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Abstract—Causality is the relationship where one event con-1

tributes to the production of another, with the cause being partly2

responsible for the effect and the effect partly dependent on3

the cause. In this article, we propose a novel and effective4

method to formally reason about the causal effect of events in5

engineered systems, with application for finding the root-cause of6

safety violations in embedded and cyber–physical systems. We are7

motivated by the notion of actual causality by Halpern and Pearl,8

which focuses on the causal effect of particular events rather than9

type-level causality, which attempts to make general statements10

about scientific and natural phenomena. Our first contribution is11

formulating discovery of actual causality in computing systems12

modeled by transition systems as an satisfiability modulo theory13

solving problem. Since datasets for causality analysis tend to be14

large, in order to tackle the scalability problem of automated15

formal reasoning, our second contribution is a novel technique16

based on abstraction refinement that allows identifying for actual17

causes within smaller abstract causal models. We demonstrate the18

effectiveness of our approach (by several orders of magnitude)19

using three case studies to find the actual cause of violations20

of safety in 1) a neural network controller for a mountain car;21

2) a controller for a Lunar Lander obtained by reinforcement22

learning; and 3) an MPC controller for an F-16 autopilot23

simulator.24

Index Terms—Causality, cyber–physical systems (CPSs), root-25

cause analysis, safety failures.26

I. INTRODUCTION27

IN A CAUSAL system, the output of the system is influ-28

enced only by the present and past inputs. In other words, in29

a causal system, the present and future outputs depend solely30

on past and present inputs, not on future inputs. Causality31

addresses the logical dependencies between events and reflects32

the essence of event and action flows in systems. Engineers33

generally build causal systems, that is, structures, systems, and34

processes that seek to tie effects to their causes. This also35

includes approaches to explain the root-cause of failures that36

violate safety standards, especially in safety-critical systems.37

In this context, embedded and cyber–physical systems38

(CPSs) are no exceptions. In fact, root-cause analysis has been39

of interest to both academic and industrial circles for decades,40

aiming not just to find safety violations but also to precisely41
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explain why they happened. This means proving mathemati- 42

cally that safety would not have been violated in the absence 43

of the identified cause. Formalizing and reasoning about causal 44

explanations is much harder than just finding “bugs” and often 45

aims to identify the earliest flawed decisions by controllers 46

that lead to violations of safety requirements. Finding such 47

causes provides engineers with tremendous insights to design 48

more reliable systems, but it has been a long-standing and 49

very challenging problem for various reasons, from defining 50

a formal definition of causal effect of events to the high- 51

computational complexity of counterfactual reasoning. 52

There is a wealth of research on causality analysis in 53

the context of embedded and component-based systems from 54

different perspectives [1], [2], [3], [4], [5], [6], [7], [8], [9]. 55

Recently, there has been great interest in using temporal logics 56

to reason about causality and explain bugs [10], [11], [12], 57

[13]. In the CPS domain, using causality to repair AI-enabled 58

controllers has recently gained interest [14], [15]. However, 59

these lines of work either focus on only modeling aspects 60

of causality or do not address the problem of scalability 61

in automated reasoning about causality, which inherently 62

involves a combinatorial blow up to enumerate counterfactuals. 63

Objectives

This article is concerned with the following problem.
Given are 1) a formal operational description of a
computing system T (e.g., a transition system of a
CPS) and 2) a logical predicate ϕe that describes the
effect (e.g., a safety failure) as input. Our goal is to
identify a predicate ϕc that describes the cause of ϕe

happening (e.g., the earliest bad decision made by a
controller). We note that ϕe can be given by the user
or can be found by using a verification or testing
technique. Hence, the way the effect is identified is
irrelevant to the problem studied in this article.

64

The first natural step is to formalize the definition of 65

causality and in fact, there are several interpretations of the 66

meaning of causality. In this article, we are motivated by the 67

notion of actual causality by Halpern and Pearl (HP) [16], 68

which focuses on the causal effect of particular events, rather 69

than type causality, which attempts to make general state- 70

ments about scientific and natural phenomena (e.g., smoking 71

causes cancer). Actual causality is a formalism to deal with 72

token-level causality, which aims to find the causal effect of 73

individual events (in our context, in embedded and CPS), as 74

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0002-8844-4441
https://orcid.org/0000-0003-1800-5419


2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

opposed to type-level causality, which intends to generalize75

the causal effect of types of events.76

As we aim at analyzing executions of computing systems77

(e.g., models or data logs of a CPS), we first formalize causal78

models in (possibly infinite-state) transition systems, rather79

than the classic set of structural equations [16]. We show that80

formalizing the three conditions of actual causality yields a81

second-order logic formula of the form ϕhp � ∃τ.∃τ ′.∀τ ′′.ψ ,82

where τ , τ ′, and τ ′′ range over the set of executions of a83

transition system and ψ stipulates the relation between actual84

and counterfactual worlds. More specifically.85

1) The outermost existential quantifier in ϕhp intends to86

establishes a relationship between the cause and the87

effect in an execution τ (known as the AC1 necessity88

condition in the HP framework [16]). That is, the cause89

and then the effect actually happen in τ .90

2) The inner existential quantifier aims at refuting the91

causal effect relation in the counterfactual world (known92

as the AC2(a) condition, stipulating the “but-for” condi-93

tion under contingencies). That is, when the cause does94

not happen, the effect will not happen.95

3) The universal quantifier requires that if the cause hap-96

pens in any execution τ ′′ that is to τ (as far as97

the variables contributing to the cause and effect are98

concerned), then the effect should also happen (known99

as the AC2(b) sufficiency condition).100

This formula exhibits a quantifier alternation and indeed, the101

problem of deciding actual causality in a causal model is102

known to be DP-complete [17] in the size of the model,103

illustrating the computational complexity of the problem. To104

deal with this complexity, we propose an effective method to105

formally reason about actual causality using decision proce-106

dures to solve satisfiability modulo theory (SMT). Although107

there has been tremendous progress in developing efficient108

SMT solvers, they may not scale well when dealing with very109

large causal models or data logs. To tackle this problem, we110

introduce a novel technique based on abstraction refinement111

that allows identifying causes within smaller abstract causal112

models. This abstraction simplifies the model and attempts113

to view it from a higher level, while preserving the causal114

relations.115

Although the idea of abstracting causal models in terms of116

structural equations has been studied in [18], [19], and [20],117

these works develop an exact simulation which may not exist118

or do not attempt to establish a relation between actual causes119

in the abstract and concrete causal models. Our technique120

incorporates two levels of abstraction to reason about actual121

causality (i.e., formula ϕhp � ∃τ.∃τ ′.∀τ ′′.ψ). More specifi-122

cally, our approach works as follows (see Figs. 1 and 2). Given123

a concrete causal model T .124

1) We first compute an under-approximate model Ť of T .125

This model is used to find witnesses for conditions126

AC1 and AC2(a) (i.e., the existential quantifiers). If not127

successful, we refine Ť (e.g., by including states that are128

in T and not in Ť ) and try again.129

2) If the previous step succeeds, we compute an over-130

approximate model T̂ to verify condition AC2(b) for the131

universal quantifier. If successful, then an actual cause is132

Fig. 1. Over/under-approximations of the concrete model and their relation
to HP conditions of the form ∃∃∀.

