the SVC instruction is ignored. 333

We extend the Linux system call interface to emulate the 334

ARMv8.3-A PACIASP and AUTIASP instructions by reserv- 335

ing two values of the SVC instruction’s immediate argument. 336

These new emulation calls thereby require a single instruction 337

in the code that only alters the LR, making them semantically 338

equivalent to the PACIASP/AUTIASP instructions emitted 339

by the standard compilers. As the execution time of the 340

SVC instruction and the SipHash algorithm takes bounded 341

time [26], the emulation is also suitable for the hard real-time 342

settings that demand bounded WCETs. 343

B. kpacd: The Remote-Core System Call Interface 344

On many platforms, context switches into the OS kernel 345

induce a high overhead for changing the privilege level and 346

the address space. Furthermore, the executed kernel code may 347

put extra pressure to the CPU-local caches and the TLB, 348

significantly impairing the performance [27]. An alternative 349

approach is to run the kernel services asynchronously on a ded- 350

icated core [28], [29] that always stays in the kernel mode. The 351

services are invoked by a shared-memory interface between 352

both the cores, omitting the above overhead altogether. Our 353

rcsc implements this idea for the Linux, while additionally 354

providing for the lock-free per-core separation. 355

With RCSC, one or several CPU cores are reserved for the 356

KPAC and execute the kpacd (Kernel PAC Daemon) in the 357

kernel mode, which polls a shared memory page for the PA 358

requests. This is comparable to the PAC-PL, where the service 359

core acts as the accelerator instead of an FPGA. 360

Sacrificing a full core just for the PA purposes might appear 361

as an odd design decision, given that such core induces a 362

much higher hardware overhead than a small FPGA. However, 363

in practice, an unused core is way more often available and 364

actually cheaper for many embedded systems than an FPGA. 365

Invocation of kpacd: Listing 1 demonstrates the assembly 366

code corresponding to an authentication RCSC to the 2kpacd 367

thread. After storing the pointer and the context value at the 368

respective offsets in the RCSC page (L3), the application hands 369

off the request by writing the operation code into the first 370

status word of the page (L6), which wakes the remote kpacd 371

to perform the requested operation. The status word is then 372

checked in a loop (L9–11) by loading the first word of the 373

page with the exclusive load (LDXR) instruction, branching 374

to WFE if the value is not zero (zero signals completion). 375

The WFE instruction hints the CPU core to enter a low-power 376

state, until a wake-up event occurs [4]. A remote store (by the 377

kpacd core) to this location, which was recently read using 378

an exclusive load (LDXR), generates such an event. Hence, 379

on both the sides the polling does not come with an extra 380

energy/heat overhead. The combination of LDXR and WFE is 381

OSTAPYSHYN et al.: KPAC: EFFICIENT EMULATION OF THE ARM POINTER AUTHENTICATION INSTRUCTIONS 5

Listing 1. Assembly code of a function prologue requesting a signed pointer
from kpacd .

also used in the AArch64 __CMPWAIT_CASE macro of the382

Linux kernel.383

Multithreading Support: On multiprocessor systems,384

multiple threads from within the same or different processes385

might invoke kpacd simultaneously. These concurrent386

requests need to be isolated and coordinated. RCSC solves this387

by providing an individual RCSC page for each core, which388

is (implicitly) used by the thread currently executing on this389

core. Hence, no synchronization is required when accessing390

the RCSC page, enabling scalability. As each core executes391

exactly one thread at a time, the per-core pages also ensure392

isolation. Upon a switch to another thread, the scheduler393

completes any pending RCSC requests and saves the relevant394

content (24B) of the shared page in the thread control block.395

Technically, the provision of per core pages (which we396

consider a general mechanism) has to be integrated with397

the virtual memory subsystem. For this, the data structure398

representing the address space and containing the pointer to399

the top-level page directory (page global directory and PGD),400

is extended to support a different PGD per core. As illustrated401

in Fig. 3, all the entries in these PGDs are kept synchronized402

except for one. The entry leading to the core-local RCSC page.403

Thereby, all cores use the same virtual address to access their404

core-specific memory. This comes at the cost of duplicated405

PGDs for processes using the kpacd service. Moreover, when406

a PGD entry is modified, the changes have to be mirrored407

into the PGDs of other CPU cores. The performance overhead408

of this is negligible, since the top-level page-directory entries409

are only populated at the process start and rarely modified410

during the execution. As the underlying page tables are shared,411

all the changes in them (e.g., induced by an mmap()) are412

immediately seen by other CPU cores and require no further413

mirroring nor synchronization.414

For load balancing in larger multicore systems, an arbitrary415

number of cores could be assigned to kpacd . Each kpacd416

core services a fixed set of application cores in a round-robin417

manner. Hence, the worst-case service time of kpacd is also418

bounded in multicore settings.419

C. Static Instrumentation via Compiler Plugin420

Applying either of the KPAC invocation approaches for421

the return-address protection requires adding the signing and422

authentication code in the prologues and epilogues of func-423

tions. One way to achieve this, also taken by Serra and424

associates [17], is to employ a compiler plugin and add425

an additional pass working on the register-transfer language426

representation of the program.427

Fig. 3. Page table arrangement introduced by CPU-local top-level page
directories (PGDs).

