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An Explainable and Formal Framework for
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Abstract—An alarming increase in hypertension is a hazard to
global health that poses severe implications for the body’s vital
organs. To prevent serious repercussions, hypertension should
be monitored continuously for early detection. It is well known
that physiological signals, such as the photoplethysmogram (PPG)
and electrocardiogram (ECG), carry essential information about
the vitals of the human body. Considering this, numerous
machine learning-based models based on ECG-PPG have been
proposed for monitoring hypertension; however, such models
are "black boxes" and lack clinical interpretation. This work
proposes a formal method-based runtime verification approach
for hypertension monitoring using ECG and PPG sensing, which
is explainable. The pulse arrival time (PAT) feature extracted
using both signals is employed to implement a decision tree
to infer hypertension patterns/policies defined in PAT, based on
which a runtime monitor is synthesized to classify hypertension.
Using the MIMIC II dataset, the proposed scheme’s performance
is assessed, and the accuracy, sensitivity, and specificity are
determined to be 95.7%, 93.9%, and 97.6%, respectively.

Index Terms—Runtime verification, Hypertension, ECG, PPG,
Pulse arrival time, Decision tree.

I. INTRODUCTION
Blood pressure (BP) is the vital sign representing the patho-

logical status of the human body. Hypertension (high blood
pressure) poses a severe health threat, leading to cardiovascular
diseases, which are the primary cause of global fatalities. This
suggests the need for continuous monitoring of hypertension.
The traditional methods of monitoring BP using auscultation
and oscillometric techniques [6] require trained professionals
and lack continuous monitoring.

Physiological signals such as ECG and PPG carry key
information on the vitals of the body and have been widely
studied to infer the BP. It has been found that pulse arrival time
(PAT) (which is the time from the R-peak of ECG to the onset
of PPG shown in Fig. 2) is a good indicator of BP [15]. Based
on this, several deep learning models such as linear regression,
decision tree, support vector machine, long short-term memory
networks (LSTM), and restricted Boltzmann machine (RBM)
models have been proposed [11], [29], [28], [33].

Although the deep learning-based models have demon-
strated their efficacy in the hypertension classification tasks,
they are regarded as "black boxes" as the internal process is
unknown. This calls for the development of dependable, clin-
ically understandable, and explainable monitoring techniques
in healthcare [27], [10].
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Based on formal methods, the runtime verification (RV)
technique [23], [24], [4] monitors if a given set of system
policies are satisfied during the execution of the system. In
this approach, a monitor (RV monitor) is synthesized from
the formalized specifications of the system to monitor the
policies both offline and online. The RV monitor is correct-
by-construction and lightweight [3], and it can be deployed on
a wearable device as an explainable software component for
continuous monitoring of the policies.

Recently, RV techniques have been proposed for monitoring
healthcare applications such as ECG-PPG correlation [21],
pacemakers [19], insulin infusion system [20], and diabetes
detection [22].

A. Overview of the proposed approach

Fig. 1: Proposed hypertension monitoring approach using RV

As shown in Fig. 1, the electrical signals generated by a
human heart are recorded by an ECG, and the PPG records
the pulse signal. The characteristics of hypertension in pulse
arrival time are then defined as policies. Key hypertension
patterns are synthesized using a decision tree constructed
from pulse arrival time features. Specifying the hypertension
specifications as timed automata [1], RV monitors are synthe-
sized automatically. RV allows for the real-time verification of
these policies on a wearable device, issuing warnings in the
case of hypertension.

The key contributions of this work are:
• This work presents formal runtime verification approach for

hypertension monitoring using ECG and PPG.
• Synthesis of pulse arrival time policies pertained to hyper-

tension.
• The proposed approach paves the way for designing a

wearable monitor for hypertension monitoring.
The paper is structured as follows: an overview of the ECG,

PPG, and BP, as well as the datasets, the signal processing
methodology, and features used in this study, is presented in
Section II. The extraction of policies for hypertension moni-
toring is discussed in Section III. The fundamentals of timed
automata, as well as RV monitors, are discussed in Section IV,
along with some examples. In Section V, we use an example
involving BP monitoring to demonstrate the behavior of RV
monitors. In Section VI, we discuss the performance of the
suggested technique, followed by conclusion in Section VII.
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Fig. 2: ECG, PPG, and PAT
Fig. 3: ABP signals

II. OVERVIEW

This section briefly presents the basics of ECG, PPG, and
BP, along with the considered dataset, processing of signals,
and the features under study.

