
Cover Letter

This submission is the camera-ready version of the EMSOFT-JT-paper #389, accepted for publication in IEEE TCAD as a
full-length paper.



1

Interval Image Abstraction for Verification of
Camera-Based Autonomous Systems

Habeeb P, Deepak D’Souza, Kamal Lodaya, Pavithra Prabhakar

Abstract—We propose an abstraction-refinement based algo-
rithm for the problem of verifying the safety of a camera-based
autonomous system in a synthetic 3D-scene, based on the notion
of interval images. An interval image is an abstract data structure
that represents a set of images in a 3D-scene. We give a Computer
Graphics style rendering algorithm to efficiently compute interval
images from a given region. Our proposed abstraction-refinement
algorithm leverages recent abstract interpretation tools for neural
networks. We have implemented and evaluated the proposed
technique on complex 3D-scenes, demonstrating its effectiveness
and scalability in comparison with earlier techniques.

Index Terms—Verification, autonomous systems, abstraction,
refinement, abstract interpretation.

I. INTRODUCTION

Autonomous vehicles typically make use of deep neural
networks (DNNs) to interpret inputs from their perception
sensors like cameras and lidars. The problem of reasoning
about the safe navigation of such vehicles is both important
and challenging. The de facto solution is to test the vehicle
in different scenarios in specialized testing tracks or on roads
and other spaces. However this can be expensive in terms of
time and resources, and offers very limited coverage. Studies
[34] estimate that to guarantee a probability of 10−9 fatality
per hour of driving one would need a prohibitive thirty billion
miles of test driving. A promising alternative is to test a model
of the vehicle (which captures its sensing mechanism and
control dynamics) in a synthetic, Computer Graphics (CG)
style, 3D-environment. Studies [14], [19] have shown that
both safe and unsafe trajectories in synthetic environments
transfer well to real-life test scenarios, in that a majority of
unsafe simulated behaviours could be reproduced as unsafe
behaviours in a real track, while most safe simulated behaviours
continued to be safe in the real track. Thus, formal analysis
using synthetic environments is a reasonable approximation to
achieving higher levels of assurance in the safe functioning of
autonomous vehicles. Furthermore, there is a move towards
building autonomous vehicles that use only camera sensors
[38]. Hence reasoning about purely camera-based autonomous
vehicles is important.

In [17], the authors consider camera-based autonomous
vehicles and go a step beyond testing. They consider the

Habeeb P, and Deepak D’Souza are with the Department of Computer
Science And Automation, Indian Institute of Science, Bangalore 560012,
Karnataka, India (email: habeebp@iisc.ac.in; deepakd@iisc.ac.in).

Kamal Lodaya was formerly with the The Institute of Mathematical Sciences,
Chennai 600113, Tamil Nadu, India (email: kamal@imsc.res.in).

Pavithra Prabhakar is with the Department of Computer Science,
Kansas State University, Manhattan, Kansas 66506, USA (e-mail: pprab-
hakar@ksu.edu).

problem of verifying the safety of all trajectories of (a model
of) a camera-based autonomous vehicle from an initial region
in a given synthetic 3D-scene. Let us call this the “scene safety”
problem for autonomous vehicles. The analysis is based on
the decomposition of space into image-invariant regions which
corresponds to vehicle/camera positions from which the images
captured are guaranteed to be identical. Further, by treating
the DNN as a black box, the algorithm explores the vehicle’s
trajectory space, correctly returning a safe or an unsafe answer.
While this approach provides a decidable algorithm for the
bounded scene safety problem, in practice, computing the
invariant region decomposition for complex scenes turns out
to be intractable.

In this paper, we propose an alternative approach to the
scene safety verification problem. We introduce the notion of
“interval images,” and propose a scalable abstraction-refinement
technique based on this notion. An interval image corresponding
to a region of space in a synthetic 3D-scene conservatively
represents all the images seen from the region. We should
point out here that the notion of interval inputs to DNNs
(including images) have been considered before, in the context
of reasoning about the robustness of DNNs. However in these
applications they represent perturbations of a single input or
image, while in our setting they are an abstract representation
of the set of images seen from a region in a 3D-scene. The
challenge in the latter interpretation lies in efficiently computing
and refining such abstractions in a precise way.

In conjunction with existing techniques [15], [35], [42] to
abstractly interpret a DNN on interval images, we show how
interval images can be used to abstractly interpret (and refine
when needed) the entire system. These ideas are put together in
an abstraction-refinement based verification algorithm for the
scene safety problem. The key components of this algorithm
are (a) an efficient and reasonably precise technique to compute
a sound interval image for a region, generalizing classical CG
rendering algorithms, and (b) an efficient technique to refine
unsafe abstract paths.

In our experimental evaluation we show that in contrast to
the approach in [17], the proposed algorithm is able to both
verify and detect unsafe trajectories in complex realistic 3D-
scenes containing tens of thousands of edges. Thus, interval
image based abstractions provide a new technique to achieve
scalable solutions to the scene safety problem.

To summarize, the main contributions of this paper are as
follows.