Fig. 2. Overall idea of our algorithm—steps of abstraction-refinement
approach.

identified and the algorithm terminates. Otherwise, we 133

refine T̂ (e.g., by excluding states that are in T̂ and not 134

in T ) and repeat the second step.1 135

We prove the correctness of our approach by showing that our 136

algorithm is sound (but not necessarily complete). 137

We have implemented2 our approach using the Python 138

programming language and utilized the SMT solver Z3 [21] 139

and data analysis libraries [22], [23] to construct our solver 140

and abstraction technique. We conduct experiments on three 141

case studies to find the actual cause of violations of safety 142

in 1) a neural network controller for a mountain car [24]; 143

2) a controller for a Lunar Lander obtained by reinforcement 144

learning [24]; and 3) an MPC controller for an F-16 autopilot 145

simulator [25]. Our experiments demonstrate the effectiveness 146

of our abstraction-refinement technique by several orders of 147

magnitude compared to the SMT-based approach for concrete 148

causal models. 149

In summary, our contributions are the following. We: 1) for- 150

mulate the classic HP framework by transition systems and 151

introduce an SMT-based decision procedure to identify actual 152

causes in a computing system; 2) introduce a technique based 153

on abstraction refinement to deal with scalability of formal 154

reasoning about actual causality; and 3) conduct three rigorous 155

experimental evaluations on AI-enabled as well as non-AI 156

controllers in CPS. 157

Our work is the first step in automating discovery of actual 158

cause of failures, and our experiments show that we are able 159

to identify the earliest bad decisions by controllers that lead 160

to violations of safety requirements. 161

1Alternatively, one can return to the first step and start from scratch.
2Source code and all trace logs available at https://github.com/TART-

MSU/Causality_abs_refinement.
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Organization: The remainder of this article is organized162

as follows. Section II presents the classic HP framework for163

actual causality. In Section III, we introduce our formulation164

of HP for transition systems as well as a translation to an165

SMT-based decision procedure to identify actual causes. Our166

abstraction-refinement technique is introduced in Section IV.167

We present our experimental evaluation in Section V. Related168

work is discussed in Section VI. Finally, we make concluding169

remarks and discuss future work in Section VII. Proofs of170

correctness are available in [26].171

II. PRELIMINARIES—ACTUAL CAUSALITY172

In this section, we present the notion of actual causality173

by HP [16] as the baseline preliminary concept. Since, the174

definition in [16] is not a natural model of computation, in175

Section III, we will adapt the concepts in this section to176

transition systems and second-order logic formulas in order to177

reason about actual causality in computing systems. We will178

consistently use the Mountain Car running example to explain179

the definitions and concepts throughout this article.180

A. Causal Models181

Definition 1: A signature S is a tuple (U ,V,R), where U182

is set of exogenous variables (variables that represent factors183

outside the control of the model), V is a set of endogenous184

variables (variables whose values are ultimately determined by185

the values of the endogenous and exogenous variables). R is186

a function that associates with every variable Y ∈ U ∪ V a187

nonempty set R(Y) of possible values for Y .188

Following Definition 1, a state is a valuation of a vector189

of variables �X = (X1, . . . ,Xn) in U ∪ V , where each variable190

X ∈ �X is assigned a value from R(X).191

Definition 2: A basic causal model M is a pair (S,F),192

where S is a signature and FX defines a function that asso-193

ciates with each endogenous variable X a structural equation194

FX that maps R(U ∪V −{X}) to R(X), so FX determines the195

value of X, given the values of all the other variables in U∪V .196

It is important to highlight that exogenous variables cannot197

be linked to a function; thus, assigning values to exogenous198

variables, denoted as �u, is referred to as a context.199

Definition 3: An intervention entails setting the values of200

endogenous variables, denoted as �X ← �x, and this notation201

signifies that the variables within set �X are assigned values202

�x = (x1, . . . , xn).203

The structural equations define what happens in the presence204

of interventions. Setting the value of some variables �X to �x in205

a causal model M = (S,F) results in a new causal model,206

denoted M�X←�x, which is identical to M, except that F is207

replaced by F �X←�x: for each variable Y 
∈ �X, F �X←�xY = FY208

while for each X′ in �X, the equation FX′ is replaced by X′ =209

x′. Thus, we define a causal model M by a tuple (S,F , I),210

where (S,F) is a basic causal model (see Definition 2) and211

I is a set of allowed interventions. Following [20], the sets212

of “allowed interventions” ensure that the interventions can213

be appropriately limited to include only those that can be214

abstracted.215

(a) (b)

Fig. 3. (a) Schematic of the mountain car example. (b) Graph illustrating the
causal model and relationships between the variables at a snapshot in time t.

Example 1: Consider a car located in a valley and aiming to 216

reach the top of a mountain [see Fig. 3(a)]. At each time step, 217

the controller of the car determines whether to apply positive 218

or negative acceleration to guide the car toward the mountain 219

top. We define signature S = (U ,V,R) for this example as 220

follows. Let 221

U = {pos(0), vel(0), g} 222

be the set of exogenous variables, denoting the initial posi- 223

tion, initial velocity, and the gravitational force on the car, 224

respectively. Let 225

V = {pos(t), vel(t), action(t)} 226

be the set of endogenous variables, denoting the position, 227

velocity, and the controller action, respectively, at each time 228

step t, where t 
= 0. We also set 229

R(pos(t)) = [−1.2, 0.6] 230

R(vel(t)) = [−0.07, 0.07] 231

R(action(t)) = {−1, 0, 1} 232

where −1, 0, and 1 are assigned as accelerate to the left, do 233

not accelerate, and accelerate to the right, respectively, for all 234

t ≥ 0. 235

Now, we define the causal model (S,F) based on the 236

system dynamics for each t > 0 by structural equations 237

Fpos(t+1) = Fpos(t) + Fvel(t) (1) 238

Fvel(t+1) = Fvel(t) + 0.001Faction(t) − g.cos
(
3Fpos(t)

)
. (2) 239

To illustrate the dependencies of the system, we can use 240

a causal graph, as shown in Fig. 3(b). In this model, 241

Maction(t)←1 denotes the model obtained by an intervention, 242

where the action(t) is set to 1 at time t (for some t > 0). 243

B. Causal Formulas 244

To precisely define actual causality, formal language is 245

essential for articulating causal statements with clarity and 246

rigor, in particular to formalize causes and effects. We use an 247

extension of propositional logic, wherein primitive events take 248

the form �X = �x, representing an endogenous variable �X and 249

a possible value �x for �X. The combination of primitive events 250

is achieved through standard propositional connectives, such 251

as {∧,∨,¬}. Thus, in this article, we are only concerned with 252

causal formulas that are state-based (and not temporal). 253

Given a signature S = (U ,V,R), a primitive event is a 254

formula of the form X = x, for X ∈ V and x ∈ R(X). A causal 255
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formula (over S) is one of the form [Y1 ← y1, . . . ,Yk ←256

yk]ϕ, where ϕ is Boolean combination of primitive events,257

Y1, . . . ,Yk are distinct variables in V , and yi ∈ R(Yi). Such a258

formula is abbreviated as [�Y ← �y]ϕ. The special case where259

k = 0 is abbreviated as []ϕ or, more often, just ϕ. Intuitively,260

[�Y ← �y]ϕ says that ϕ would hold if Yi were set to yi, for261

i = 1, . . . , k.262

A causal formula ψ is true or false in a causal model,263

given a context. We use a pair (M, �u) consisting of a causal264

model M and context �u as a causal setting. Hence, we265

write (M, �u) |= ψ if the causal formula ψ is true in the266

causal setting (M, �u). We are restricted to recursive models,267

where given a context, no cyclic dependencies exists. In a268

recursive model, (M, �u) |= X = x if the value of X is x269

once we set the exogenous variables to �u. Given a model270

M, the model that describes the result of this intervention271

is M�Y←�y. Thus, (M, �u) |= [�Y ← y]ψ iff (M�Y←�y, �u) |=272

ψ . Mathematical formalism serves to express the intuition273

precisely encapsulated within the formula [�Y ← �y]ψ is true274

in a causal setting (M, �u) exactly if the formula ψ is true275

in the model that results from the intervention, in the same276

context �u.277

Example 2: Context �u in causal setting (M, �u) in our278

example is determined by system inputs: initial velocity, initial279

position, and gravity280

�u =
{
(vel(0)← 0.01), (pos(0)← 0), (g← 0.0025)

