
IEEE EMBEDDED SYSTEMS LETTERS 1

Run-Time ROP Attack Detection on Embedded
Devices Using Side Channel Power Analysis

Jinyao Xu , Danny Abraham, Ian G. Harris

Abstract—Return-oriented programming (ROP) have emerged
as great threats to modern embedded systems. ROP attacks
can be used to either bypass credential verification or modify
RAM contents. In this paper, we introduce a simple side-channel
technique for run-time ROP detection. We use processors’ power
consumption pattern as an indicator for potential ROP attacks,
which can be deployed across different platforms. We avoid the
computational complexities of training machine learning models
by using a simple linear comparison algorithm to compare
known and unknown power patterns to discern anomalies. For
evaluation, we implement both ROP attacks in multiple scenarios
on benchmarks with various complexity levels. We demonstrate
the robustness of our approach and also outline some potential
overheads that the approach incurs for run-time ROP detection.

Index Terms—Return-Oriented Programming, Embedded Sys-
tem Security, Threat Detection.

I. INTRODUCTION

Embedded systems—low in power consumption and ver-
satile in functionality—play vital roles in building modern
“smart” societies. Given the extensive existence of embedded
systems, ranging from avionic bootloaders to cars’ remote
fobs, securing these bare-metal devices has always been an im-
portant topic investigated by security researchers [1]. Lacking
OS protections for stacks, these bare metal embedded systems
are commonly exploited by attackers through Return-Oriented
Programming (ROP), a code execution hijacking technique
where an attacker overflows the call stack to re-write return ad-
dress and gaining control over the program’s control flow [9].
By hijacking the program counter to execute arbitrary code in
program memory, attackers exploit instruction “gadgets” that
end with another return instruction. Together, these gadgets
can lead to attacker-defined malicious behaviors that are hard
to detect at run time.

In this paper, we address the issues above by 1) providing
an overview of the power side channel power analysis and its
ability to be used on security defenses, 2) showing how to
deploy the technique to an embedded platform using power
analysis hardware, 3) evaluating the technique’s performance
for run-time ROP attack detection, 4) outlining the technique’s
potential trade offs in its deployment.

II. THREAT MODEL

We assume that there may exist a software vulnerability
which allows a malicious party to execute a ROP attack against
the embedded system. Such vulnerability usually comes in
form of unchecked buffer.

Pattern Acquisition Run-Time Detection

Safe Condition Hostile Condition

Fig. 1. Overview of Attack Detection Scheme

1) Existing research assumes a common rate of 11 attacks
out of 1000 testing iterations (around 1%) [3]. However,
other research also uses a 1:1 ratio of attacking vs.
normal scenario to test its technique [4]. In a real world
scenario, attacks occur sporadically. For this paper, we
assume that attacks are sporadic (non-clustered), which
are harder to detect given their low frequency. We
assume that they happen 1% of the time during the
validation process.

2) Attackers typically chain multiple code gadgets. For
embedded devices, a chain of gadgets can be as short
as 10-15 instructions to move a register’s value to
another [10]. In our experiment, we consider the worst
possible attacking case where the attacker only uses 1
ROP gadget and such gadget contains no more than 6
assembly instructions.

III. MODEL FRAMEWORK

Side Channel Power Analysis aims to gain program’s ex-
ecution insights via its CPU’s power consumption over time
[5], [6]. It is an non-intrusive technique that is easy to set
up for both defense and attacking purposes [5]. In order to
measure power of the CPU, a parallel circuit can be added
between MCU’s Vdd pin and the power supply. To avoid
shorting the circuit, the new circuit requires an additional
resistor between two measuring points. The change of voltage
can be obtained through Ohm’s law, where the voltage changes
correspondingly to the current and resistance, we apply as
constants to the circuit.

A. Framework High-Level Overview

Shown in figure 1, we first operate the device under the
safe condition to acquire valid power patterns of a specific
program. Once the program does not identify new branching
patterns), the device is placed in the hostile environment where
it’s power is monitored and compared to the known patterns.

1943-0671 © 2024 IEEE Personal use is permitted, but republication/redistribution requires IEEE permission.

https://orcid.org/0009-0009-4058-4825


IEEE EMBEDDED SYSTEMS LETTERS 2

B. Side Channel Power Analysis For Return Anomalies

Based on the power pattern differences over a program’s
execution, we can monitor the behavior after a program
executes the “return” instruction from either a function call or
if/else statement. This means that a hardware trigger is needed
from the embedded device to tell the sample collector when to
start sampling. Most embedded devices have General Purpose
Input/Output (GPIO) ports that communicate with external
devices. Driving the GPIO signal to 3.3 V before return and
jump instructions, the detection device will be notified to
sample via its ADC and transmit the collected sample to the
host machine via UART, where data will be processed. Be-
cause ROP gadgets have different instructions from the normal
program’s execution, the power pattern will be different. In the
actual industrial setting, it is the programmer’s job to write
codes that drives the GPIO pins at security-critical parts of
the program.