• We introduce a novel interval-based image abstraction
technique that over-approximates the set of images from



2

dir:

control input:

control inputs:

dirs:

Neural
Network

Camera

3D Scene

post regs:

post pos:

init pos:

init reg:

image:

Controller

interval image:

Vehicle

d

u

U

D

C N

E
p

p′

A

Dynamics
ṡ = u

Fig. 1. Camera-Based autonomous system

Safe Trajectory Segment

(a) Trajectories and partial abstraction
tree

R0

(b) Spurious collision check

Fig. 2. Overview of our approach

a given region using real camera renderings in 3D
environments.

• We develop a safety verification algorithm for camera
based linear dynamical systems with neural network
controller, which checks safety of all paths from the given
initial region to the target region.

• We implemented our approach in a tool and demonstrate
the scalability of our approach by applying it to large
and complex environments and show that the over-
approximation in interval image computation does not
significantly impact precision.

II. OVERVIEW

In this section we give a high-level overview of the problem
and our approach to solving it. We are given a model of
a camera-based autonomous vehicle as shown in Fig. 1. The
vehicle comprises a single front-facing camera, a neural network
that classifies the images captured by the camera, and a
controller that converts this classification to a control input to
the dynamics of the vehicle. The vehicle runs in a synthetic
environment modelled by a CG-style 3D-scene, comprising
multiple objects, each represented by a set of triangular facets.

Starting from an initial position p in the environment, the
vehicle traces a trajectory as follows. Its camera first captures
an image of the environment; this is fed to the neural network
which classifies the image and outputs one of a finite set of
directions (say go “left”, “straight”, or “right”). The controller
component takes the direction and converts it to a control input
u, representing velocities in the x, y, and z-directions, to the
vehicle dynamics. The vehicle then moves with this velocity
for a fixed sampling period (say 33 ms) to reach a new position
p′. This cycle keeps repeating.

We say a trajectory of the vehicle is “safe” if it reaches a
specified target region without colliding with an object on its
way. Collision with an object occurs if the trajectory intersects
one of the triangle faces of the object. Fig. 2(a) depicts two
trajectories: a blue one which is safe and a red one which is
unsafe. The problem at hand is to check for a given 3D-scene
with an initial and target region (specified as cubic regions in
the scene), whether all the vehicle’s trajectories from the initial
region reach the target region safely.

Our proposed approach involves abstractly interpreting the
system, starting with a region of positions. If the blue labels
on the edges connecting the components in Fig. 1 represent the
concrete interpretation of the system, the red labels represent the
abstract interpretation of the system. We begin by interpreting
the camera with the initial region. This gives us a set of
possible images taken from different points in the region, which
we represent conservatively as an interval image. Instead of
RGB values associated with pixels in a standard image, an
interval image associates intervals of RGB values with each
pixel. Next the neural network is interpreted with this interval
image using existing techniques like [35], [41], to obtain a
set of potential directions. Finally, using these directions and
the vehicle dynamics, we obtain a set of post regions that
overapproximate the set of positions the vehicle can be in after
one cycle of the system.

Fig. 2(a) shows a partial “abstraction tree” that we obtain by
interpreting the system in this way. The tree is drawn from left
to right, with the root at the leftmost end, and the left and right
children towards the top and bottom respectively. Each rooted
path in the tree, showing successive regions and their sweep
along the way, represents (conservatively) trajectories of the
system that follow this sequence of directions. If all the leaves
of this tree are contained in the target region, and none of its
paths intersect a triangle from the scene, we can declare the
system to be safe in the given environment. However, if there
is path which intersects a triangle, like the top path (shown in
red) in Fig. 2(a), it might be spurious in that there is no actual
trajectory along that path that intersects the triangle.

To check whether a colliding path is spurious or not, we
need to refine the path. We could do this by first “retracting”
the triangle along the path to obtain a “source” volume R0 in
the initial cube (see Fig. 2(b)), and then using the technique of
[17] to decompose it into “invariant regions” (portions of the
volume from where the camera captures identical images), and
propagating (and in turn decomposing) the regions that follow
the path. However this approach fails for complex scenes, due to
the prohibitive cost of invariant region decomposition. Instead,
we propose a refinement technique based on interval images
as follows. We compute the interval image corresponding to
R0 and check the directions given by the neural network on it.
If there is no direction along the path, we discard the region
(and in this case declare the path to be spurious); if there is
only a single direction and this direction is along the path,
we compute its post and recursively examine the post region;
and if there are multiple directions, one of which is along the
path, we subdivide R0 into smaller regions, and repeat the
process on each of them. If the sweep of any of the propagated
regions intersects the triangle, we declare the colliding path to



3

be valid; and if all regions are eventually discarded, we declare
the path to be spurious. Fig. 2(b) illustrates this, showing that
we find a fragment that reaches the triangle, thereby declaring
the collision valid.

III. PRELIMINARIES

We use R and R≥0 to denote the set of reals and non-negative
reals with ∞. We use B to denote the set of byte-sized non-
negative integers in the range 0–255. We will be dealing with
closed intervals (of reals or integers) of the form [l, r] with
l ≤ r. For intervals [l, r] and [l′, r′], we define [l, r] < [l′, r′]
iff r < l′ (and similarly for ≤), and their union [l, r] ∪ [l′, r′]
to be the interval [min(l, l′),max(r, r′)].

For an m × n matrix M and a ∈ [0 . . .m − 1] and b ∈
[0 . . . n−1], we denote the (a, b)-th element of M by M(a, b).
For m × n matrices M and N , we write M ≤ N to denote
the fact that M(a, b) ≤ N(a, b) for each a ∈ [0 . . .m− 1] and
b ∈ [0 . . . n− 1].