}
281

where we defined M in Example 1. To conduct causal282

analysis, the car at time t = 0 decides to set action(0) = 1,283

but it fails to reach the goal. We defined causal formula to284

express failure as follows:285

ϕfail �
(

pos(n) 
= 0.6
)

286

where 0.6 is the flag position and n is the last car state.287

C. Actual Causality288

Definition 4: �X ← �x is an actual cause of ϕ in causal289

setting (M, �u), if the following three conditions hold.290

1) AC1: (M, �u) |= [�X← �x]ϕ.291

2) AC2(a): There is a partition of V (set of endogenous292

variables) into two disjoint subsets �Z and �W (i.e, �Z∩ �W =293

∅) with �X ⊆ �Z and a setting �x′ and �w of the variables294

in �X and �W, respectively, such that295

(M, �u) |= [�X← �x′, �W ← �w] ¬ϕ.296

3) AC2(b): For all subsets �Z′ of �Z − �X, we have297

(M, �u) |=
[�X← �x, �W ← �w, �Z′ ← �z∗

]
ϕ298

where �z∗ denotes that variables in �Z′ are fixed at their299

values in the actual context.300

4) AC3: �X is minimal; no subset of �X satisfies AC1 and301

AC2.302

Roughly speaking Definition 4 expresses the following.303

AC1 says that �X = �x cannot be considered a cause of ϕ304

unless both �X = �x and ϕ actually happen. AC2(a) says that the305

but-for condition holds under the contingency �W = �w. Also,306

changing the value of some variable in �X results in changing 307

the value(s) of some variable(s) in �Z (perhaps recursively), 308

which finally results in the truth value of ϕ changing. Finally, 309

AC2(b) provides a sufficiency condition: if the variables in �X 310

and an arbitrary subset �Z− �X of other variables on the causal 311

path are held at their values in the actual context, then ϕ holds 312

even if �W is set to �w (the setting for �W used in AC2(a)). 313

The types of events that the HP definition allows as actual 314

causes are ones of the form X1 = x1 ∧ · · · ∧ Xk = xk, that is, 315

conjunctions of primitive events; this is often abbreviated as 316

�X. In Section III, Example 3, we will provide an example on 317

how actual cause of formula ϕfail can be identified using our 318

proposed technique. 319

III. SMT-BASED DISCOVERY OF ACTUAL CAUSALITY 320

In this section, we transform the components of the HP 321

framework presented in Section II into transition systems and 322

a second-order formula to express actual causality. Such a 323

transition system can model the operational behavior of a 324

system (e.g., a controller). Our technique can be agnostic to the 325

details of the system and only take a set of execution traces. 326

Recall that a causal model M is of the form (S,F , I), 327

where S = (U ,V,R). Also, recall that a state is a mapping 328

from the variables in U∪V to their respective domain of values. 329

We start with representing M with a set of traces obtained 330

from a transition system that essentially describes how the 331

state of all variables in U ∪ V evolve over time by structural 332

equations FX , for every X ∈ V . 333

A. Transition Systems 334

Definition 5: A transition system T corresponding to a 335

causal model M is a tuple T = (�,�, σ 0,�), where: 1) � 336

is the set of all possible states obtained from all possible 337

valuations of variables in U ∪ V; 2) � is a function mapping 338

states in 2� to a state in � (recall that FX is a function); 339

3) σ 0 ∈ � is the initial state, and 4) � is a function mapping 340

states in 2� to an atomic proposition from a set AP (e.g., 341

given by causal formulas). 342

Following Definition 5, given a causal setting (M, �u), the 343

corresponding causal transition system is one that is acyclic 344

and fixes σ0 according to �u. An intervention �X← �x is simply 345

a set of transitions in � where in the target state �X = �x 346

holds, denoted by ��X←�x. We denote the set of all possible 347

interventions in T by IT . 348

Definition 6: A path of a transition systems T = 349

(�,�, σ 0,�) is a sequence of states of form σ0σ1 . . ., where 350

for all i ≥ 0 1) σ0 = σ 0 and 2) (σi, σi+1) ∈ �. The 351

trace corresponding to a path σ0σ1 . . . is the sequence τ = 352

�(σ0)�(σ1) . . .. 353

Let Tr denote the set of all traces of a transition system. 354

Example 3: Fig. 4 shows three traces τ0, τ1, 355

and τ2 for our mountain car example for context 356

�u = (pos(0) = 0.0, vel(0) = 0.02). In each step, the controller 357

makes acceleration decisions. Dotted transitions means the 358

next state is not the immediate next time step. The nth state 359

is the last state of the trace. As can be seen, traces τ0 and τ2 360

never reach position 0.6 (i.e., satisfying causal formula ϕfail, 361
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Fig. 4. Three traces for the mountain car example.