Figure 3 shows an example of a ROP attacked pattern
vs a normal pattern for a sample searching. In this proof
of concept, we used the Binary Search program where the
attacking gadget contains 6 ALU operations. The x-axis shows
the sample points overtime whereas the y-axis measures the
voltage, calculated by equation (1) From sample No. 60 to
No. 80, a clear power difference between ROP and Non-
ROP attacked program can be spotted: the normal program
executes returns from its call stack whereas the attacked
program yields additional ALU operations before returning
from the last recursive call (sample No.80 to No.100). Gadgets
could be chained to form longer ROP chains, yet in this proof
of concept, a gadget as short as 6 ALU instructions can be
captured by the power analyzer.

voltage = −current ∗ resistance ∗ gain. (1)

IV. POWER PROFILE MATCHING

Instead of using machine learning model or Hardware
Performance Counter, we use a simple linear comparison
algorithm to check the similarities of power patterns. When
comparing power profiles such as those shown in Figure 3,
each corresponding data point is compared with a “tolerance
of difference” of 0.1 mV. To ensure pattern integrity, we also
specify the minimum valid length as a parameter. Only when
a consecutive matching pattern >= min sequence can such
pattern matching be considered valid. Algorithm 1 shows the
pseudocode for our matching score calculation function. The

VDD

Fig. 2. Power Measuring Schematics

0 20 40 60 80 100

Frame

−0.3

−0.2

−0.1

0.0

0.1

0.2

N
or

m
al

iz
ed

Po
w

er

ROP Normal

Fig. 3. Normal Execution v Rop Execution

linear comparison Algorithm 1 has a O(n) complexity and
runs in a predictable time for run-time data analysis.

Algorithm 1: linear comparison
Input: Pattern1, Pattern2, threshold, min sequence
Output: Matching Score
/* initialize variables */
score=0
counter=0
/* iterate through the pattern */
for each sample1, sample2 in Pattern1, Pattern2 do

if abs(sample1-sample2) < threshold then
/* aA single sample match */
counter+=1

else
if counter >= min sequence then

/* Matching Sequence is Long
enough, add to score */

score+=counter
counter=0

else
counter=0

return score

Pattern Acquisition: At pre-deployment phase, We repeat-
edly collect samples for 100 rounds to run the program with
random inputs so we can cover different branches, return/jump
instructions with conditions, etc. At this phase, a sample pat-
tern will be checked against existing samples using Algorithm
1. Should the pattern be “new”—a linear comparison that
yields a score lower than 70% to any known ones—the new
pattern will be added to the pattern collection.

A. Runtime Attack Detection

To determine the matching score threshold for the actual
attacks, we run the programs and collect their power profiles,



IEEE EMBEDDED SYSTEMS LETTERS 3

matching them against the known legal patterns to get a
matching score distribution. Equation (2) is used to calculate
the score for distinguishing normal and attacked programs.

mean(scores)− std.deviation(scores) (2)

V. EVALUATION

Based on the following research questions, we present our
evaluation methodologies.

1) RQ1: Using side-channel power analysis techniques,
what accuracy and false positive rate at run-time can
we achieve for detecting ROP attacks?

2) RQ2: What are the computation trade offs for using
side-channel power analysis? How does such trade off
relate to the programs’ complexity.

To address the first question, we benchmark our technique
on 10 different benchmarks with various code structures and
complexities. The results are evaluated based on its accuracy
and false positive rate. To see the trade offs for the power
side channel approach, we vary delay times and measured
degradation of accuracy.

A. Experiment Setup

For the experiment, we use the ChipWhispererLITE
(CWLite) with its default XMEGA target [7]. The CWLite has
an Xilinx SPARTAN 6 chip as its main processing unit and
runs on its 5.7.0 firmware version and can be interfaced with
Jupyter notebook. ChipWhisperer is an open-source, low-cost
solution to expose weaknesses that exist in embedded systems
[2].