A. ECG, PPG, BP, and pulse arrival time
When the heart pumps blood, the force of the blood pressing

against the walls of the arteries is known as blood pressure.
The maximum and minimum blood pressures during succes-
sive heartbeats are known as systolic blood pressure (SBP)
and diastolic blood pressure (DBP), respectively. An SBP of
between 140 and 159 mmHg is interpreted as the first stage
of hypertension, whereas an SBP greater than 159 mmHg is
the second stage.

A typical ECG (the top signal in Fig. 2) represents the
systole and diastole phases of the heart. The highest peak of
ECG, known as the R-peak of ECG, represents ventricular
contraction, as shown in Fig. 2. A PPG signal (the bottom
signal in Fig. 2) indicates the variations in the blood flow
(volume) during the systole phase of the heart. The peak of
the PPG is known as the systolic peak and the foot is called
the onset of the PPG. 1

Pulse arrival time (PAT), i.e., the duration between the
R-peak of the ECG and the arrival of the pulse wave, has
been considered a predictive marker for arterial stiffness and
cardiovascular diseases [12]. According to Chan et al. [5],
the PAT and blood pressure are inversely related and have
proposed a linear model to measure BP. In [25], Pon et
al. discuss the relationship (nonlinear) between PAT and BP.
According to Mukkamala et al. [16], PAT is inversely related
to BP. In this study, we explore patterns from the pulse arrival
time features that are indicators of hypertension.

a) Dataset considered: In this work, we study the Phys-
ionet MIMIC II dataset published by Kachuee et al. [11]. The
dataset includes 942 patients’ simultaneous ECG, PPG, and
ABP (arterial blood pressure, BP signal) signals captured at
125 Hz. The subjects are of various ages and gender groups.

b) Signal processing: The ECG, PPG, and ABP signals
are processed using the Neurokit2 tool [14] in Python. Using
the Pan-Tompkins algorithm [18] and Elgendi’s algorithm [8],
the R-peaks of ECG and the systolic peak and onset of PPG
are extracted. The SBP and DBP are computed from the peak
and onset of the ABP signal, respectively, as shown in Fig. 3.

1Enlarged version of figures 2, and 3 are available in the repository [2].

c) Features considered: In this work, we have considered
the following pulse arrival time features:
• PATf interval (time interval between the R-peak of ECG

and the onset of PPG)
• PATp interval (time interval between the R-peak of ECG

and the systolic peak of PPG)

Fig. 4: Steps for policy mining

III. HYPERTENSION POLICIES MINING

As discussed above, we extract PAT features and BP values
from each synchronized cycle of ECG, PPG, and ABP signals.
In order to extract patterns and policies on PAT, we implement
a decision tree [26] that has been widely utilized in data mining
to extract rules and patterns from datasets [17]. The tree is built
from the PAT features PATf and PATp, where each feature
is assigned a class, namely hypertension or normal based on
the BP values. The work-flow for policy extraction is shown
in Fig. 4. Once the tree is constructed, the PAT policies are
deduced by going from the tree’s root to its leaves. A Python
module is implemented to construct the decision tree from the
PAT features using the scikit-learn package of Python. The
dataset and source code for generating the decision tree is
available in [2].

a) Inference of policies from the decision tree: Classi-
fying a feature (into hypertension or normal) is the result of
following a path from the root of the tree to one of its leaf
nodes. Every path that leads to a leaf of the decision tree cor-
responds to a production rule of the form (X1∧X2∧...) → A,
where A is the class of the leaf. A condition Xi may be deleted
from the tree if its deletion does not reduce the accuracy of
the entire decision tree. Xi can also be deleted if its presence
appears to enhance the accuracy of the tree, but this accuracy
may be peculiar to the training set used in generating the
decision tree. We therefore reduce the tree from 15 leaves to
just 3 rules/policies [26]. The generated decision tree is also
available for reference in [2].

The following patterns/policies are generated from the tree
corresponding to hypertension.
• φPAT1: If PATf > 420 ms and PATf ≤ 468 ms, then it

indicates hypertension.
• φPAT2: If PATf > 312 ms and PATf ≤ 420 ms and
PATp > 556 ms and PATp ≤ 628 ms, then it indicates
hypertension.

• φPAT3: When PATf ≤ 312 ms and PATp > 536 ms and
PATp ≤ 620 ms, then hypertension is present.