meaning failing to reach the flag), while trace τ1 does (i.e.,362

violating causal formula ϕfail, meaning successfully reaching363

the flag).364

We introduce three temporal operators to express the occur-365

rence of causes and effects in traces: 1) for a state σ and a366

proposition p ∈ AP iff σ |= p iff p ∈ �(σ); 2) a trace367

τ = τ0τ1 . . . satisfies formula p (read as “always p” and368

denoted τ |= p) iff ∀i ≥ 0.τi |= p; 3) a trace τ0τ1 . . .369

satisfies formula p (read as ‘eventually p’ and denoted τ |=370

p) iff ∃i ≥ 0.τi |= p; and 4) a trace τ0τ1 . . . satisfies371

formula p U q (read as “p until q” denoted τ |= p U q) iff372

∃i ≥ 0.(τi |= q ∧ (∀j < i.τj |= p)).373

B. SMT-Based Formulation of Actual Causality374

An SMT decision problem generally consists of two com-375

ponents: 1) the SMT instance (i.e., data elements, such as376

variables, domains, functions, sets, etc.) and 2) SMT con-377

straints (i.e., first-order modulo theory involving quantified378

Boolean predicates with arithmetic). In the context of our379

problem, the SMT instance consists of two parts:380

1) A set of elements for expressing a transition system T381

or 2) a set of traces Tr (e.g., from a data log). While the382

latter is simply a set of sequences of states (defined as a383

function from natural numbers to the full set of states),384

the former is specified by Boolean formulas from the385

unrolled transition system, similar to standard bounded386

model checking [27] without loops.387

2) Our SMT model formalize conditions AC1, AC2(a),388

and AC2(b) of Definition 4 for transition systems (see389

Fig. 5). For simplification, we omit AC3 (minimality390

of cause), as it is not the most important constraint391

to reason about causal effect of events in a system.392

Condition AC1 (in Fig. 5) means in the set Tr, there393

exists at least one trace τ , where effect ϕe appears after394

cause ϕc holds. Condition AC2(a) requires the existence395

of one trace τ ′, where neither cause ϕc nor effect ϕe396

hold.397

Additionally, trace τ ′ is not equivalent to trace τ (identified398

in AC1) as far as variables in W or Z are concerned (i.e., the399

counterfactual worlds). The remaining endogenous variables,400

the ones in �W, are off to the side, so to speak, but may still 401

have an indirect effect on what happens. Condition AC2(b) 402

requires that for all traces τ ′′ that are similar to τ as far as 403

causal variables in Z are concerned, if cause ϕc holds, then 404

effect ϕe hold some time in the future. 405

We clarify that while SMT solvers cannot directly encode 406

temporal operators, one can easily encode them using the 407

above expanded definitions by quantifiers over traces. 408

SMT Decision Problem

Given are 1) a causal transition system (T , �u) (or a
set of traces Tr expressed as a mapping from natural
numbers to states); 2) a causal formula ϕe; 3) an unin-
terpreted function representing ϕc; and 4) constraints
AC1, AC2(a), and AC2(b). The corresponding SMT
instance is satisfiable iff the interpreted ϕc is an
actual cause of ϕe in T .

409

Example 4: We aim to identify the cause of the failure, 410

denoted as ϕfail, explained in our running example. For the 411

sake of argument, let X = {action(0) = 1}. Since both pos 412

and vel are dependent on the value of action, they are part of 413

�Z or the causal path. That is 414

�Z = {
pos(t), action(t), vel(t) | t > 1

}
415

and, hence, W = {} (since �W ∩ �Z = ∅). We now analyze the 416

conditions of HP. 417

1) Starting with AC1, one can instantiate τ (in Fig. 5) with 418

concrete trace τ0 in Fig. 4, indicating the satisfaction of 419

the first condition. 420

2) Moving to AC2(a), which involves counterfactual rea- 421

soning, when we change the actual setting in AC1 to a 422

counterfactual value action(0) = −1, the car eventually 423

reaches the goal (i.e., pos = 0.6). This change allows 424

the car to initiate a leftward movement, acquiring the 425

necessary momentum to reach the flag, so flipping 426

the failure ϕfail to success (i.e., ¬ϕfail). Consequently, 427

AC2(a) is satisfied by instantiating τ ′ (in Fig. 5) with 428

concrete trace τ1 (in Fig. 4). Also, notice that condition 429

τ1 
≡Z τ0 is satisfied. 430

3) Considering AC2(b), notice that trace τ2 is identical to 431

τ0 as far as the variables in �Z are concerned (i.e., τ0 ≡Z 432

τ2). Also, since �W = {}, changing variables in �W while 433

preserving the actual context results in an equivalent 434

scenario to AC1, which is already satisfied. Thus, the 435

only trace that can instantiate τ ′′ (in Fig. 5) is τ2, in 436

which ϕfail becomes true. Note that the reason τ0 and τ2 437

are trace-equivalent is indeed due to the fact that �W = {}. 438

Hence, AC2(b) hold. 439

This means in this set of traces, action(0) = 1 is the actual 440

cause of failure for the car to reach the flag. 441

In the ideal world, one has to have all possible traces for 442

combinatorial enumeration to evaluate AC2(b). However, this 443

is far from reality and most trace data logs (e.g., by some test- 444

ing mechanisms, fuzzing, mutation testing, some automaton, 445

etc.) include only a subset of possibilities. Our goal in this 446

article is to identify causal effects within a given set of traces. 447
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Fig. 5. HP conditions adapted for causal transition systems.