Given a triangle t = (v0, v1, v2) in two dimensions, with
v0 = (x0, y0), v1 = (x1, y1), and v2 = (x2, y2), real-valued
attributes r0, r1, r2 at v0, v1, v2 respectively, and a point p =
(x, y) within t, the barycentric interpolation of the vertex
attributes of t at the point p, denoted ipol(t, r0, r1, r2, p), is
defined to be b0r0 + b1r1 + b2r2, where

b0 =
area(v1, v2, p)

area(v0, v1, v2)
, b1 =

area(v0, v2, p)

area(v0, v1, v2)
,

b2 =
area(v0, v1, p)

area(v0, v1, v2)
,

are the barycentric coordinates of p. The interpolation operation
can be seen to be “convex” in the following sense: If d0, d1,
and d2 are R≥0-valued attributes of the vertices of triangle
t, with d0 ∈ [l0, u0], d1 ∈ [l1, u1], and d2 ∈ [l2, u2], then for
any point p in t, we have ipol(t, d0, d1, d2, p) ∈ [l, u], where
l = ipol(t, l0, l1, l2, p) and u = ipol(t, u0, u1, u2, p).

IV. BACKGROUND

We recall some background material and the scene safety
problem for a camera-based autonomous vehicle in a synthetic
3D environmment, introduced in [17].

a) 3D-Scenes: We follow standard CG modelling and
rendering of 3D-scenes (see e.g. [31]). A 3D-scene is made
up of a set of triangles, with each triangle represented by its
three vertices in a 3-dimensional world coordinate system. The
world space is usually represented by a right-handed coordinate
system, where the x, y, and z axes are positive in the right,
upward, and backward directions respectively. Additionally,
each vertex has an associated colour represented by three
numbers between 0 to 255, corresponding to components of
red, green, and blue colour channels. Formally, a 3D-scene is
a tuple E = (V, vcol , T ), where V is a finite non-empty set of
vertices in world space, vcol : V → B3 is a map that assigns an
RGB value to each vertex, and T is a finite non-empty list of
triangles built from vertices in V . We assume that vcol induces
maps Rvcol , Gvcol , Bvcol : V → B representing, respectively,
the red, green and blue colours assigned to a vertex.

film

notional canvas
aperture

object ch

cw

l

Fig. 3. Camera model

v01 v02

v2

v0

v1

(a) Clipping triangle
(v0, v1, v2)

t

t′′

(b) Rendering a triangle on an
8×8 canvas

Fig. 4. Clipping and Rendering

b) Camera Model, Images, and Rendering: We use a
simple pinhole-camera based model popularly used in CG, as
shown in Fig. 3. A camera model C is specified by components
(l , cw , ch, cwp, chp) where l is the focal length of the camera
(in m); cw and ch are the canvas width and height, respectively
(in m); and cwp and chp are the canvas width and height in
pixels. We fix a camera model C = (l , cw , ch, cwp, chp) for
the paper.

An image captured by the camera C is a chp×cwp grid of
pixels with associated RGB values. More precisely, a C-image
is a triple I = (R,G,B), where R, G and B are chp×cwp
matrices over B. We will denote the components of an image
I by RI , GI and BI , respectively.

To describe the way images are rendered, it will be
convenient to consider images with depth information that
captures the distance to the object contributing to the pixel
value. Towards this, we define a C-depth-image J to be a tuple
(R,G,B,D) where D is an additional chp×cwp matrix of
R≥0 values.

Given a 3D-scene E, a camera model C and a camera position
p in world space, we denote the image of E captured by C
from position p, by imgC(E, p). We assume that the camera
axis points in a fixed direction, namely, the negative z-axis
of world space. The image I = imgC(E, p) is obtained as
follows:

1) First eliminate all triangles from E that do not intersect
with the viewing frustum of the camera. The viewing
frustum of the camera is the unbounded rectangular
pyramid defined by the camera position p as its origin
and the notional canvas of the camera placed at a distance
l from p (see Fig. 4(a)).

2) Replace triangles that partially intersect with the viewing
frustum, by a new set E′ of “clipped” triangles that
are fully within the frustum. In Fig. 4(a), the triangle



4

(v0, v1, v2) is replaced by the triangle (v0, v01, v02). The
colours of the new vertices are obtained by interpolation
from the colours of the vertices of the original triangle.

3) For each triangle t = (v0, v1, v2) in E′ compute a depth-
image Jt as follows:

• Find the projection t′ of t onto the canvas.
• Consider the “corner-point” triangle t′′ =
(v′′0 , v

′′
1 , v

′′
2 ) formed by taking the top-left corners

of the pixels containing the vertices of t′.
• For each pixel (a, b) whose center ca,b falls within

the triangle t′′:

– Set RJt
(a, b) = ipol(t′′, Rvcol(v0), Rvcol(v1),

Rvcol(v2), ca,b). And similarly for G and B.
– Set DJt

(a, b) = ipol(t′′, d0, d1, d2, ca,b), where
d0, d1, d2 are the depths (distances from p along
the z-axis) of v0, v1, v2 respectively.