Note: Regarding the correctness of the policies, the decision
tree can be verified formally concerning the input-output map-
pings and violation ranges following the approaches mentioned
in [31]. In addition, to verify the correctness of policies, we
synthesize the policies from 70% of the dataset and evaluate
them against the remaining 30% of the dataset detailed in
Section VI.
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IV. FORMALISING HYPERTENSION POLICIES AS TIMED
AUTOMATA AND THE RUNTIME VERIFICATION MONITOR

The sequential timed events in a pulse arrival time allow
for formalizing the PAT policies discussed above as timed
automata [1]. This section briefly discusses timed automaton
to present a policy and explains the basics of a runtime
verification monitor.
A. Timed Automata (TA)

Definition 1 (Timed automata): A timed automaton A =
(S, s0, C,Σ, ∆, F ) is a tuple, where: S is a finite set of
locations, s0 ∈ S is the initial location, C is a finite set of
clocks, Σ is a finite set of events, ∆ ⊆ S×G(C),Σ×2C×S is
the transition relation, F ⊆ S is a set of accepting locations.

Fig. 5: Policy φPAT1 represented by a timed automaton

Example 1: Consider the timed policy φPAT1: If PATf >
420 ms and PATf ≤ 468 ms then it indicates hypertension.

The timed automata in Fig. 5 represents the policy φPAT1,
where N0, N1 and H are the locations with N0 as the initial
location. Here, N0 and N1 are the locations indicating no
hypertension. H0 and H1 are the accepting locations indicating
that the policy φPAT1 is satisfied (and hence indicating that
hypertension is present). Σ = {R, on, sp}, represent the set
of events, where R denotes the R-peak of the ECG and on,
and sp, respectively, denote the beginning (onset) and systolic
peak of the PPG. Here there is only one clock variable, x that
measures the time between the events R of ECG and on of
PPG. An operation on the clock variable initialized to 0 is
known as a reset of the clock (here x:=0). Also, we can put
constraints on the clocks called "guards"; here, x ≤ 420 is a
guard on the clock x.

The trace/timed word (σ) processed by the TA is a sequence
of events along with time, for example, σ = (e1, t1) ·
(e2, t2) · · · (en, tn), where ei is an event and ti is the time
of occurrence of the event. Given a finite alphabet Σ, the set
of timed words over Σ is denoted by tw(Σ).
B. Runtime verification (RV) monitor

Definition 2: Consider a monitoring policy φ ⊆ tw(Σ)
is formalized as a timed automata Aφ, then the verification
monitor synthesized from Aφ can be represented as a function
Mφ : tw(Σ) → D, where D = {c_True, c_False}. The RV
monitor is defined as follows considering σ ∈ tw(Σ) as the
current observation:

Mφ(σ) =

{
c_True if σ ∈ φ

c_False if σ ̸∈ φ

The monitor Mφ for the policy φ takes σ as input and emits a
verdict from the set D = {c_True, c_False}, where c_True
stands for currently true and c_False for currently false. After

reading the timed word σ, if the policy is satisfied with the
current observation, the monitor emits the verdict c_True,
otherwise, c_False.

V. MONITORING HYPERTENSION
We follow the approaches described [23], [24], [4] to

develop a RV monitor Mφ, given a timed automaton (TA)
Aφ expressing the policy φ. The RV_Monitor module is
implemented in Python 2.7. The framework parses the timed
automata using the UPPAAL DBM libraries [7].

The PAT policies φPAT1, φPAT2 & φPAT3 provided in
Section III are formally expressed as TA. The RV monitors
MφPAT1, MφPAT2 & MφPAT3 are synthesized for each
policy, respectively. At each step, the RV monitors sense the
generated ECG/PPG events, verify the policies, and provide
verdicts. The final verdict is computed by merging the results
of each monitor 2.

The following example illustrates the behavior of the RV
monitor MφPAT1 for policy φPAT1 using a sample ECG-PPG
trace (other RV monitors show similar behavior).

Example 2: Consider the policy φPAT1 discussed previ-
ously: The time interval between R-peak of ECG and onset of
PPG should be greater than 420 ms and less than or equal
to 468 ms. To monitor this policy, the RV monitor is input
with the TA specifying policy φPAT1 and an ECG-PPG trace
σ. If the input trace σ satisfies the policy (indicating that
hypertension is present), then the monitor will emit the verdict
c_True. Else, the monitor will emit c_False (indicating that
hypertension is not present).

Consider a sample ECG-PPG trace: (R, 30) · (on, 600) ·
(sp, 750) · (R, 800) · (on, 1250) · (sp, 1400) · (R, 1450) ·
(on, 1850), where R denotes the R-peak of the ECG and on
and sp, respectively, denote the onset and systolic peak of the
PPG. The RV monitor processes the events sequentially. For
the experiment, we input the trace, where the event timestamp
is the delay with the prior event or system start. Table I
presents the output of the RV monitor for the sample trace.