Protection Scopes: If compiling code for ARMv8.3-A with 428

-mbranch-protection, GCC would apply the PA-based 429

return address protection on the prologues and epilogues of 430

all the nonleaf functions (which push the return address to the 431

memory). As the PA-based return address protection basically 432

just adds two instructions to a protected function, this does not 433

induce any measurable overhead. In contrast, a PA emulation 434

induces a much higher overhead, so it might be worthwhile to 435

explore different protection scopes and let the compiler plugin 436

only instrument the most vulnerable functions. 437

Our compiler plugin therefore resembles the protection 438

levels of GCC’s and Clang’s -fstack-protector fea- 439

ture [13], [14], a purely compiler-based CFI measure that 440

comes with the common limitations regarding performance 441

and actual protection (cf. Section I). However, its defined 442

protection levels are established among the developers who 443

have to trade between the hardening and performance of their 444

software. The three different protection scopes are referred to 445

in the following as char, strong, and all. 446

char protects the nonleaf functions that place char arrays 447

of at least size 8 (ssp-buffer-size) on the stack 448

and nonleaf functions, that perform dynamic stack 449

allocation with alloca(). This protection scope 450

bears the lowest performance impact, while already 451

providing some protection for simple but common 452

buffer-overflow attacks. 453

strong extends the scope of protected functions to the 454

nonleaf functions that accommodate any arrays or 455

variables that have their address taken on the stack. 456

This further mitigates the range of some advanced 457

attack techniques based on the ROP at a moderate 458

performance impact. 459

all extends the scope even further to all the (nonleaf) 460

functions, which provides the highest protection 461

level, but also induces significant performance 462

costs. 463

Our plugin supports all the optimization levels, but auto- 464

matically disables the ipa-ra and shrink-wrap optimizations, 465

as we depend on the caller-saved registers to be actually saved 466

and the function prologue at the beginning of a function. 467

D. Load-Time Instrumentation via libkpac 468

While recompiling the existing applications might be feasi- 469

ble in some settings (e.g., embedded applications), this is often 470

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b)

Listing 2. Example function from Memcached patched by libkpac for kpacd
invocation. The kpacd_{pac,aut}_24 trampoline operates on the return
address at the offset 24 from the SP (a) Before patching (b) After patching.