Finally, as mentioned in the introduction, decision procedure448

for verification of actual causality is DP-complete [17],449

signifying the computation difficulty of automated reasoning450

about causality. This means our SMT-based problem is indeed451

dealing with a decision problem that is DP-complete, setting452

the complexity of our SMT-based solution.453

IV. ABSTRACTION REFINEMENT FOR CAUSAL MODELS454

In this section, we propose our abstraction-refinement tech-455

nique and its application in reasoning about actual causality,456

as presented in Section III.457

A. Overall Idea458

Generally speaking, the traditional abstraction approach459

to handle an existential quantifier is under-approximation,460

where we start from a subset of behaviors and attempt to461

instantiate the quantifier. If successful, then the problem is462

solved. Otherwise, we refine the abstraction, by including463

addition behaviors and try again. On the contrary, to handle464

universal quantifiers, the traditional abstraction approach is465

over-approximation, where we start from a subset of behaviors466

and attempt to verify universality. If successful, then the467

problem is solved. Otherwise, we need to ensure that the468

counterexample is not spurious (due to over-approximation). If469

it is, we refine the abstraction by excluding the counterexample470

and try again.471

The overall idea of our technique is as follows (see Fig. 2).472

Observe that the logic formula for actual causality is of the473

form ∃∃∀ (see Fig. 5). Given a transition system T and causal474

formula ϕe as the effect, we proceed as follows.475

1) Step 1: Compute an under-approximation Ť and an476

over-approximation T̂ . We first attempt to instantiate477

the existential quantifiers in AC1 and AC2(a) in Ť . If478

instantiating one of the quantifiers does not succeed, we479

refine Ť and repeat step 1.480

2) Step 2: When step 1 succeeds, we compute T̂ and verify481

the universal quantifier in AC2(b) for T̂ . If successful,482

the witness to τ is a trace where the actual cause happens483

and we also obtain a witness to ϕc by the SMT solver.484

Otherwise, we can either refine T̂ and repeat step 2 or485

refine Ť and return to step 1.486

We show that termination of these steps results in identify-487

ing an actual cause ϕc in T for ϕe. This algorithm, however,488

may never terminate and, thus, our approach is sound but489

not complete. We also remark that our heuristic based on490

abstraction refinement is sound but not complete (e.g., similar491

to the CEGAR [28] technique in model checking) to solve the 492

general DP-complete problem. The computation complexity 493

of our solution, therefore, does not change. 494

B. Approximating Causal Transition Systems 495

We first fix some notation. For a concrete causal transition 496

system T = (�,�, σ 0,�) (the one given as input for causal 497

reasoning), let us denote an over-approximate causal transition 498

system by T̂ = (�̂, �̂, σ̂ 0, �̂) and an under-approximate 499

causal transition system by Ť = (�̌, �̌, σ̌ 0, �̌). We denote 500

the domain of endogenous (respectively, exogenous) variables 501

of T by R(VT ) (respectively, R(UT ). 502

Given an over-approximate causal transition system T̂ , we 503

construct a sequence T̂0 ≥ T̂1 ≥ · · · T̂k of over-approximations, 504

where (1) T̂k = T̂ , and T̂i+1 is a refinement of T̂i, for 505

0 ≤ i < k, which we compute using counterexamples. A 506

counterexample is a state of �̂i that is not in �. Over- 507

approximation state mapping is a function which map states 508

from T to T̂ , i.e., ĥ:2� �→ �̂. 509

Assumption 1: In this article, we only allow over- 510

approximation state mappings ĥ that preserve the equality of 511

traces as far as variables in Z are concerned. That is, for two 512

concrete transitions (σ0, σ1) and (σ ′0, σ ′1), if 1) σ0 ≡Z σ
′
0 and 513

2) σ1 
≡Z σ ′1, then we have 1) σ0 ≡Z ĥ(σ ′0) and 2) σ1 
≡Z 514

ĥ(σ ′1). Otherwise, we will not be able to prove the soundness 515

of Algorithm 1 with regard to causal paths. We will elaborate 516

more in the requirement in proof of Theorem 2. We will also 517

explain in Section V, how this assumption is ensured in our 518

implementation 519

We need an additional function: ŵ : IT �→ IT̂ which maps 520

concrete interventions to over-approximation interventions. 521

Definition 7: Given a subset of endogenous variables in �, 522

called �X, and �x ∈ 2� , let 523

Rst(�, �x) = {�v ∈ 2� :�x is the restriction of �v to �X}. 524

This definition carries to a transition system T = 525

(�, σ 0,�,�) in a straightforward fashion as follows. The 526

restriction of a set of values �x on � is a subset �|�x ⊆ � 527

restricted to those states, where �X = �x. The set of restricted 528

transitions is obviously those start and end in states in �|�x. 529

We now explain how we compute the above functions. 530

Given ĥ, we define: ŵ(��X←�x) = �̂�Y←�y if 1) �y ∈ 2�̂ and 531

2) ĥ(Rst(�|�x)) = Rst(�̂|�y). Hence, for every intervention in 532

��X←�x, there is only one intervention in �̂�Y←�y. If such a �Y 533

and �y do not exist, we take ŵ(��X←�x) to be undefined. Let 534
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Algorithm 1: Finding Actual Cause of ϕe in T
Input: T = (�,�, σ 0,�), causal formula ϕe, allowed interventions

I ȟ
T , α = [0, 1], β ≥ 0

Output: Causal formula ϕc
1 Ťr← ȟ(Tr) using α;
2 while true do
3 {ϕc, τ̌ , τ̌

′} ← SMT(Ťr, AC1 ∧ AC2(a));
4 if ¬ϕc then
5 T̂ ← ĥ(T ) using β and ϕc;
6 while true do
7 result← SMT(T̂ , ϕc, AC2(b));
8 if result then
9 return ϕc ;

10 else

11 T̂ ← ˆRefine(T̂ , � − �̂,I ȟ
T );

12 end
13 end
14 end
15 Increase α;
16 Ťr← ȟ(Tr) using α;
17 end

I ĥ
T be the set of interventions for which ŵ is defined, and let535

IT̂ = ŵ(I ĥ
T ).536

Based on this definition, it becomes evident that not all537

interventions in IT will have corresponding mappings in IT̂538

or IŤ . This is due to the fact that ȟ and ĥ may aggregate states,539

resulting in some IT representing only partial interventions540

on IŤ or IŤ . In this context, the introduction of a notion541

termed allowed intervention becomes crucial. This notion542

is essential as certain interventions in the abstract model543

may lack definition or relevance in a well-defined concrete544

model. Consequently, within this framework of definitions,545

the translation of interventions is not universal; rather, only546

essential interventions that can be meaningfully mapped are547

considered.548

We follow a similar but simpler procedure for under-549

approximations. Given an under-approximate causal transition550

system Ť , we construct a sequence Ť0 ≤ Ť1 ≤ · · · Ťk of under-551

approximations, where (1) Ťk = Ť , and Ťi+1 is a refinement of552

Ťi, for 0 ≤ i < k, which we compute using counterexamples.553

A counterexample is a state of � that is not in �̌i. In this554

article, since we begin causal analysis from a trace log �, we555

compute an under-approximation by a subset of the input set556

of traces. That is, ȟ(Tr) ⊆ Tr.557

C. Detailed Description of Algorithm558

The input to Algorithm 1 is a concrete transition systems559

T (more specifically, its trace set) and a causal formula ϕe.560

Also, α and β and are parameters used in computing ĥ561

and ȟ, respectively. α indicates the subset size of ȟ and β562

is a threshold to compute Euclidean distance of states for563

over-approximation. We are restricted to a set of allowed564

interventions I ĥ
T . Our objective is to identify states of T ,565

where causal formula ϕc holds as an actual cause in the trace566

τ = �̌(σ0)�̌(σ1) . . .567

Line 1 initializes the under-approximation Ť , with param-568

eter α indicating the number of traces to use and map in569

ȟ function. In lines 3–16, the algorithm computes whether570

the SMT query returns ϕc as the cause for effect ϕe 571

in the current under-approximation and over-approximation. 572

Specifically, in line 3, the SMT function receives Ť as 573

the under-approximation and constraints of AC1 and AC2(a) 574

specified in Fig. 5, and it returns the result ϕc as the cause. 575

The SMT solver also returns a witness trace τ ∈ Ťr. In 576

line 16, if the result of SMT query in line 3 is unsatisfiability, 577

then the algorithm chooses more traces Tr by increasing α. 578

Indeed, lines 15 and 16 establish the refinement for the under- 579

approximate model. 580

If a cause ϕc is identified by satisfying AC1 and AC2(a), 581

we use this cause to initialize over-approximation in line 5 (to 582

ensure Assumption 1), where we include all original states as 583

well as potentially unreachable states by creating an abstract 584

representation by function ĥ, such that all states in T map to T̂ , 585

and also similar states are merged into a single abstracted state 586

in T̂ . The distance threshold for merging states is controlled 587

by the parameter β. If the distance between any pair of states 588

is less than β, those states will be merged. Consequently, a 589

smaller β results in a larger number of abstract states, while 590

a larger β leads to a smaller number of abstract states. 591

In lines 7–11, we focus on verifying AC2(b) using the over- 592

approximation. In line 7, the SMT query takes T̂ as the current 593

over-approximate model and ϕc as output from line 3. It then 594

examines whether all traces for which ϕc and ϕe hold can be 595

modified by changing states such that ϕe still holds. If the SMT 596

solver returns SAT, then ϕc is returned as the actual cause, 597

where ϕc is a Boolean expression on the atomic propositions 598

related to states in a specific trace. If the result is not SAT, 599

in line 11, we use counterexample(s) in � − �̂, allowed 600

interventions identified by ŵ(IT ). These counterexamples are 601

then eliminated by Refine, and the resulting model is assigned 602

to the new T̂ . We emphasize that in the refinement step for 603

over-approximation (line 11), it is crucial to consider restricted 604

interventions, denoted as I ȟ
T . This consideration is necessary 605

because, in a concrete model, certain interventions may not be 606

directly mapped to their counterparts in the over-approximated 607

model. Consequently, the refinement process must incorporate 608

I ȟ
T as an essential input, utilizing it effectively during the 609

mapping process to ensure consistency of model translation. 610

Theorem 1: Let T be a concrete causal transition system 611

and ϕc and ϕe be two causal formulas. If ϕc is an actual cause 612

of ϕe identified by Algorithm 1 (for T̂ and Ťr), then ϕc is an 613

actual cause of ϕe in T . 614

D. Correctness 615

In this section, we formally prove the soundness of 616

Algorithm 1. 617

Theorem 2: Let T be a concrete causal transition system 618

and ϕc and ϕe be two causal formulas. If ϕc is an actual cause 619

of ϕe identified by Algorithm 1 (for T̂ and Ťr), then ϕc is an 620

actual cause of ϕe in T . 621

V. EXPERIMENTAL EVALUATION 622

This section first provides an overview of the implemen- 623

tation details of the algorithm proposed in Section IV-C. We 624

also evaluate our technique on three case studies: 1) mountain 625
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car; 2) Lunar Lander environments from OpenAI Gym [24]—626