The target board has an Atmel AVR instruction set archi-
tecture and connects to the CWLite via its measure port JP10,
over a shunt resistor. The trigger is connected via CWLite’s
GPIO D pin, on both the target and the CWLite device. The
testing programs are cross compiled using the Brew AVR
GCC compiler on a Mac OS Ventura 13.4 host machine.
Programs are subsequently loaded onto the XMEGA target
via CWLite’s serial port. Configuration of the CWLite device
such as sampling size, sampling speed, uart protocols is done
via CWLite’s python API functions.

Programs and Inputs: We use the same benchmarks
used in Omotosho et al’s paper [8], including various known
algorithms like Depth First Search, Binary Search, Kruskal,
etc. All benchmark programs are written in C with different
run time complexities and vulnerability points. The average
run time for a full iteration and the programs’ complexity are
listed in the second and third columns of Table I.

Inputs to these benchmarks are randomly generated at each
iteration via the rand() and other key functions from the AVR
standard library. For example, in the binary search program,
the input array is first generated by the rand() function and
are then sorted in-place using qsort().

Vulnerability and Gadgets: Vulnerability points of a pro-
gram are identified after return or jump instructions that
can be impacted directly by the input. For this paper, this
is done manually via code inspections. We first inspect the
pseudo-codes of the benchmark programs and identify major

components of them. However, this process can be automated
via static analysis tools.

Sampling Triggers: Return-oriented attacks alter system
behavior at return instructions, so we sample power profiles
starting at the execution of return instructions. The sampling
starting point will be notified via a hardware trigger. Before
each vulnerable return or jump, the hardware trigger on
the target board (GPIO D) goes high to notify the CWLite
(GPIO D) port to sample a fixed amount of power samples,
measured in Volts. Trigger’s (dis)activation is implemented via
CWLite’s software API trigger high() and trigger low().
The trigger high() drives the target board’s GPIO D port to
3.3V where trigger low() resets the port to 0V.

Attack Simulation: Malicious modifications are made to
the programs by the addition of an extra function call ROP ().
These functions are placed at programs’ vulnerability points
with assembly instructions mimicking a buffer modification
and register modifications. Test iterations are measured in
terms of ROP () function’s execution: whenever a program
executes through one of its vulnerability points, we consider
this as a test instance where samples will be collected and
matched against known ones. The ROP() function is triggered
at random using hardware’s random number generator.

TABLE I
BENCHMARK PROGRAM AND PATTERN ACQUIRED

Program Time(ms) Complexity # Vulnerabilities Gadget Length
Binary Search 0.0015 O(logn) 3 6
Bellman-Ford 0.026 O(V E) 2 2
DFS 0.037 O(V + E) 2 6
Kruskal 0.014 O(ElogE) 4 6
Floyd Warsall 0.033 O(n3) 2 5
Merge Sort 0.018 O(nlogn) 4 6
LCS 0.1036 O(mn) 3 5
Prim 0.004 O(ElogV ) 2 3
Huffman 0.023 O(nlogn) 2 6
RabinKarp 0.008 O(mn) 4 4

Delays: Given the fact that benchmark evaluations are done
on a Mac OSX platform using Python, we injected NOP delays
before each trigger up event to give the operating system
(OS) enough time processing the collected sample during
the benchmark’s runtime. Given the XMEGA device operates
at 7.3 MHz clock [7], we stress tested each benchmark’s
minimum delay to detect the first correct ROP attack and uses
it to evaluate each of our benchmark.

Attack Frequencies: In our benchmarking process, 4 out
of 1024 samples are maliciously infected and each happens
once randomly in every 256 test instances, yielding a 0.3%
chance of encountering a ROP attack.

Validation: We use the matching threshold obtained during
the training phase as the deciding point. For metrics, detection
accuracy and false positive rate are calculated using the
following equations.

accuracy = (TruePositive+ TrueNegative)/Total

false positive = FalsePositive/Total

In these equations, the term ”positive” means an attack,
vice versa for the term ”negative”.



IEEE EMBEDDED SYSTEMS LETTERS 4

VI. RESULTS AND DISCUSSION

In this section, we present our results and answer our
research questions based on the result.

Performance: Evaluated among these benchmarks, our
side-channel method has significant accuracy for embedded
devices. Shown in Figure 4, accuracy tends to be high (average
of 80%) and false positive rate tends to be low for all programs
except the Longest Common Sub-sequence (35% accuracy)
and (60% false positive). Although not a complicated pro-
gram, its recursive branches are complicated in tree-structure
representation. Hence the variations in recursive inputs affect
accuracy. Similar for Kruskal’s algorithm: the complexity in
branching for Minimum spanning tree problem causes larger
power variation, which makes the attacks harder to detect.