not the case, especially in end-user environments. Thus, we471

propose a binary-compatible method of adding the software-472

emulated PA to the programs already compiled for ARM PA473

by providing a run-time library (libkpac). libkpac patches the474

program at load time and can be applied selectively to the475

whole system or single application processes.476

Technically, libkpac is injected by setting the477

LD_PRELOAD environment variable, which causes the478

system’s dynamic loader to additionally load the library479

and execute its constructor function. The LD_PRELOAD480

mechanism provides for maximum flexibility on the user’s481

side. For example, the user might run one instance with KPAC482

support to improve the security and another one without, for483

the performance-sensitive activities.484

The constructor function parses the memory map of the485

process, exposed by Linux in the procfs file system, and takes486

note of the executable memory areas in the address space. It487

then iterates over these areas and searches for the PACIASP488

and AUTIASP instructions. At these places, the code needs to489

be patched to invoke KPAC by either the synchronous svc or490

the asynchronous RCSC mechanism.491

svc-Only Mode: In this mode, the PACIASP and AUTIASP492

instructions are simply replaced by their respective svc equiv-493

alents. As this takes only a single opcode and clobbers the494

same set of registers (just the LR register), this is trivially495

possible in all the cases.496

kpacd and kpacpl Modes: Invoking kpacd or kpacpl via497

their shared-memory interface requires inserting additional498

branches to a subfunction, which is more complicated and not499

(safely) possible in all the cases. The general idea of patching500

a function for such invocation is demonstrated in Listing 2.501

Fundamentally, it is not possible to just replace PACIASP502

and AUTIASP by a call to the kpacd /kpacpl invocation, as503

this would overwrite the return address stored in the LR to be504

protected. Instead, the invocations have to be put at the end of505

the prologue (beginning of the epilogue), when LR has been506

saved onto the stack. The required space for these calls is cre-507

ated by shifting the stack frame (de)allocation sequences into508

the PACIASP/AUTIASP instructions. However, as compilers509

might do arbitrary things in their function pro/epilogues (e.g.,510

reordering), the patching falls back to the svc mechanism if no511

familiar stack frame (de)allocation sequence is detected. When512

instrumenting binaries for kpacpl , the svc fallback uses the513

accelerator for QARMA computation from the kernel space.514

Upon invocation, the actual return address to be en/decoded 515

resides on the stack, but at an varying offset that depends on 516

the function-specific stack frame. To deal with this, libkpac 517

provides trampoline functions for the offsets from 0 to 504 518

bytes (at machine word granularity). As the AArch64 BL 519

instruction can jump only in the region of ±128 MiB, libkpac 520

furthermore places the trampolines in neighboring address- 521

space holes in the case of large text sections. For example, 522

this is required to fully patch the Chromium’s 161.02 MiB 523

executable segment. 524

VI. EVALUATION 525

In our evaluation, we 1) demonstrate the latency of a single 526

PAC/AUT transaction; 2) show that our approaches efficiently 527

implement PA in software; 3) illustrate the multicore scal- 528

ability using the memory caching system Memcached; and 529

4) showcase the ease use of the binary-compatible approaches 530

using the Chromium browser. 531

We have integrated our mechanism into Linux 6.1 on the 532

three systems: 1) Xilinx Zynq UltraScale+ ZCU102 evaluation 533

board with XCZU9EG MPSoC at 1.2 GHz; 2) Raspberry 534

Pi 4 single-board computer with Broadcom BCM2711 at 535

1.8 GHz; and 3) Gigabyte R152-P31 rack server with 80- 536

core Ampere Altra Q80-30 CPU at 3 GHz. The ZCU102 537

evaluation board allows us to directly compare our approaches 538

with the PAC-PL reimplementation as the SoC features an 539

FPGA fabric on the chip. The Raspberry Pi resembles a typical 540

medium-end hardware used in embedded appliances. This does 541

obviously not hold for the 80-core Ampere Altra/Memcached 542

setup, which we include for the sole purpose of stressing the 543

multicore scalability of our approach. 544

As the baseline, we chose to run the targets without any 545

enabled PA. This corresponds to our measurements on the 546

Apple’s M1 Ultra (see Table I), which did not yield any 547

measurable overhead for the native PA. 548

A. Cost of User–Kernel Interaction and Hashing 549

First, we evaluate the cost of the user kernel interaction 550

methods introduced in Section IV by measuring the end-to- 551

end latency of the transactions on the mentioned systems. 552

Simultaneously, we demonstrate the high overhead of the 553

QARMA hashing algorithm when implemented in software 554

and motivate the choice of SipHash for fast hashing. Table II 555

demonstrates the 99th percentile latencies for the PA requests 556

in clock cycles over 32 million samples. The cycles are 557

measured using the PMU’s cycle counter PMCCNTR_EL0. 558

Consequently, the kpacd spin loop does not use WFE, as it 559

is undefined whether the counter continues to increment in 560

low-power state [4]. 561

The measurement in the None row of Table II does not 562

perform any hashing and thus represents the raw communi- 563

cation overhead for the svc- and RCSC-based transactions. 564

Comparing the raw communication overhead across the 565

systems, both the ZCU102 and Raspberry Pi 4 require over 566

2000 cycles for an NOP system call. The kpacd request on 567

these systems is much faster, by factor 4.99 on the Raspberry 568

Pi 4 and by factor 9.31 on the ZCU102 evaluation board. 569

OSTAPYSHYN et al.: KPAC: EFFICIENT EMULATION OF THE ARM POINTER AUTHENTICATION INSTRUCTIONS 7

TABLE II
99TH PERCENTILE ROUND-TRIP LATENCY OF PA REQUESTS IN CLOCK

CYCLES. (A) AMPERE ALTRA Q80, 3 GHZ. (B) BROADCOM BCM2711,
1.8 GHZ. (C) XILINX XCZU9EG, 1.2 GHZ

(A) (B)

(C)

On the Xilinx ZCU102 evaluation board, a kpacd transaction570

takes only 217 clock cycles, which amounts to 180.8 ns. On571

the same system, a round trip to the PL takes 643 cycles or572

535.8 ns. In contrast, the Ampere Altra Q80 system shows a573

different picture: a system call is 18.28% faster than a round574

trip over the shared memory and takes only 389 clock cycles575

or 129.7 ns. This demonstrates that high-end systems might576

implement the system calls more efficiently and could profit577

from the fast software PA without an additional accelerator578

core.579

Moving onto the hashing algorithms, the ARM-suggested580

QARMA cipher comes with an overhead of at least 3000581

cycles on all the systems even when subtracting the raw582

communication costs. For instance, a system call calculating583

the QARMA cipher takes 9.67 µs on the ZCU102 evaluation584

board. Having an FPGA at its disposal, this is the only system585

providing a low latency for QARMA with kpacpl taking 650586

clock cycles to authenticate a pointer. In fact, the QARMA587

calculation costs are fully amortized by the communication588

overhead, as the round trip latency is nearly equal to the589

latency without hashing. This stems from the mismatch in590

the clock frequencies between the FPGA and the host CPU,591

together with the costs for the data transfer.592

SipHash offers a practical alternative to the QARMA cipher.593

Subtracting the communication overhead, its calculation takes594

roughly 100 cycles on all the systems. This results in the595

round-trip latency of 339 cycles (282.5 ns) on the ZCU102596

evaluation board, 434 cycles (144.7 ns) on the Ampere597

Altra machine via svc, and 508 cycles (282.2 ns) on the598

Raspberry Pi 4. Therefore, we use SipHash in the remainder599

of evaluation.600

B. Approach Comparison601

For the comparison of the KPAC approaches, we chose the602

CortexSuite [23]. It is a representative embedded workload,603

as it consists of machine learning, computer vision, language604

processing, and IoT tasks. As the baseline, we compile all605

the benchmarks without any protection using GCC 12.2 with606

the -O2 optimization level. For the static instrumentation, the607

benchmarks are compiled with our compiler plugin with the608

Fig. 4. Geometric mean of CortexSuite benchmark run durations normalized
to the baseline run on Xilinx ZCU102.

same optimization level.2 For the binary-compatible libkpac 609

evaluation, the compilation flags are complemented with 610

-mbranch-protection=pac-ret to add the return- 611

address protection using ARMv8.3-A PA. The benchmarks are 612

executed on the Xilinx Zynq UltraScale+ ZCU102 evaluation 613

board, allowing us a direct comparison to the PL-based 614

approach kpacpl . 615

Static Instrumentation: The advantage of instrumenting 616

applications statically using the compiler plugin lies in the 617

ability to mitigate the performance overhead using the pro- 618

tection scope heuristics introduced in Section V-C. Thus, we 619

evaluate the three protection scopes and compare the commu- 620

nication approaches to each other. Fig. 4 provides a high-level 621

overview of the overhead over all the CortexSuite benchmarks 622

(summarized using the geometric mean) and Table III breaks 623

down the figure for the individual benchmarks. 624

The highest overhead is measurable for the most secure 625

protection scope all , where all the nonleaf functions are 626

protected. The svc-based instrumentation has the highest 627

average overhead of 1.88× and is outperformed by kpacpl 628

with the average overhead of 1.34×. The kpacd approach 629

leads in this category with the average overhead of 1.17×. 630

The protection scope strong reduces the overhead to a 631

lower figure for all the approaches, while keeping the security 632

guarantees high as the likelihood of a stack-buffer overflow 633

occurring in a function that never exposes the addresses to 634

its stack is exceedingly low. There, kpacd still outperforms 635

all the approaches with an average overhead of 1.88×. The 636

worst-case overhead for kpacd-strong is observed in the 637

sphinx benchmark with 1.20× or 20%. The respective kpacpl 638

figures are 1.06× for the average and 1.48× for the worst case 639

in sphinx. Even for svc, which is inherently suboptimal on 640

this system due to the cost of the system calls, the average 641

overhead is reduced to 1.20× with the worst case of 3.34×. 642

Depending on the application, the security can be traded 643

for the performance by reducing the protection scope to the 644

char : functions that allocate the character arrays on the stack. 645

Note that, this is the default mode of GCC’s stack protector 646

and the only one evaluated by Serra and associates for PAC-PL 647

originally. This reduces the worst-case overhead to 1.26× for 648

kpacpl , 2.25× for svc, and 1.11× for kpacd . On average, 649

char yields the lowest overhead regardless of the approach. 650

2This excludes optimizations incompatible with current compiler plugin
prototype discussed in Section V-C.