The monitor reads the initial event R at time t1 = 30 and
outputs c_False as the policy is not satisfied at the moment.
The monitor emits c_False for the event on at time t2 = 600
(does not satisfy the policy as PATf interval is greater than
468 ms). At time t3 = 750, the policy is not satisfied as the
monitor gets the event sp, and emits c_False. Similarly, the
monitor outputs c_False for the R event at time t4 = 800.
When the event on is observed at time t5 = 1250, the policy is
satisfied as the PATf interval falls between 420 and 468 ms,
and the monitor emits c_True (indicating that hypertension is
present). At time t6 = 1400, the monitor reads sp, and emits
the verdict c_True. On receiving R at time t7 = 1450, the
monitor emits c_True. When the monitor receives on at time
t8 = 1850, the policy φPAT1 is violated, and the verdict by
the monitor is c_False.

VI. EXPERIMENTAL RESULTS
We evaluated the monitoring policies against a large dataset

(derived from MIMIC II). Due to inconsistencies (like missing
signals, signals being too short, high noise content, etc.) in the

2The final verdict is the ‘or’ computation of the three monitors. That is,
the final monitor emits the verdict as currently true, only if at least one of
the monitor emits currently true.
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TABLE I: Sample behavior of RV monitor
σ MφPAT1(σ)

(R, 30) CF
(R, 30) · (on, 600) CF

(R, 30) · (on, 600) · (sp, 750) CF
(R, 30) · (on, 600) · (sp, 750) · (R, 800) CF

(R, 30) · (on, 600) · (sp, 750) · (R, 800) · (on, 1250) CT
(R, 30) · (on, 600) · (sp, 750) · (R, 800) · (on, 1250) · (sp, 1400) CT

(R, 30) · (on, 600) · (sp, 750) · (R, 800) · (on, 1250) · (sp, 1400) · (R, 1450) CT
(R, 30) · (on, 600) · (sp, 750) · (R, 800) · (on, 1250) · (sp, 1400) · (R, 1450) · (on, 1850) CF

original data, the policies depicted 72% accuracy. However,
for policy formation and evaluation, we have used a much
smaller but consistent subset of the original dataset. This
subset consisted of 288 data points extracted from the ECG,
PPG and ABP signals of over 25 patients. Each data point
consisted of the time stamp of three characteristic points (Rpeak
of ECG, onset and peak of PPG) and the SBP value. The
proposed monitoring policies are inferred from 70% of the
dataset and evaluated against the remaining 30% of the dataset.
We calculate the following performance metrics: accuracy,
sensitivity, and specificity defined as follows:
accuracy(%) = (TP + TN)/(TP + TN + FP + FN)× 100

sensitivity(%) = [TP/(TP + FN)]× 100

specificity(%) = [TN/(TN + FP )]× 100

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative, respectively. The ability
to differentiate between normal and hypertensive subjects
denotes the accuracy of the RV framework. The proportion
of hypertension samples that were correctly identified out
of all the samples is represented by the RV framework’s
sensitivity. Similarly, specificity shows what percentage of
overall samples the RV framework classifies as healthy ones.
Results show that the RV framework has 95.7% accuracy,
93.9% sensitivity, and 97.6% specificity. Table II provides a
performance comparison of our framework with a few other
classification-based techniques.

TABLE II: Comparison with existing models
Authors Dataset Features Methods Accuracy

Zhang et al.(2018) [32] own dataset PTT, HR Classification trees 90%
Tjahjadi et al. (2020) [30] PPG-BP dataset time-frequency Bidirectional LSTM 97.33%
Fitriyani et al. (2019) [9] Golinos personal features Ensemble Method 85.73%

Luo et al. (2018) [13] MIMIC II subject features CNN 89.95%
Our work RV framework MIMIC II PAT Policy based 95.7%

VII. CONCLUSION AND FUTURE WORK
Hypertension is a common health issue that is life-

threatening. We propose a formal runtime monitor for mon-
itoring hypertension that is explainable. Such systems are
quite useful for clinical interpretation because their internal
workings are defined as white-box systems. The proposed
approach shows comparable accuracy to the existing models.

Future work: The incorporation of new policies may im-
prove the predictive capability of the framework concerning
hypertension. The viability of the proposed monitoring system
may be tested against other data sources.
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