For pixels (a, b) whose centers lie outside t′′, set
RJt

(a, b) to be the background colour bgred (and
similarly for G and B), and the depth DJt

(a, b) =
∞. Fig. 4(b) shows a triangle t, its corner-point
projection t′′ on the canvas, and the colours assigned
to the pixels, assuming the vertices of t are coloured
green and the background colour is white.

4) For each pixel (a, b):

• Find the triangle t such that DJt
(a, b) has the small-

est value (break ties in favour of earlier occurrence
in the list of triangles T ).

• Set RI(a, b) = RJt(a, b) (and similarly for G and
B).

c) Camera-based Autonomous Vehicles: Following [17],
we model a camera-based autonomous vehicle in a given
3D-scene as a simple closed-loop continuous-time sampled
control system (see Fig. 1). At the beginning of a sample
period τ , the vehicle, with camera mounted on it in a fixed
orientation along the negative z-axis, is at a certain position
s in world space. Let I = imgC(E, s). The image is fed to
the perception module, a neural network N , which outputs the
vehicle direction dir = fN (I). This is then fed to a controller
(represented by a linear transformation A), which provides the
control input u = fA(dir) = A · dir to be fed to the vehicle
dynamics ṡ = u. The vehicle’s state at the end of sample
period τ is then updated to be s+ τ ·u. We will represent state
update based on the direction due to the control and dynamics
by fA

VC , with fA
VC (s, dir) = s + τ · fA(dir). Note that the

states traversed in that interval [0, τ ] is the convex hull of s
and fA

VC (s, dir), which we denote by CHull(s, fA
VC (s, dir)).

Definition 1. A (camera-based) autonomous vehicle V of
dimension (k, l) is a tuple of the form V = (C,N , A) where

• C = (fl , cw , ch, cwp, chp) is a camera model, with k =
cwp · chp · 3,

• N is a neural network with input and output layers of
dimension k and l resp., with fN representing its input-
output function,

• A is a 3× l matrix which models the controller, with fA
VC

being the induced map from directions to state updates.

A trajectory of vehicle V in a given 3D-scene E start-
ing from Init ⊆ R3 is a sequence of states σ =
s0, s1, . . ., where s0 ∈ Init and for each i ∈ N, si+1 =
fA
VC (si, fN (imgC(E, si))). A trajectory σ of V in a scene E

is safe w.r.t. a target region Tgt ⊆ R3 if there exists i ∈ N
such that si ∈ Tgt , and for all 0 ≤ j < i, CHull(sj , sj+1)
does not intersect any triangle in E.

For a vehicle V , a convex set of states M , and a direction
dir, we define

Post(M,V, dir) = {fA
VC (s, dir) | s ∈ M} and

Post(M,V, dir) = CHull(M,Post(M,V, dir)).

d) Invariant Regions: An invariant region in a given
3D-scene, w.r.t. a camera model C [17], is a 3D-region
in world space where images captured by the camera are
indistinguishable: i.e. all images from points in this region
have identical RGB values for each pixel. As shown in [17],
invariant regions can be represented as logical constraints on
the coordinates of the camera viewing point p.

e) Scene Safety Problem: The scene safety verification
problem for a camera-based autonomous vehicle in a given
3D-scene, is the following: Given an autonomous vehicle V , a
3D-scene E, an initial region Init , and a target region Tgt ; are
all trajectories of V in E starting from Init safe w.r.t. Tgt?
Following [17], we assume that the initial region Init is a
convex polyhedral region, the target region Tgt is specified
as the region beyond an unbounded plane parallel to the xy-
plane, and that in each sample period the vehicle makes a
minimum progress in the negative z-direction. We also assume
that the neural network N classifies images into a finite set of
directions.

V. INTERVAL IMAGES

In this section we introduce our interval image abstraction.
An interval image stores an interval of RGB values for each
pixel on the canvas. It thus represents a set of images, obtained
by essentially taking the cartesian product of the intervals.

More formally, let C be a camera model. Then a C-interval
image is a tuple I = (R,G,B) where R,G and B are chp×cwp
matrices whose entries are B-intervals. An interval image I =
(R,G,B) represents a set of “concrete” chp× cwp images
γ(I) = {I | RI ∈ R, GI ∈ G, BI ∈ B}. Here we use the
notation RI ∈ R to mean that for each (a, b), RI(a, b) ∈
R(a, b). Conversely, given a non-empty set X of images, we
can define the (canonical) interval image abstraction of X ,
denoted α0(X), to be the interval image I = (R,G,B) where
for each (a, b), R(a, b) = [l, u] where l = min{RI(a, b) | I ∈
X} and u = max{RI(a, b) | I ∈ X} (and similarly for G
and B). It is easy to see that for any non-empty set of images
X , X ⊆ γ(α0(X)). We will consider other interval image
abstractions α that associate an interval image α(X) with a set
of non-empty images X . We say an interval image abstraction
α is sound, if for every non-empty set of images X , we have
X ⊆ γ(α(X)). The terminology and notations used here are
based on theory of abstract interpretation for programs [7]. .

For a non-empty set of interval images X we define their
union to be the interval image I, where for each pixel (a, b),



5

RI(a, b) is obtained by taking the union of the intervals
RI′(a, b) for each I ′ ∈ X (and similarly for GI and BI).