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE III
RUN TIMES OF CORTEXSUITE BENCHMARKS NORMALIZED TO THE BASELINE RUN WITHOUT PROTECTION ON XILINX ZCU102

TABLE IV
LOAD-TIME STATISTICS FROM LIBKPAC PATCHING ROUTINE

Load-Time Instrumentation: Next, we examine the binary-651

compatible approach based on the load-time patching using652

libkpac. In terms of the security, load-time patching is tan-653

tamount to the protection scope all , as GCC hardens all the654

nonleaf functions with PACIASP/AUTIASP instructions.655

The average overheads are 1.44 and 1.31× for kpacpl and656

kpacd , respectively. The worst overhead can be observed in657

svc-only mode (svc-libkpac), where the load-time instrumen-658

tation yields 1.87× overhead on average. The is slightly better659

than the respective static approach (svc-all with 1.88×) as660

the dynamic instrumentation (unlike the compiler plugin) does661

not require disabling any optimizations. Here, kpacd-libkpac662

represents the middle ground between kpacd-all and svc-all ,663

since libkpac replaces PACIASP/AUTIASP conservatively664

with a call to the optimized kpacd routine, resorting to665

costly svc where no familiar prologue/epilogue sequences are666

recognized (due to the instruction reordering).667

Table IV provides the additional statistics on the load-668

time patching. Overall, libkpac in the kpacd /kpacpl modes669

manages to successfully patch 97.12% of prologues and670

epilogues in CortexSuite. The time required for patching does671

not exceed 10 ms for any of the benchmarks and correlates672

roughly with the size of the executable segment. The required673

average time per KiB is 32 µs for svc-only and 37 µs for674

kpacd /kpacpl .675

C. Case Study: Memcached 676

Despite the fact that kpacd requests do not require 677

synchronization with the other threads, there is a risk of 678

high contention on a single service core when serving the 679

multiple application cores. To accommodate highly parallel 680

applications, the KPAC kernel allows flexibly configuring the 681

amount of kpacd service cores and the mapping to the 682

application cores that they serve. The synthetic benchmarks 683

from the CortexSuite are single-threaded and do not assess the 684

multithreading aspect of KPAC. Hence, we deploy Memcached 685

1.6.22 on a Gigabyte R152-P31 rack server featuring the 686

Ampere Altra Q80-30 at 3 GHz with 80 Neoverse-N1 cores 687

and 256 GiB of DRAM. The machine offers uniform memory 688

access (UMA) latencies for all the cores. 689

We chose Memcached for several reasons. The code base 690

is written in plain C, making it easy to deploy it with custom 691

CFI techniques like our software-emulated PA. Furthermore, 692

benchmarking tools are readily available. Also, Memcached 693

is a realistic use-case for the PA as it is used in security 694

relevant environments, for example in combination with an 695

LDAP service for the user authentication. 696

Workload: Memcached server is compiled with the default 697

compiler flags, including the -O2 optimization level. It is 698

complemented with PA-based return address protection and 699

ran with 32 threads pinned to 32 CPU cores. For the client side, 700

we use the memtier_benchmark [30], which is developed by 701

Redis specifically for benchmarking the key-value databases. 702

The Memtier benchmark starts 32 threads on another 32 cores 703

of the same machine. Each threads opens 50 connections 704

(resulting in 1600 active connections) and records latencies 705

of SET and GET requests with the default SET:GET ratio of 706

1:10 for 100 s. We vary the amount of kpacd service threads 707

on the remaining 16 cores of the machine. 708

Results: Fig. 5 displays the average latency in milliseconds 709

as well as the 99th-percentile tail latency for the baseline 710

reference without PA, svc-, and kpacd-instrumented runs 711

(statically via the compiler plugin and load time via libkpac). 712

For kpacd , the latencies are measured for different amounts 713

of the service cores (kpacd-x). 714

The baseline average and tail latencies are 1.09 and 1.66 ms, 715

respectively. When using one service core there is a high 716

latency for all the protection scopes except for char. In fact, 717

OSTAPYSHYN et al.: KPAC: EFFICIENT EMULATION OF THE ARM POINTER AUTHENTICATION INSTRUCTIONS 9

Fig. 5. Average latencies and 99th percentiles for the Memtier benchmark
with 0–16 service cores (svc and kpacd-x).