commonly used evaluation benchmarks for learning-enabled627

CPS; and 3) an F-16 autopilot simulator [25] that uses an MPC628

controller.629

A. Implementation630

To identify the actual cause of failures in our studies, we631

need to generate traces consisting of those that do not violate632

safety and those that do violate safety. We need successful633

traces to find conterfactuals for failure scenarios, where the634

same conditions lead to success through different decisions.635

In our experiments, we use 47 networks for the mountain car636

experiment [15], [29] and generate over 570 neural networks,637

trained with Deep Reinforcement Learning [30], for the Lunar638

Lander case study. Consequently, the success rates of traces639

in satisfying ϕe used in our experiments were 17% and 11%640

for the case studies in Sections V-C and V-D, respectively. In641

the case study in Section V-E, the success rates were 21%642

and 33% for the first and second scenarios, respectively. This643

is because the non-AI MPC controller typically makes better644

decisions than the AI controller.645

We have implemented Algorithm 1 using the Python pro-646

gramming language. Algorithm 1 is implemented through two647

approaches. First, the Z3 SMT solver [21], and second (for648

nonsymbolic cases), by employing a search method to find649

traces in datasets that meet the HP conditions. For instance,650

if we find a trace that leads to failure, we take this sample651

and search for other traces with the same features, except652

for the decision that caused the failure in the original trace.653

To accomplish this, we utilize built-in data science search654

algorithms in [22] and [23]. In fact, in our case studies, we are655

dealing with large-sized data rather than symbolic properties.656

Therefore, in Section V-F, we will demonstrate that searching657

through the dataset is more efficient compared to Z3. While658

Z3 is primarily employed for its robust capabilities in theorem659

proving and constraint solving, it is not as effective for finding660

traces in a large set of already generated traces that meet661

certain conditions.662

For execution of Algorithm 1, specific strategies are adopted663

in refinement of the under- and especially over-approximate664

(function Refine in line 11) models in cases of unsatisfiability.665

In the under-approximation model, a parameter α is utilized666

to incorporate additional traces. This parameter can be pro-667

gressively increased to obtain more traces, thereby refining668

the under-approximation. In the over-approximation model, a669

parameter β is used within the mapping function to dictate the670

threshold for the distance between states. When the distance671

between a group of states is less than this threshold, they are672

merged into a single state to simplify the model. Moreover, in673

refining the over-approximate model, the algorithm checks for674

the existence of counterexample states that violate the over-675

approximation. If such states are identified, they are removed676

from the model to ensure its accuracy [28].677

Assumption 1 for both our case studies is implemented as678

follows that in the over-approximation function, it is crucial679

not to merge states that transition to different outcomes. For680

instance, in the mountain car example, if there are two traces681

that differ only in their actions but have the same position and 682

velocity, and the under-approximation model identifies that 683

action might be a possible cause of failure, these states cannot 684

be merged in the over-approximation model. This is because 685

merging them would obscure the distinction between a trace 686

leading to failure and another leading to success. 687

B. Experimental Settings 688

All of our experiments were conducted on a single core of the 689

Apple M2 Pro CPU, which features a 10-core architecture and 690

operates @3.7 GHz. Given a set of collected traces, we applied 691

our techniques in four different modes to identify the cause of 692

failure (safety violations): 1) Only_Z3 is the implementation, 693

where we only use the SMT solver Z3 to discover actual 694

causality (the technique proposed in Section III); 2) Abs_Z3 is 695

the implementation, where Algorithm 1 uses Z3; 3) Only_DA 696

is the implementation, where we only use the search algorithms 697

in [22] and [23] in lieu of an SMT solver; and 4) Abs_DA is the 698

implementation, where Algorithm 1 uses the search algorithms 699

in [22] and [23] in lieu of an SMT solver. 700

C. Case Study 1: Mountain Car 701

Out first case study is the continuation of our running 702

example. In Fig. 3(a), the car is initially positioned in the 703

valley between two mountains with the objective being to 704

navigate it to the peak of the right mountain before a set dead- 705

line. The system incorporates three variables in accordance 706

with (1) and (2), specifying the domain for each variable as 707

pos(t) ∈ [−1.2, 0.6], vel(t) ∈ [−0.07, 0.07], and action(t) ∈ 708

[−1, 1]. Here, action represents a learning-based function 709

f , implemented using various pretrained neural networks of 710

different dimensions 711

action(t) = f (pos(t), vel(t)). 712

The car’s mission is to achieve pos(t) = 0.6 before the time 713

limit of t = 100 episodes. Our study explores various initial 714

settings for pos(0), vel(0), and the function f to find the cause 715

of the vehicle’s failure to reach its target. In our study, we 716

began by collecting data by assigning different initial values to 717

the variables pos(0) and vel(0), which were treated as external 718

(exogenous) variables. We also utilized various combinations 719

of pretrained neural networks as the decision-making mecha- 720

nism for acceleration. The action controller in the mountain 721

car scenario employs a neural network characterized by a 722

rectangular architecture with varied dimensions. The sigmoid 723

function serves as the activation mechanism for both the input 724

and hidden layers, whereas the Tanh function is utilized for 725

the output layer. This approach represents a modification of 726

the methodology detailed in [15] and [29]. 727

By executing multiple initial valuations with distinct neural 728

networks, we generated a substantial set of traces, each 729

indicating whether the car reached its destination within 100 730

episodes. 731

D. Case Study 2: Lunar Lander 732

In this case study, the space lander is initially positioned 733

at a certain altitude from the ground, aiming to land on the 734
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(a) (b) (c) (d)

Fig. 6. Comparison of four modes of our implementation for various case studies. The legend is as follows: (a) represents Abs_DA, (b) represents
Abs_Z3, (c) represents Only_DA, and (d) represents Only_Z3.

designated landing pad. The landing pad is always located735

at (0 ± ε, 0 ± ε). In the Lunar Lander system, there are736

eight variables (e.g., x and y coordinates, velocity, angular737

velocity, angle, etc.), which are intrinsic to the system, and an738

additional seven variables that are configured to represent the739

environment (e.g., wind, gravity, turbulence power, etc.). For a740

comprehensive overview of this case study, refer to [24]. The741

exogenous variables we consider are four different values for742

wind: {0, 5, 10, 15}, three values for gravity: {−8,−10,−12},743

and three values for turbulence power: {0.8, 1.5, 2}. Moreover,744

in our experiment, we focus on a subset of the endogenous745

variables, specifically posx(t), posy(t), velx(t), vely(t), and746

action(t). These variables correspond to the horizontal and747

vertical positions, horizontal and vertical velocities, and the748

action controlling the engines of the lander, respectively.749

In our model, action denotes a learning-based function750

f , which is implemented using various pretrained neural751

networks with different dimensions752

action(t) = f
(
posx(t), posy(t), velx(t), vely(t)