Once again, it will be useful to define the interval analogue
of depth-images, for the purpose of computing interval images.
An interval depth-image is a tuple J = (R,G,B,D), where R,
G, and B are as in interval images, and D is chp×cwp matrix of
R≥0 intervals. Such an interval depth-image J represents a set
of depth-images γ(J ), defined in the expected way, where in
particular, for J to be in γ(J ) we require DJ(a, b) ∈ D(a, b)
for each pixel (a, b). We define the union of a set of interval
depth-images in the expected manner.

A. Computing Interval Images

We now describe our technique to efficiently compute an
interval image corresponding to a given convex region reg in an
environment E. We consider a couple of techniques leading up
to our proposed technique. The techniques we use are sound (in
that the concretization of the interval image computed contains
all the images seen from reg), but vary in precision (i.e. how
close the concretization is to the actual set of images seen
from reg).

The first idea is to compute the set X of all possible images
from the region reg , and then take their canonical interval
image abstraction (i.e. αo(X)). While this is the most precise
we can get, it is not very scalable. As demonstrated in [17],
computing all possible images in a region is infeasible when
the number of triangles in the environment is large.

The second idea is to first compute interval images It
corresponding to each triangle t in E. The interval image
It is computed as α0(Xt) where Xt is the set of images of
triangle t seen from reg . The set Xt can be computed using
invariant regions w.r.t. t using the technique of [17]. From each
of these invariant regions, the triangle t has a unique image,
which lets us compute Xt. The interval image I corresponding
to the region is now computed by taking the interval union of
the interval images It for each triangle t in the scene E.

The interval image computed this way is not very precise,
as it takes the union of pixel intervals without considering
the depth of points on the triangle contributing the pixel. In
rendering, if two triangles map to the same pixel, the pixel’s
colour is determined by the depth of the corresponding point on
the triangles. The nearest triangle “wins,” and only its colours
contribute to the pixel’s colour. A depth-based union provides a
more precise interval image that mirrors the classical rendering
process.

With this in mind we propose a technique to compute an
interval image, as described below. We call the interval image
thus computed, IntervalImage(E, reg).

1) For each triangle t = (v0, v1, v2) in E, with vi =
(xi, yi, zi), compute an interval depth-image Jt as fol-
lows. Let I1, . . . , Ik be the images of t seen from reg ,
and let r1, . . . , rk be the corresponding invariant regions
in reg . Let t′′l be the projected corner-point triangle
corresponding to the image Il of t. In general t′′l could
be a polygon (due to possible clipping), but for simplicity
let us call it a triangle. We note that the relative position
of t within the camera viewing frustum (i.e. whether it is

fully within the frustum or an edge intersects a plane of
the frustum), and the projected corner-point triangle, does
not change if we move the camera position anywhere
within the invariant region rl.

a) For each image Il, l ∈ {1, . . . , k}, compute interval
depth-image Jl as:
i) If t is fully within the frustum from points in

rl, let

l0 = inf{zp − z0 | zp ∈ rl}, and
u0 = sup{zp − z0 | zp ∈ rl},

and similarly define l1, u1 corresponding to v1,
and l2, u2 corresponding to v2. For each pixel
(a, b) such that ca,b lies within t′′l , set

RJl
(a, b) = (Rvcol(v0), Rvcol(v0))

(and similarly for G and B),
DJl

(a, b) = (l, u), where
l = ipol(t, l0, l1, l2, ca,b) and
u = ipol(t, u0, u1, u2, ca,b).

For all other pixels, set RJl
(a, b) =

[bgred , bgred ] (and similary for G and B) and
DJl

(a, b) = [∞,∞].
ii) If t is not fully within the frustum, say v0 is

inside while v1 and v2 are outside the frustum,
as shown in Fig. 4(a). Here t′′l = (v0, v01, v02)
is the projected corner-point triangle correspond-
ing to t. Let V01 and V02 be the sets of points
of intersection of edges (v0, v1) and (v0, v2)
with the top plane of the frustum from different
positions in rl. Let

l01=inf{zp−z01 | zp∈rl, (x01, y01, z01) ∈ V01},
u01=sup{zp−z01 | zp∈rl, (x01, y01, z01)∈V01},

and similarly define l02, u02 corresponding to
v02, and l0, u0 corresponding to v0. For each
pixel (a, b) s.t. ca,b lies within t′′l , set

RJl
(a, b) = (Rvcol(v0), Rvcol(v0))

(and similarly for G and B),
DJl

(a, b) = (l, u),where
l = ipol(t, l0, l01, l02, ca,b) and
u = ipol(t, u0, u01, u02, ca,b).

For all other pixels, set RJl
(a, b) =

[bgred , bgred ] (and similary for G and B) and
DJl

(a, b) = [∞,∞].
b) Set Jt to be the union of the interval depth-images

Jl for l ∈ {1, . . . , k}.
2) Compute the interval image I by taking the “depth-union”

of the depth-interval images Jt, as follows. For each
pixel (a, b):

a) Let ua,b be the minimum value of the right interval
bound of DJt

(a, b) over triangles t in E.
b) Let S = {t ∈ E | DJt

(a, b) = (l, u) with l ≤
ua,b}.

c) Set RI(a, b) =
S

t∈S RJt(a, b) (and similarly for
G and B).