due to the low amount of protected functions, char shows718

no measurable change for all the approaches both in average719

and tail latencies. For all, the average latency increases almost720

tenfold to 9.30 ms. This figure halves as we double the amount721

of service cores: it amounts to 4.62 ms (4.24×) for the two722

service cores and 2.37 ms (2.17×) for the four service cores.723

Distributing the load over eight kpacd threads and above,724

they are no longer saturated, and the latency does not exceed725

1.43 ms (1.31× of the baseline). The figures are similar to726

all for libkpac instrumented kpacd experiments as libkpac727

manages to patch 91.78% of locations with a kpacd invocation.728

Looking at the strong protection scope, the average latency729

increase is low for the four service cores and above. For two730

service cores the increase is 1.45× or 1.58 ms.731

Interestingly, svc-instrumented servers (including all and732

libkpac variants) demonstrate the same average latency as733

the baseline run. The tail latency, however, shows a minor734

increase of 28.52% for libkpac and 23.20% for strong.735

This stems from the architecture of the used machine. As736

demonstrated in Section VI-A, the Ampere Altra Q80 CPU737

features particularly the fast system calls. Combined with738

the fact that the svc approach does not induce contention739

in multithreaded scenarios, this results in fast return-address740

protection. This highlights that the underlying hardware and741

architecture needs to be taken into account when applying742

the mechanism. In this case, the svc-libkpac approach can743

be easily applied to an already compiled Memcached server744

(e.g., from the distribution’s repository) without significantly745

affecting the performance of the database. This comes at a746

cost of relatively short 1.55 ms patching time for the 147 KiB747

executable segment of the Memcached binary and all the748

libraries it links with.749

D. Case Study: Chromium750

Investigating the binary-compatible approach further, we751

concentrate on its ease of use with the already existing752

software and toolchains. We demonstrate this by applying svc-753

and kpacd-based PA using libkpac to the Chromium browser.754

For this we use the Raspberry Pi 4 single-board computer755

featuring a quad-core Cortex-A72 64-bit SoC clocked at 756

1.8 GHz. We chose this system, as it represents a small 757

lightweight ARM desktop PC. 758

The Chromium browser is a long-existing project with a 759

large code base, leading the browser market with the usage 760

share of 63% on all the platforms (September 2023) [31]. 761

Moreover, the binary Chromium package of the AArch64 762

Debian distribution is already hardened with the ARMv8.3-A 763

return address protection using PACIASP/AUTIASP instruc- 764

tions. However, this protection has no effect on systems 765

without PA. This makes Chromium a prime target for our 766

evaluation, as we want to showcase the ease of use and the low 767

adoption hurdle for the end-users. Security in Web browsers 768

is highly relevant in general, as the users use them for the 769

online banking, healthcare information, and a wide range of 770

other sensitive tasks. The Chromium project itself states that 771

around 70% of their security bugs are the memory safety 772

problems [32]. The severity of those bugs would be alleviated 773

by enabling PA. 774

Workload: To stress test our mechanism and give an 775

intuition on how usable the binary-compatible approaches 776

are for the user-oriented applications, we execute the 777

Speedometer 2.1, Jetstream 2.1, and Motionmark 1.2 browser 778

benchmarks from the WebKit’s Browserbench suite [33]. 779

Speedometer emulates user input by adding, changing and 780

removing to-do items from a Web application, evaluating the 781

browser’s responsiveness. Jetstream, on the other hand consists 782

of the Web assembly and JavaScript benchmarks (64 in total), 783

which are then scored using the geometric mean. These 784

benchmarks consist of several cryptography algorithms, data 785

processing tasks, parsers, and so on. The third Browserbench 786

benchmark, Motionmark, puts the browser’s graphics engine 787

to the test by animating complex scenes. 788

Results: Our library manages to patch 95:85% of prologues 789

and epilogues of the Chromium browser binary with the 790

optimized kpacd invocations. As this binary is quite large 791

(161.02 MiB executable segment), we need 549.89 ms to patch 792

it. This corresponds to the rate of 3.42 ms/MiB. Extending the 793

patching onto the libraries that link with Chromium browser, 794

the patching takes 571.13 ms. Out of those libraries, only 795

libffmpeg.so (part of the Chromium package) and libgnutls.so 796

(distribution’s version) are compiled with ARMv8.3-A PA. All 797

the experiments ran without any changes to the source code 798

and without any crashes or errors. 799

Fig. 6 displays the reached scores for both the bench- 800

marks. The optimized kpacd-based instrumentation reduces 801

the scores by a factor of 4.43× for the speedometer benchmark 802

and by a factor of 3.54× for the Jetstream benchmark. On 803

the other hand, the svc approach reduces the scores by a 804

factor of 10.63 and 7.13× for the speedometer and Jetstream, 805

respectively. The Motionmark benchmark shows only minor 806

difference between the three browser variants, with a worst- 807

case score reduction of 14.05% for svc. 808

The results are consistent with the transaction latencies 809

measured for this system in Section VI-A, where performing a 810

system call calculating SipHash PAC has the quadruple latency 811

of an RCSC transaction. The high overall overhead can be 812

attributed to the fact that the browsers spend significant amount 813

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 6. Scores as reported by the Browserbench benchmarks for libkpac-
instrumented browser. Higher scores are better.