)
.753

In the Lunar Lander environment, there are four discrete754

actions available for controlling the lander, denoted as755

action = {0, 1, 2, 3}.756

1) 0: Do nothing.757

2) 1: Fire the left orientation engine.758

3) 2: Fire the main engine.759

4) 3: Fire the right orientation engine.760

The action controller designed for the Lunar Lander exper-761

iment is based on deep reinforcement learning principles,762

as explored in [30]. The neural networks employed in this763

experiment are rectangular in shape and utilize the rectified764

linear unit (ReLU) activation function to introduce nonlin-765

earity and enhance the learning capability of the model. We766

performed multiple simulations with varying initial values767

for posx(0), posy(0), velx(0), vely(0), wind, gravity, and768

turbulence each paired with different neural networks. This769

procedure produced a substantial set of traces, with each770

trace indicating whether the lander successfully landed on the771

landing pad within the time frame of t < 500 episodes or not.772

E. Case Study 3: F-16 Autopilot MPC Controller [25]773

This benchmark models both the inner-loop and outer-loop774

controllers of the F-16 fighter jet. We explore two scenarios.775

The first scenario involves reaching a specified altitude set776

point while maintaining a certain speed. The second scenario 777

tests whether the automated collision avoidance system can 778

recover the aircraft from a critical moment. 779

1) First Scenario: In this scenario, the aircraft’s goal is to 780

reach a certain altitude while maintaining a specified speed 781

within a timeline of t. There are 16 state variables (e.g., 782

altitude, airspeed, pitch, yaw, roll, power–lag, angle of attack 783

(AoA) noted as α, etc.). Our exogenous variables are the 784

initial settings for altitude(0), α(0), airspeed(0), pitch(0), 785

and the power lag that the engine suffers (power–lag). Our 786

endogenous variables are altitude(t), α(t), airspeed(t), pitch(t), 787

power–lag(t), and the actions of the autopilot system for t > 0, 788

which include changing the throttle δt(t) and adjusting the 789

angle of the elevators δe(t) to control the pitch (nose up or 790

down). In this experiment, we investigate the actions (δt(t) 791

and/or δe(t)) that determine whether the plane succeeds or 792

fails in reaching the desired checkpoint, achieving the desired 793

speed, or violating aircraft limits, such as upward acceleration, 794

AoA, or minimum airspeed, that could lead to stalling. 795

2) Second Scenario: Here, we place the aircraft in a critical 796

position near the ground to evaluate its collision avoidance 797

system. This scenario involves using a larger set of variables, 798

thereby increasing the dimensionality of our problem com- 799

pared to the previous scenario. These critical moments involve 800

high degrees of pitch, roll, and yaw, as well as low airspeed 801

near the ground, which may lead to failures, such as ground 802

collision and violations of the aircraft’s aerodynamic limits. 803

Our exogenous variables are the initial settings for altitude(0), 804

airspeed(0), pitch(0), α(0), yaw(0), roll(0), and power–lag, 805

while the endogenous variables are altitude(t), airspeed(t), 806

pitch(t), yaw(t), roll(t), for t > 0 and the actions of the 807

autopilot system. These actions include adjusting the degree 808

of the rudder δr(t) to change the yaw of the plane, changing 809

the degree of the aileron δa(t) to modify the roll of the plane, 810

and controlling the throttle δt(t) and elevator δe(t). As in the 811

previous scenario, we are examining the autopilot decisions 812

that influence whether the aircraft can successfully recover 813

from a potential collision or avoid violating aerodynamic 814

constrains. Additionally, we aim to identify the actual cause 815

of the failures. 816

F. Performance Analysis 817

Fig. 6(f)–(h) illustrate the results of our experiments for 818

the mountain car, Lunar Lander, and both F-16 simulation 819
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TABLE I
EXPERIMENT ON 1000 TRACES

scenario, respectively. Indeed all graphs show a similar profile820

in terms of the behavior of the four modes of experiments821

mentioned in Section V-A.822

As shown in the graphs, the abstraction algorithms (Abs_DA823

and Abs_Z3) demonstrate significantly better performance by824

orders of magnitude than the conventional solvers (Only_DA825

and Only_Z3), with the latter exhibiting exponential growth826

in runtime with an increasing number of traces. This827

demonstrates the effectiveness of our abstraction-refinement828

technique: it identifies the actual causes of failures while829

running much faster than techniques on concrete traces. As830

shown in Fig. 6(f), our technique processes up to 80 000 traces831

in under 250 s, whereas Only_Z3 times out with threshold832

1200 s at 20 000 traces and Only_DA at 55 000 traces.833

Notably, Abs_DA outperforms Abs_Z3, and Only_DA shows834

better performance than Only_Z3. This observation can be835

attributed to the fundamental differences between SMT836

solvers, which focus on logical consistency, and the search-837

ing methods developed in data analysis libraries, which are838

tailored for efficient searching in large datasets.839

In Table I, we present a comparison between different840

valuations of the parameter α, which represents the subset841

size of ȟ. We conducted an experiment to find an optimal842

value for α. Our findings indicate that a very small α may843

require numerous refinements, as it needs to add more traces844

to identify the cause, which is inefficient. On the other hand,845

large values of α needs fewer refinements, but the under-846

approximation function has to process a larger amount of847

data, which increases the processing time. Therefore, there is848

a tradeoff between the number of refinements and the total849

time spent on them. We note that for row that have equal α,850

we shuffle the trace set, which impact computing the under-851

approximation.852

G. Causality Analysis853

This section demonstrates an important aspect of this854

research in investigating the actual cause of safety failures in855

CPS to explain the underlying reason. Our case studies involve856

simulations that specifically focus on the intersection of AI-857

enabled decision-making (mountain car and Lunar Lander),858

environmental dynamics feedback, and the correctness of a859

non-AI controller within an F-16 aircraft simulation.860

1) Mountain Car: In Example 3 (see Fig. 4), we prove861

that making a poor decision to accelerate to the right (i.e.,862

action(0) = 1) leads to failing in reaching the mountain top863

Fig. 7. Simulated traces in Lunar Lander and causal effect of decision by
the main engine.