6

J t
2J t

1 J t
3 J t

4

Ju
1 Ju

2

Jt

Ju

I

Fig. 5. Illustrating computation of interval image I

t

u

reg

To illustrate our interval image computation,
consider a 3D-scene comprising just two trian-
gles: a red one t and a green one u; and a region
reg from where we need to compute the interval
image, as shown in the figure alongside. Let us
say our camera has a canvas of 10×10 pixels,
with pixels (0, 0) and (9, 9) located in the top-
left and bottom-right corners respectively. The
idea is basically to compute the interval depth-
images for t and u separately, and then take their depth-union.

To compute the interval depth-image for triangle t, we first
compute all the images of t that can be seen from reg . Let us
say there are four such images, shown in Fig. 5 as J t

1 ,J t
2 ,J t

3

and J t
4 . This means that reg can be decomposed into four

invariant regions r1, r2, r3, and r4, representing the volumes
in reg from where the camera captures exactly these respective
images. However, the depth associated with each pixel (say in
J1), which is essentially the distance from the center of the
pixel to t in the z-direction, may vary depending on different
positions in the region r1. Hence we represent the images as
interval depth-images with an interval of depths associated
with each pixel. Let us focus on the pixels (6, 3) and (8, 3).
Table I shows the values of the different interval depth-images
for these two pixels. We assume here that the background
colour is white, with RGB value (255,255,255).

We now take the union of these interval depth-images, to
obtain the interval depth-image Jt corresponding to triangle
t. The image Jt is depicted in Fig. 5 by showing each pixel
split into multiple colours corresponding to the colour intervals
associated with the pixel. Thus, pixel (6, 3) gets the RGB
intervals [255, 255], [0, 0], [0, 0] since the pixel is coloured red
in all the four images. It also gets the depth-interval [10, 10.5]
as the union of the depths associated with the pixel across
the four images. One the other hand, the pixel (8, 3) gets
the RGB intervals [255, 255], [0, 255], [0, 255], since the pixel
takes colour red in some images and white (background) in
others. Its depth interval is [10,∞] for a similar reason. In a
similar way, assuming two images J u

1 and J u
2 for triangle u,

as shown in Fig. 5, we obtain the interval depth-image Ju for

it.
Finally, we take the depth-based union of these two images,

to obtain the interval image I as shown in Fig. 5. If we
consider pixel (6, 3), the depth interval from Jt is [10, 10.5],
and the depth interval from Ju is [20,∞]. Therefore, in the
final interval image I, this pixel has only the colour intervals
from Jt. On the other hand, for pixel (8, 3), the depth intervals
are [10,∞] and [20,∞] in Jt and Ju respectively. Therefore,
in the final interval image this pixel contains the union of the
colour intervals from both interval images, displayed as red,
white, and green in the figure.

The following claim asserts the soundness of our interval
image construction:

Theorem 1. Procedure IntervalImage is sound (i.e. for every
environment E and region reg , if X is the set of images seen
from the region reg in the environment E, and I is the interval
image IntervalImage(E, reg), then X ⊆ γ(I).

Proof. Let I be an image seen from a point p in reg , and let
r be its invariant region in reg . Consider an arbitrary pixel
(a, b). Its colour in I (i.e. RI(a, b), GI(a, b) and BI(a, b))
must be contributed by a triangle t = (v0, v1, v2) in E, and its
interpolated depth, say d, at ca,b must be the least among all
triangles in E.

Subclaim: We now claim that RI(a, b) ∈ RJt
(a, b) (and

similarly for B and G), and d ∈ DJt
(a, b). For convenience, let

us assume t was fully contained in the camera viewing frustum
at p. The colour RI(a, b) would definitely belong to RJI

(a, b),
and hence also to RJt

(a, b). For the depth claim, let d0, d1, d2
be the depths of the vertices of t from p. Then d0, d1, d2
would belong to the depth intervals computed for v0, v1, v2
respectively. By the convexity property of the interpolation
function, it follows that d will belong to the interpolated
intervals for (a, b) in Jt. (End of subclaim.)

Now the only way DJt(a, b) would not be included in
DI(a, b) is if there was some other triangle t′ such that the
interval DJt′ (a, b) ends before DJt

(a, b) begins. But triangle
t′ must have a depth d′ ≥ d w.r.t. the pixel (a, b) from p, and
since d′ ∈ DJt′ (a, b), this cannot happen. This completes the
proof of the claim.

B. Interpretation of DNNs on Interval Images
A neural network can be viewed as a mathematical function

that takes an input vector, such as an image, and produces
a set of output values. The network learns to compute this
function by adjusting the weights and biases of its neurons
during the training process. In the context of our system model,
the neural network takes an image seen from the vehicle’s
current position as input, and produces an output direction
for the vehicle to follow. Each pixel in the input image is
represented by three input nodes in the neural network, one for
each colour channel (red, green, and blue). The output layer
of the network produces a single value for each output node.
Each output node corresponds to a particular direction. The
output node with the maximum value is taken to be the output
direction.