of their time interpreting the JavaScript code. If one of the814

interpreter’s hot functions is nonleaf and thus authenticates815

its return address, this results in a high performance impact816

when compared to the CortexSuite and Memcached figures.817

However, even with svc-libkpac, the browser remains usable818

and responsive, which suggests restricting this protection819

technique for the security-critical applications.820

VII. DISCUSSION821

General Applicability: Given that the vast majority of822

even recent ARMv8.3 designs do not yet include the PA823

extensions, its efficient software-based emulation in the kernel824

will probably be useful for several years but (hopefully)825

eventually become obsolete. However, the four techniques and826

their tradeoffs presented in this article for such emulation are827

not restricted to PA. They could most probably be applied828

also to the future security/safety-related ISA extensions. The829

RCSC mechanism is furthermore usable for the easy offloading830

of any kind of performance- or security-critical service to831

a dedicated core. By its CPU-local page-tables, it provides832

seamless integration into multithreaded applications without833

extra synchronization efforts.834

Hardware Costs: Offloading kernel tasks to the dedicated835

cores has been shown to be effective in improving the836

performance in many settings [29], but to the best of our837

knowledge not yet as an alternative to a relatively sim-838

ple FPGA-based solution. We consider this as a question839

of pragmatics. Technically, (i.e., with respect to the HW840

overhead), the FPGA-based solution is undoubtedly a lot841

cheaper. However, actual availability and market prices often842

tell a different story. While SoCs, including an FPGAs are843

still a development niche, multicore CPUs are prevalent on844

the market and benefit from competitive pricing and mass845

production for procurement, the SoC including an extra core846

is often cheaper than the one with the FPGA. Besides, these847

multicore CPUs are rarely utilized to their full potential due848

to the limited parallelism within the software. This warrants849

considering dedicating one or multiple cores to a service like850

KPAC for increased security or performance or employing851

them instead of an FPGA accelerator. In the end, the question852

of spending an extra core or not comes down to the actual853

performance cost tradeoff, as developers can always opt for854

one of the synchronous emulation variants.855

VIII. RELATED WORK 856

Software-Based Pointer Protection: Before ARMv8.3-A PA, 857

the idea of adding a cryptographic MAC to the code pointers 858

has been explored in a technique called CCFI [34]. To keep 859

the key secret, CCFI reserves 11 XMM registers on x86- 860

64, which constitutes a change to the ABI, requiring the 861

recompilation of the program and all its dependencies. Its 862

predecessor, PointGuard [35] introduces a compiler extension 863

that instruments programs to encrypt the pointers when storing 864

them into memory using simple XOR with a key stored in 865

the same address space. Another approach, called CPI [36], 866

protects pointers by storing them in a secret location along 867

with metadata. However, Evans [37] demonstrated an attack 868

that is able to bypass CPI and argued that the security 869

mechanisms relying on the information hiding are ineffective. 870

Compared to these approaches, KPAC maintains higher 871

security guarantees by computing the cryptographic signature 872

in the kernel space, which allows it to reliably hide the secret 873

key from the attackers. 874

Applications of PACs: The ARM PA mechanism is not 875

limited to the return address protection. In the recent years, 876

many CFI mechanisms employing PA codes in the user space 877

have been proposed. Liljestrand et al. [24] have presented 878

several works on this subject. PARTS [24] is an instrumentation 879

framework, which extends the set of protected pointers to the 880

local, global, and static pointers as well as the pointers in C 881

structures. PCan [38] revisits the concept of stack canaries by 882

dynamically generating their value for each function call using 883

PA instructions, eliminating the need to hide their value in 884

memory. PACStack [39] upgrades the return address protection 885

by cryptographically binding its value to all the previous 886

return addresses in the call stack, preventing the pointer reuse 887

attacks. PTAuth [40], PACMem [41], and CryptSan [42] are 888

the sanitizers that detect the spatial and temporal memory 889

bugs by leveraging PACs. Schilling, Nasahl, and colleagues 890

utilize PACs to thwart not only the software but also the fault 891

attacks by 1) ensuring CFI at the basic block granularity [43] 892

and 2) protecting indirect branches by encoding them at 893

compile time and verifying them at run time [44]. The work 894

of Fanti et al. [45] generalizes PA by protecting not only the 895

pointers but all the spilled registers. 896

Given the scarcity of systems with hardware PA, many 897

of these works have resorted to emulating PA instructions 898

using a rudimentary XOR “encryption” as a proof-of-concept. 899

With KPAC, all these PA-based techniques could be seam- 900

lessly integrated with our cryptographically secure approaches, 901

extending the CFI guarantees beyond the backward edge 902

protection for the systems without hardware-assisted PA. 903

Dedicated Service Cores: Several other works have explored 904

the possibility of dedicating CPU cores of the system for 905

some specific service in order to avoid the context switching 906

overhead. For example, Lozi et al. [29] replaced lock acquisi- 907

tions with remote calls to a dedicated core executing a critical 908

section and observe the performance increase, attributing it 909

to the data locality. The technique of offloading network 910

packet processing to a separate CPU core has been repeatedly 911

proposed since the early days of consumer grade multicore 912

OSTAPYSHYN et al.: KPAC: EFFICIENT EMULATION OF THE ARM POINTER AUTHENTICATION INSTRUCTIONS 11

CPUs [46], [47]. IsoStack [48] and Shenago [49] imple-913

ment that kind of network stack and demonstrates significant914

performance improvements. A similar technique has also been915

successfully applied to speed up virtualization [50], [51].916

The novelty of our approach lies in the idea of modifying917

the virtual memory layer to present each application thread918

with the page private to the CPU core it is running on. This919

forms a framework for the secure communication with the920

dedicated service core without requiring any synchronization.921

IX. CONCLUSION922

ARMv8.3-A pointer authentication is a promising CFI923

mechanism, which is expected to gain more traction in the fol-924

lowing years. It provides significant security gains for minimal925

performance impact, owing to its hardware implementation.926

However, CPUs implementing this feature are still rare and927

we face many systems without PA support.928

In this work, we explore how PA can be emulated in929

software, while maintaining the low performance overhead.930

For this, we extended the Linux kernel with a PA service931

and exposed two communication interfaces for the user appli-932

cations: 1) the classical synchronous system call and 2) a933

shared memory page for the asynchronous communication.934