Bell
man

bis
ea
rc
h

DFS
FW

Huff
man

Krus
ka

l
LCS

M
erg

eS
ort Prim

Rab
ink

arp
0.0

0.2

0.4

0.6

0.8

1.0

Accuracy False Positive Rate

Fig. 4. Benchmarking Results

Trade offs: Depending on the program complexity, time
delay required for host machine to process decision is mea-
sured by number of NOP delays, shown in Figure 5. In the
x axis, we rank the program’s computation complexity in an
ascending order and the y axis shows the delay (in terms of
NOP instructions) time. The graph roughly shows a positive
correlation between computation complexity and time of delay.

Implications: With our findings, we list further research
areas.

• Performance of this technique can be improved as gadgets
get longer, or chained in a longer sequences. In our
experiment, we test the worst case scenario– one ROP
attack gadget chain only. We are uncertain about the
matching score’s correlation with larger size of malicious
codes or gadget chain length.

• Currently, a testing pattern has to be tested with all
acquired patterns before a concluding a potential attack.
This scheme may be improved by using hash tables to
avoid iterative matching each pattern. Doing this may
introduce additional space overheads and increase overall
resource usage, especially for resource constrained ma-
chines.

FW
DFS

LCS
Prim

BiS
ea
rc
h

Bell
man

-F
ord

Rab
inK

arp

Krus
ka

l

M
erg

eS
ort

Huff
man

0

500

1000

1500

2000

2500

3000

Ti
m

in
g

Fig. 5. Minimum Time Delay

• The actual power measurement can be done on a pure
hardware than a full OS based machine. For example,
a bare-metal FPGA implementation may be used, thus
reducing the time delay needed for run-time detection.

• The NOP delays could potentially harm the run-time
nature of this detection mechanism. Conducting further
experiment, we identified that the bottle-neck of this ap-
proach is the UART communication between the power-
measurement device and the host machine. To improve
upon this and fully achieve run-time, the whole scheme
can be implemented on a FPGA.

REFERENCES

[1] Mitre’s embedded capture the flag. https://ectf.mitre.org/
past-competitions/. Accessed: 2023-08-22.

[2] Ayush Bansal and Debadatta Mishra. A practical analysis of rop attacks.
arXiv preprint arXiv:2111.03537, 2021.

[3] Sanjeev Das, Bihuan Chen, Mahintham Chandramohan, Yang Liu, and
Wei Zhang. Ropsentry: Runtime defense against rop attacks using
hardware performance counters. Computers Security, 73:374–388,
2018.

[4] Mohamed Elsabagh, Daniel Barbara, Dan Fleck, and Angelos Stavrou.
Detecting rop with statistical learning of program characteristics. In
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy, CODASPY ’17, page 219–226, New York, NY,
USA, 2017. Association for Computing Machinery.

[5] Hasindu Gamaarachchi and Harsha Ganegoda. Power analysis based
side channel attack, 2018.

[6] Navyata Gattu, Mohammad Nasim Imtiaz Khan, Asmit De, and Swaroop
Ghosh. Power side channel attack analysis and detection. In Proceed-
ings of the 39th International Conference on Computer-Aided Design,
ICCAD ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[7] NewAE Technology Inc. Chipwhisperer-lite, 2024. Accessed: 2024-05-
23.

[8] Adebayo Omotosho, Gebrehiwet B. Welearegai, and Christian Hammer.
Detecting return-oriented programming on firmware-only embedded
devices using hardware performance counters. In Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing, SAC ’22, page
510–519, New York, NY, USA, 2022. Association for Computing
Machinery.

[9] Ye Wang, Qingbao Li, Zhifeng Chen, Ping Zhang, and Guimin Zhang. A
survey of exploitation techniques and defenses for program data attacks.
J. Netw. Comput. Appl., 154(C), mar 2020.

[10] Nathanael R. Weidler, Dane Brown, Samuel A. Mitchell, Joel Anderson,
Jonathan R. Williams, Austin Costley, Chase Kunz, Christopher Wilkin-
son, Remy Wehbe, and Ryan Gerdes. Return-oriented programming on
a resource constrained device. Sustainable Computing: Informatics and
Systems, 22:244–256, 2019.

https://ectf.mitre.org/past-competitions/
https://ectf.mitre.org/past-competitions/

	Introduction
	Threat Model
	Model Framework
	Framework High-Level Overview
	Side Channel Power Analysis For Return Anomalies

	Power Profile Matching
	Runtime Attack Detection

	Evaluation
	Experiment Setup

	Results and Discussion
	References