(i.e., formula ϕfail). Instead, in the counterfactual scenario 864

we observe that it is necessary to accelerate to the left to 865

gain momentum in order to climb the mountain. This not 866

only shows the earliest bad decision by the controller but 867

also identifies the “but-for” scenario, meaning what would 868

have happened if a different action was taken. Additionally, 869

counterfactual reasoning demonstrates how to fix the bad 870

decision made by the neural network. 871

2) Lunar Lander: We observe that when there is a strong 872

wind from left to right, some controllers tend to overuse the 873

right engine, resulting in action = 3 during the initial steps. 874

This causes the lander to drift to the left. However, we observe 875

that even in this situation where the lander is positioned to the 876

left of the landing pad, the controller can use its left engine, 877

action = 1, to move the lander to the right and land safely. 878

However, some controllers use their main engine, action = 2, 879

resulting in the lander not reaching the landing pad. This 880

results in posx(t) < 0− ε, constituting a failure. 881

To illustrate this further, Fig. 7 shows two traces starting 882

from the same point but taking different actions in the 883

first step. Dotted transitions means the next state is not the 884

immediate next time step. The final state of the traces τ0 and τ1 885

is the nth and mth state, respectively. In trace τ0, action(0) = 1, 886

while in trace τ1, action(0) = 3. However, in both traces, the 887

controllers overuse the right engine in the initial steps (both 888

controllers in τ0 and τ1 use the right engine action(1) = 3), 889

causing the lander to drift far to the left, resulting in posx(i) = 890

−0.32 in τ0 and posx(j) = −0.32 in τ1. At this state, where in 891

both scenarios the lander has the same position and setting, the 892

controller in τ1 decides to use the main engine action(j) = 2, 893

while the controller in τ0 opts to use the left engine action(i) = 894

1 to move the lander to the right. These decisions under similar 895

conditions lead to the failure of τ1 (i.e., posx(m) = −0.36 < 896

0− ε) and the success of τ0 (i.e., 0− ε < posx(n) = −0.02 < 897

0 + ε). This finding indicates that the failure in τ1 using 898

decision action(j) = 2, while the counterfactual scenario in τ0 899

succeeds with a different decision action(i) = 1, highlighting 900

that action(j) = 2 in τ1 is the actual cause of the failure. 901

3) F-16 Autopilot Simulation: Here, we identify the cause 902

of failures and analyze counterfactual scenarios (alternative 903

actions) under the same conditions that could lead to success. 904

When the aircraft needs to gain altitude at low speed, some 905

traces show the controller lowering the nose to gain speed and 906
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Fig. 8. F-16 scenario leads to failure due to a violation of the AoA limit.

Fig. 9. F-16 counterfactual scenario leads to success.

avoid stalling before attempting to climb. This approach results907

in a loss of altitude and insufficient time to reach the desired908

altitude within the specified time frame, leading to failure.909

However, in counterfactual scenarios, the controller opts to910

gain speed by using more throttle and then gradually raises911

the nose using the elevators, eventually reaching the desired912

altitude. This demonstrates that the decision to lower the nose913

is the actual cause of the failure to reach the desired altitude914

within the specified time frame.915

In another scenario, when transitioning from a lower to a916

higher altitude, some traces show controllers using excessive917

elevator and throttle, which places the aircraft in a danger zone918

and violates the AoA limits, leading to catastrophic failure.919

However, in alternative counterfactual scenarios with the same920

starting conditions, the controller gradually uses the throttle921

and adjusts the elevator more cautiously. This approach allows922

the aircraft to reach the desired altitude without violating its923

aerodynamic limits.924

To illustrate the latter scenario in detail, Figs. 8 and 9925

show two flight real paths starting from the same altitude,926

altitude(1) = 1450, and the same speed, airspeed(1) = 500,927

with the goal of reaching an altitude of altitude(n) = 1800.928

This process should occur within a specified time frame929

while not violating aircraft limits. In Fig. 8, the controller930

starts by using throttle δt(1) = 0.64 and setting the elevator931

to a negative position, δe(1) = −6, to achieve a positive932

pitch angle. This decision continues in subsequent steps in933

a more extreme manner, with δt(2) = 1.0 (full throttle) and934

δe(2) = −25, resulting in nearly a 45-degree pitch. Next, to935

counteract this situation, the controller attempts to use δe(3) =936

25 and δe(4) = 25 to stabilize the aircraft’s sharp nose-937

up attitude, leading to a negative AoA, α(5) = −17. Since938

the aircraft’s maximum negative AoA limit is -15, α(5) = 939

−17 violates this limit, and the controller fails to achieve its 940

objective. On the contrary, in the counterfactual scenario (see 941

Fig. 9), the controller starting with less aggressive throttle and 942

elevator adjustments, such as δt(1) = 0 and δe(1) = −6.8, 943

resulting in a slight pitch. This strategy continues similarly 944

with δt(2) = 0 and δe(2) = −12, avoiding harsh climbs to 945

reach the destination. By examining this scenario, we find 946

that in the first time step, Fig. 8 makes the decisions δt(1) = 947

0.64 and δe(1) = −6.8, while Fig. 9 makes δt(1) = 0.0 and 948

δe(1) = −6.8 under the same conditions (same altitude, speed, 949

etc.). This counterfactual example shows that an alternative 950

decision by the controller leads to success, providing sufficient 951

evidence that the initial decision is the actual cause of 952

failure. 953

VI. RELATED WORK 954

There is a wealth of research on causality analysis in 955

the context of embedded and component-based systems from 956

different perspectives. In [2], [3], [4], [6], [7], [8], and [9], 957

a new structure of formal causal analysis is proposed that 958

can serve as a substitute for the HP causal model. This 959

approach is distinct from our work, which utilizes a framework 960

of causal analysis to identify the cause of a specific effect. 961

Recently, there has been great interest in using temporal logics 962

to reason about causality and explaining bugs [10], [11], 963

[12], [13]. However, these lines of work either focus on only 964

modeling aspects of causality or do not address the problem 965

of scalability in automated reasoning about causality, which 966

inherently involves a combinatorial blow up for counterfactual 967

reasoning. In the CPS domain, using causality to repair AI- 968

enabled controllers has recently gained interest [15]. This 969

work explored the construction of HP models on AI-enabled 970

controllers, the search for the cause of failure using a search 971

algorithm, and the verification of these causes using HP 972

constraints. In contrast, our work focuses on identifying the 973

cause of failure efficiently in traces using HP constraints 974

and proposes an efficient method for doing so. In [31], causal 975

analysis is performed on system models and system execution 976

traces. In contrast, our algorithm is designed to efficiently 977

identify the cause of any potential failure. Additionally, our 978

work is focused on systems, such as CPS, that interact with 979

their environment. 980

Although the idea of abstracting causal models in terms of 981

structural equations has been studied in [18], [19], and [20], 982

these works do not attempt to establish a relation between 983

actual causes in the abstract and concrete causal models. 984

In the studies [18], [19], [20], the concept of abstraction in 985

causal models was introduced, along with the preliminaries 986

required to construct an abstraction function that maps low- 987

level variables to high-level variables. The work in [18] 988

presents a more general form of abstraction, while [19], [20] 989

focus on the concept of intervention in causal models and how 990

to build an abstraction that preserves them. The distinction 991

between our work and these studies lies in our objective; we 992

are not aiming to construct causal models, but rather, we are 993
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utilizing abstraction to identify the cause of an effect in a more994

efficient manner.995

In [10] and [32], the concept of explaining counterexamples996

returned from the model checker is proposed, with one997

focusing on specifications in LTL format and the other in998

HyperLTL format. However, in our work, we aim to efficiently999

identify the cause of failure in an embedded system.1000

VII. CONCLUSION1001

We concentrated on designing an efficient technique to1002

reason about actual causality. We proposed an SMT-based1003

formulation to determine whether for an input transition1004

system or a set of traces and a state formula (the effect),1005

there exists an actual cause. Since identifying an actual cause1006

involves counterfactual reasoning and, hence, a combinatorial1007

blow up, we also introduced an efficient heuristic based on1008

abstraction refinement. We evaluated our techniques on three1009

case studies from the CPS domain: AI-enabled controllers for1010

a 1) mountain car; 2) Lunar Lander [24]; and 3) an MPC1011

controller for an F-16 autopilot simulator [25].1012

One natural extension is to consider probabilistic actual1013

causality, where either occurrence of events in the system1014

are associated with probabilities, or, data points follow some1015

distribution. Another important direction is causal models1016

where the system is partially observable.1017
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