We also investigated two instrumentation methods for the935

existing applications: 1) statically, by recompiling them with936

our compiler plugin and (2) in the ARMv8.3-ABI-compatible937

way, by patching them at load time. In the static case, we938

employ several heuristics inspired by GCC’s stack protector939

feature [13] to limit protection to the vulnerable functions,940

offering a flexible balance between the performance and941

security.942

We combined all the aspects into a total of eight approaches943

and evaluated their run-time impact using the CortexSuite944

benchmarks and the Memcached key-value database. We also945

assessed the ease of use in the end-user environments by946

applying our approaches to the Chromium browser without947

recompilation. For the best of our approaches, we observed948

low overheads: a worst-case run duration increase of 20% for949

the CortexSuite benchmarks when using kpacd-strong and a950

modest 29% increase in tail latency for the Memcached with951

svc-libkpac.952

The source code and evaluation artifacts are available at:953

https://github.com/luhsra/kpac954

ACKNOWLEDGMENT955

The authors thank the anonymous reviewers for their feed-956

back and fruitful comments.957

REFERENCES958

[1] Intel R© 64 and IA-32 Architectures Software Developer’s Manual,959

Combined Volumes: 1–4, Intel, Santa Clara, CA, USA, Apr. 2022.960

[2] T. Garrison (Intel, Santa Clara, CA, USA). Intel CET Answers Call to961

Protect Against Common Malware Threats. 2020, [Online]. Available:962

https://www.intel.com/content/www/us/en/newsroom/opinion/intel-cet-963

answers-call-protect-common-malware-threats.html.964

[3] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of processor965

instruction set architecture for enforcing control-flow integrity,” in Proc.966

8th Int. Workshop Hardw. Archit. Support Security Privacy, 2019,967

pp. 1–11, doi: 10.1145/3337167.3337175.968

[4] Arm Architecture Reference Manual for A-Profile Architecture,969

Arm Limited, Cambridge, U.K., 2022.970

[5] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return- 971

oriented programming: Systems, languages, and applications,” ACM 972

Trans. Inf. Syst. Security, vol. 15, no. 1, pp. 1–34, Mar. 2012, 973

doi: 10.1145/2133375.2133377. 974

[6] H. Shacham, “The geometry of innocent flesh on the bone: 975

Return-into-Libc without function calls,” in Proc. 14th ACM Conf. 976

Comput. Commun. Security, New York, NY, USA, 2007, pp. 552–561, 977

doi: 10.1145/1315245.1315313. 978

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented 979

programming: A new class of code-reuse attack,” in Proc. 6th ACM 980

Symp. Inf., Comput. Commun. Security, New York, NY, USA, 2011, 981

pp. 30–40, doi: 10.1145/1966913.1966919. 982

[8] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost 983

of shadow stacks and stack canaries,” in Proc. 10th ACM Symp. 984

Inf., Comput. Commun. Security, Singapore, 2015, pp. 555–566, 985

doi: 10.1145/2714576.2714635. 986

[9] C. Zou, X. Wang, Y. Gao, and J. Xue, “Buddy stacks: Protecting 987

return addresses with efficient thread-local storage and runtime re- 988

randomization,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 2, 989

pp. 1–37, Apr. 2022, doi: 10.1145/3494516. 990

[10] C. Zou, Y. Gao, and J. Xue, “Practical software-based shadow stacks 991

on x86-64,” ACM Trans. Archit. Code Optim., vol. 19, no. 4, pp. 1–26, 992

Dec. 2022, doi: 10.1145/3556977. 993

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow 994

integrity: Principles, implementations, and applications,” in Proc. 12th 995

ACM Conf. Comput. Commun. Security, New York, NY, USA, 2005, 996

pp. 340–353, doi: 10.1145/1102120.1102165. 997

[12] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow 998

stacks,” in Proc. IEEE Symp. Security Privacy, San Francisco, CA, USA, 999

2019, pp. 985–999, doi: 10.1109/SP.2019.00076. 1000

[13] (GNU project, Boston, MA, USA). Using the GNU Compiler 1001

Collection (GCC), Version 12.1. 2022. [Online]. Available: 1002

https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc/ 1003

[14] “The LLVM project clang 14.0.0 documentation.” 2022. [Online]. 1004

Available: https://releases.llvm.org/14.0.0/tools/clang/docs/ 1005

[15] J. Corbet. “The rest of the 6.6 merge window.” Sep. 2023. [Online]. 1006

Available: https://lwn.net/Articles/943245/ 1007

[16] (Microsoft, Redmond, WA, USA). MWC 2022: The Next Microsoft 1008

Pluton Device + PAC Technology. 2022. [Online]. Available: 1009

https://blogs.windows.com/windowsexperience/2022/02/28/mwc-2022- 1010

the-next-microsoft-pluton-device-pac-technology/ 1011

[17] G. Serra, P. Fara, G. Cicero, F. Restuccia, and A. Biondi, “PAC-PL: 1012

Enabling control-flow integrity with pointer authentication in FPGA SoC 1013

platforms,” in Proc. 28th IEEE Real-Time Embed. Technol. Appl. Symp, 1014

2022, pp. 241–253, doi: 10.1109/RTAS54340.2022.00027. 1015

[18] R. Avanzi et al., “The tweakable block cipher family QARMAv2,” 1016

Cryptol. ePrint Arch., IACR, Bellevue, WA, USA, Rep. 2023/929, 2023. 1017

[Online]. Available: https://eprint.iacr.org/2023/929 1018

[19] “Linux 5.0 changelog.” 2018. [Online]. Available: https://cdn.kernel.org/ 1019

pub/linux/kernel/v5.x/ChangeLog-5.0 1020

[20] “ARMv8.3 pointer authentication in xnu.” 2021. [Online]. Available: 1021

https://opensource.apple.com/source/xnu/xnu-7195.50.7.100.1/doc/pac. 1022

md 1023

[21] “Linux 5.7 changelog.” 2020. [Online]. Available: https://cdn.kernel.org/ 1024

pub/linux/kernel/v5.x/ChangeLog-5.7 1025

[22] “Apple pointer authentication guidelines.” 2023. [Online]. Available: 1026

https://developer.apple.com/documentation/security/preparing_your_ 1027

app_to_work_with_pointer_authentication 1028

[23] S. Thomas et al., “CortexSuite: A synthetic brain benchmark suite,” in 1029

Proc. IEEE Intl. Symp. Workload Characterization, 2014, pp. 76–79, 1030

doi: 10.1109/IISWC.2014.6983043. 1031

[24] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and 1032

N. Asokan, “PAC it up: Towards pointer integrity using ARM pointer 1033

authentication,” in Proc. 28th USENIX Conf. Security Symp., 2019, 1034

pp. 177–194. 1035

[25] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, “RetTag: 1036

Hardware-assisted return address integrity on RISC-V,” in Proc. 15th 1037

Eur. Work. Syst. Security, New York, NY, USA, 2022, pp. 50–56, 1038

doi: 10.1145/3517208.3523758. 1039

[26] J.-P. Aumasson and D. J. Bernstein, “SipHash: A fast short-input PRF,” 1040

in Proc. Int. Conf. Cryptol., 2012, pp. 489–508. 1041

[27] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter, 1042

“The performance of µ-kernel-based systems,” in Proc. 16th ACM 1043

Symp. Oper. Syst. Princ., New York, NY, USA, 1997, pp. 66–77, 1044

doi: 10.1145/269005.266660. 1045

[28] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): The 1046

case for a scalable operating system for multicores,” ACM SIGOPS Oper. 1047

Syst. Rev., vol. 43, pp. 76–85, Apr. 2009.doi: 10.1145/1531793.1531805. 1048

http://dx.doi.org/10.1145/3337167.3337175
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/2714576.2714635
http://dx.doi.org/10.1145/3494516
http://dx.doi.org/10.1145/3556977
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1109/SP.2019.00076
http://dx.doi.org/10.1109/RTAS54340.2022.00027
http://dx.doi.org/10.1109/IISWC.2014.6983043
http://dx.doi.org/10.1145/3517208.3523758
http://dx.doi.org/10.1145/269005.266660
http://dx.doi.org/10.1145/1531793.1531805