In our setting, we aim to interpret a neural network on
an interval image. An interval image represents all possible



7

TABLE I
VALUES FOR PIXELS (6, 3) AND (8, 3) IN EXAMPLE INTERVAL IMAGES

(6,3) J t
1 J t

2 J t
3 J t

4 Jt J u
1 J u

2 Ju I
R [255,255] [255,255] [255,255] [255,255] [255,255] [255,255] [0,0] [0,255] [255,255]
G [0,0] [0,0] [0,0] [0,0] [0,0] [255,255] [255,255] [255,255] [0,0]
B [0,0] [0,0] [0,0] [0,0] [0,0] [255,255] [0,0] [0,255] [0,0]
D [10,10.5] [10,10.3] [10,10.5] [10,10.3] [10,10.5] [∞,∞] [20,20.5] [20,∞]

(8,3) J t
1 J t

2 J t
3 J t

4 Jt J u
1 J u

2 Ju I
R [255,255] [255,255] [255,255] [255,255] [255,255] [0,0] [255,255] [0,255] [0,255]
G [0,0] [0,0] [255,255] [255,255] [0,255] [255,255] [255,255] [255,255] [0,255]
B [0,0] [0,0] [255,255] [255,255] [0,255] [0,0] [255,255] [0,255] [0,255]
D [10,10.5] [10,10.3] [∞,∞] [∞,∞] [10,∞] [20,20.5] [∞,∞] [20,∞]

images for a given region. Our objective is to obtain all the
neural network outputs that might arise from a concrete input
image induced by the interval image. To achieve this, we
utilize the alpha-beta-CROWN tool [42], [41], which is a neural
network verifier based on an efficient linear bound propagation
framework and branch and bound techniques. This tool is a
complete verifier for neural networks, providing “Yes” or “No”
answers for whether there exists an input contained in the input
interval on which the output nodes of the given neural network
satisfy a given relation. In our setting, we query the tool for
each possible output of the neural network to determine if there
exists any input in the given input interval image that could
produce the specific output. The collection of all such outputs
constitutes the set of outputs of the given input interval image.

In the next section we show how to put together interval
images and the abstract interpretation of a DNN on them,
towards a solution to the scene safety problem.

VI. ABSTRACTION-REFINEMENT ALGORITHM

This section presents our decision procedure based on
interval images for the scene safety problem for an autonomous
vehicle V operating in a 3D-scene E, with initial region Init
and target region Tgt .

We first compute an interval image of the initial region
using our interval image computation technique explained in
the previous section. Next, we interpret the neural network
on this interval image using alpha-beta-CROWN, to obtain
the possible outputs for the interval image. We then use the
vehicle dynamics to compute the post region based on the neural
network outputs. We propagate a region fully in each direction
provided by the neural network and check for collisions along
the path from the region to the post region. If there is no
collision and the post region is not fully in the target region,
the process repeats. In case of a collision, we check whether
the collision is valid or not using our collision refinement
procedure, as defined in algorithm 2. If the collision is valid,
we stop and return “Unsafe”. If the algorithm has no more
regions remaining to explore, it stops and returns “Safe”.

The algorithm CheckSafetyII given in Algorithm 1 outlines
the safety check procedure. It takes as input the vehicle
dynamics V , an environment E, an initial region Init , and
a target region Tgt , returning “Safe” if all trajectories of V
starting from Init in E are safe, and “Unsafe” otherwise.
The algorithm essentially builds an exploration tree T in an
incremental manner. It begins by initializing the tree with a
single node containing the initial region Init . It then executes

Algorithm 1 CheckSafetyII (V ,E , Init ,Tgt)

Require: Vehicle V , environment E, initial region Init , target region
Tgt .

Ensure: Returns “Safe” iff all trajectories of V in E are safe, else
“Unsafe”

1: Initialize tree T with root node containing Init .
2: while Exists a leaf node M in T which is not contained in Tgt

do
3: I = IntervalImage(E,M)
4: D = alpha-beta-CROWN(I)
5: for each dir ∈ D do
6: Let N = Post(M,V, dir)
7: Add node N and edge (M,dir,N) to T
8: for each dir ∈ D do
9: Let N = Post(M,V, dir)

10: for each triangle t ∈ E do
11: if CheckCollision(M,N, t) then
12: R = Post(t, V, dir) ∩N
13: if CheckReach(T , R,N) then return “Unsafe”
14: return “Safe”

lines 2 to 13 continuously until there is no leaf node in T that
is not contained in Tgt .

In each step the algorithm takes a leaf node M from T
which is not contained in Tgt and computes its interval image
I using the IntervalImage(E,M) procedure. It then applies
the alpha-beta-CROWN tool on I to obtain the set of possible
output directions D for the vehicle. Next, for each direction
dir ∈ D, the algorithm computes the post region N of M
using the function Post(M,V, dir). This function computes
the post region N of M by transforming M in the direction
dir , based on the vehicle V ’s dynamics. The newly computed
region N is added to T , along with an edge from M to N
in direction dir . Then, for each triangle t ∈ E, we check
for collisions with the path segment M,N using the function
CheckCollision(M,N, t). This function computes a convex
hull of the regions M and N , and checks for intersection with
t.

If the collision check returns true for a particular triangle t, it
could be spurious on account of overapproximations due to both
the interval image computation and the abstract interpretation
of the neural network. Therefore, we need to check whether
this is a valid collision or not. We initially compute the set of
points R in N that can be reached from t ∩ CHull(M,N) by
following the direction dir by intersecting Post(t, V, dir) with
N . Then algorithm calls the function CheckReach(T , R,N),
described in Algorithm 2, to verify the validity of the collision.
If CheckReach returns true, the algorithm returns “Unsafe”.