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[29] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote core1049

locking: Migrating critical-section execution to improve the performance1050

of Multithreaded applications,” in Proc. USENIX Annu. Tech. Conf,1051

2012, p. 6.1052

[30] “Memtier benchmark on Github.” RedisLabs. 2024. [Online]. Available:1053

https://github.com/RedisLabs/memtier_benchmark1054

[31] (StatCounter, Dublin, Ireland). Browser Market Share Worldwide. 2023.1055

[Online]. Available: https://gs.statcounter.com/browser-market-share1056

[32] “The chromium project.” 2023. [Online]. Available: https://www.1057

chromium.org/Home/chromium-security/memory-safety/1058

[33] “WebKit’s browserbenchmarks.” 2023. [Online]. Available: https://1059

browserbench.org1060

[34] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:1061

Cryptographically enforced control flow integrity,” in Proc. 22nd ACM1062

SIGSAC Conf. Comput. Commun. Security, New York, NY, USA, 2015,1063

pp. 941–951, doi: 10.1145/2810103.2813676.1064

[35] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuardTM:1065

Protecting pointers from buffer overflow vulnerabilities,” in Proc. 12th1066

USENIX Security Symp., 2003, pp. 90–104.1067

[36] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,1068

“Code-pointer integrity,” in Proc. 11th USENIX Symp. Oper. Syst. Design1069

Implement., Broomfield, CO, USA, 2014, pp. 147–163.1070

[37] I. Evans et al., “Missing the point(er): On the effectiveness of1071

code pointer integrity,” in Proc. IEEE Symp. Security Privacy, 2015,1072

pp. 781–796, doi: 10.1109/SP.2015.53.1073

[38] H. Liljestrand, Z. Gauhar, T. Nyman, J.-E. Ekberg, and N. Asokan,1074

“Protecting the stack with PACed canaries,” in Proc. 4th Work.1075

System Softw. Trusted Execution, New York, NY, USA, 2019, pp. 1–6,1076

doi: 10.1145/3342559.3365336.1077

[39] H. Liljestrand, T. Nyman, L. J. Gunn, J.-E. Ekberg, and N. Asokan,1078

“PACStack: An authenticated call stack,” in Proc. 30th USENIX Security1079

Symp, 2021, pp. 357–374.1080

[40] R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal memory1081

safety via robust points-to authentication,” in Proc. 30th USENIX1082

Security Symp, 2021, pp. 1037–1054.1083

[41] Y. Li et al., “PACMem: Enforcing spatial and temporal1084

memory safety via ARM pointer authentication,” in Proc. ACM1085

SIGSAC Conf. Comput. Commun. Security, 2022, pp. 1901–1915,1086

doi: 10.1145/3548606.3560598.1087

[42] K. Hohentanner, P. Zieris, and J. Horsch, “CryptSan: Leveraging 1088

ARM pointer authentication for memory safety in C/C++,” in 1089

Proc. 38th ACM/SIGAPP Symp. Appl. Comput., 2023, pp. 1530–1539, 1090

doi: 10.1145/3555776.3577635. 1091

[43] R. Schilling, P. Nasahl, and S. Mangard, “FIPAC: Thwarting fault-and 1092

software-induced control-flow attacks with ARM pointer authentication,” 1093

in Proc. 13th Int. Work. Constr. Side Channel Anal. Secure Design, 2022, 1094

pp. 100–124, doi: 10.1007/978-3-030-99766-3_5. 1095

[44] P. Nasahl, R. Schilling, and S. Mangard, “Protecting indirect 1096

branches against fault attacks using ARM pointer authentication,” 1097

in Proc. IEEE Int. Symp. Hardw. Oriented Security Trust, 2021, 1098

pp. 68–79, doi: 10.1109/HOST49136.2021.9702268. 1099

[45] A. Fanti, C. C. Perez, R. Denis-Courmont, G. Roascio, and J. Ekberg, 1100

“Toward register spilling security using LLVM and ARM pointer authen- 1101

tication,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41, 1102

no. 11, pp. 3757–3766, Nov. 2022, doi: 10.1109/TCAD.2022.3197511. 1103

[46] M. Rangarajan, A. Bohra, K. Banerjee, E. V. Carrera, R. Bianchini, and 1104

L. Iftode, “TCP servers: Offloading TCP processing in Internet servers. 1105

Design, implementation, and performance,” Dept. Arts Sci. Comput. 1106

Sci., Rutgers Univ., New Brunswick, NJ, USA, Rep. DCS-TR-481, 1107

2002. 1108

[47] T. Brecht, G. J. Janakiraman, B. Lynn, V. A. Saletore, and 1109

Y. Turner, “Evaluating network processing efficiency with processor 1110

partitioning and asynchronous I/O,” in Proc. EuroSys Conf., 2006, 1111

pp. 265–278, doi: 10.1145/1217935.1217961. 1112

[48] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda, “IsoStack–highly 1113

efficient network processing on dedicated cores,” in Proc. USENIX Annu. 1114

Tech. Conf., 2010, pp. 1–14, doi: 10.5555/1855840.1855845. 1115

[49] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and 1116

H. Balakrishnan, “Shenango: Achieving high CPU efficiency 1117

for latency-sensitive datacenter workloads,” in Proc. 16th 1118

USENIX Symp. Netw. Syst. Design Implement., 2019, 1119

pp. 361–378. 1120

[50] J. Liu and B. Abali, “Virtualization Polling Engine (VPE): Using dedi- 1121

cated CPU cores to accelerate I/O virtualization,” in Proc. 23rd Int. Conf. 1122

Supercomput., 2009, pp. 225–234, doi: 10.1145/1542275.1542309. 1123

[51] A. Landau, M. Ben-Yehuda, and A. Gordon, “SplitX: Split 1124

guest/Hypervisor execution on multi-core,” in Proc. 3rd Work I/O 1125

Virtualization, 2011, pp. 1–7. 1126

http://dx.doi.org/10.1145/2810103.2813676
http://dx.doi.org/10.1109/SP.2015.53
http://dx.doi.org/10.1145/3342559.3365336
http://dx.doi.org/10.1145/3548606.3560598
http://dx.doi.org/10.1145/3555776.3577635
http://dx.doi.org/10.1007/978-3-030-99766-3_5
http://dx.doi.org/10.1109/HOST49136.2021.9702268
http://dx.doi.org/10.1109/TCAD.2022.3197511
http://dx.doi.org/10.1145/1217935.1217961
http://dx.doi.org/10.5555/1855840.1855845
http://dx.doi.org/10.1145/1542275.1542309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