8

The algorithm returns “Safe” if all collisions (if any) are found
to be spurious.

The CheckReach procedure (see Algorithm 2) utilizes a
helper function Decompose . Given a region R and a direction
dir , the Decompose procedure computes a decomposition of
R into sets of disjoint subregions U and V , such that U has
regions R′ for which the abstract-DNN output is exactly {dir},
and V has regions R′′ for which the abstract-DNN output
does not contain dir . One way to compute such a (U ,V) is to
partition R into invariant regions using the technique in [17],
and collect invariant regions whose corresponding images have
DNN output d in U , and the rest into V . However this approach
suffers from scalability issues. Instead, we first try to refine
R and obtain a decomposition using interval images and the
abstract interpretation of the DNN, as follows. We first compute
an axis-parallel cube-hull of R, dividing it into n3 uniform
cubes (for a suitable choice of n), and retain the non-empty
intersections of the cubes with R. Then compute the interval
images from these regions and compute the abstract-DNN
outputs on the images. Collect all the regions with abstract-
DNN outputs {dir} into U , discard those regions with abstract-
DNN outputs disjoint from {dir}, and keep the remaining into
another set of regions V . Now repeat the process with each
region in V , collecting those with output direction dir into
U and discarding those disjoint from direction dir . After k
iterations (for a suitable k) if V is still non-empty, we fall back
on the invariant region decomposition of the regions in V to
collect those with direction {dir} into U .

Algorithm 2 CheckReach(T , R,N)

Require: Partial Abstract Tree T , region R in node N of T .
Ensure: Returns True iff R is reachable by a concrete execution

along path to N .
1: Let p be the path from root to N in T .
2: if (No branching ancestor of N in T ) then return True

3: Let M be youngest branching ancestor of N in T .
4: Let R′ be the retraction of R along p to M , and dir be direction

from M along p.
5: Let I = IntervalImage(E,R) and D =

alpha-beta-CROWN(I)
6: if (D = {dir}) then
7: U = {R′}
8: else
9: U = Decompose(R′, dir)

10: if U is empty then
11: return False
12: else
13: return

W
R′′∈U CheckReach(T , R′′,M)

We now explain the main steps of our algorithm via a
schematic example illustrated in Fig. 6. Let our initial region
be R1. Let us say the abstract-DNN output for the interval
image for region R1 is determined to be “straight”. We compute
the post region corresponding to R1 in the direction “straight”
as R2. Similarly, the abstract-DNN output for region R2 is also
found to be “straight”, leading to the region R3. Let us say
region R3 has two abstract-DNN outputs, namely “right” and
“left”, with corresponding post regions being R4 and R5. Let
us say we prioritize region R5 for further exploration, reaching
the region R6 with a “straight” abstract-DNN output. Now a

R2

s s

s

R1

R7

R4

t

R3

R5l

r

R6
s

(a) Collision with triangle t

R2

s s

R1 R3

R5 R6 R7

R4

l

r

s
s

R

(b) Retraction to R

R2

s s

R1 R3

R5 R7

R4

l

r

s

R6
s

(c) Refinement

Fig. 6. Illustrating the CheckReach Procedure.

collision with a triangle is detected in the path segment R6-R7,
as depicted in Fig. 6(a).

To determine the validity of the collision, we first project
the obstacle triangle onto R7, represented by the cyan-colored
triangular region in Fig. 6(b), and call CheckReach on it. The
procedure first checks whether R7 has a branching ancestor.
If it doesn’t, CheckReach returns true , and we declare the
collision along the path segment R6-R7 as valid because the
collided object is reachable from the initial region. But since
R7 does have a branching ancestor (namely R3), we retract
the collision region from R7 up to R3. Let us call the retracted
region R, as shown in Fig. 6(b). Next we compute an interval
image I for R, and let us say the abstract-DNN outputs on
I are “left” and “right”. Then we call Decompose(R, left) to
decompose the region R along the “left” direction. Let us say
the decomposition gives us a single region, shown coloured
blue in Fig. 6(c). We recursively check reachability of this blue
region using CheckReach . However, now since the region has
no branching ancestors in the tree, CheckReach returns true ,
and we declare the collision as valid, and the algorithm returns
“Unsafe”.

We can now state:

Theorem 2. The CheckSafetyII algorithm is sound and com-
plete: it returns “Safe” iff all trajectories of V in E starting
from Init are safe.

Proof. Let T ′ be the complete “abstraction tree” corresponding
to V,E, Init ,Tgt and the sound DNN abstract interpreter
alpha-beta-CROWN, whose set of nodes correspond to the



9

set of regions obtained by starting with the initial region
Init and taking its closure under 1-step posts for each of
the directions given by alpha-beta-CROWN on the interval
images corresponding to each region. A region R is added to
the tree only if its parent is not fully contained in the target
region Tgt . An edge (M,N) in T ′ is labelled by a direction
d if N was obtained by taking the post of M in the direction
d.

Given the assumptions of the problem, T ′ must be a finite
tree. Further, every execution π of V in E, must lie along a
path p in T ′ (given by the sequence of directions along π).
This follows by the soundness of both the interval image
computation and alpha-beta-CROWN. The CheckSafetyII
algo essentially explores this tree T ′, looking for collisions
with obstacles along each edge.

We first assume the termination and correctness of the
subroutine CheckReach , and argue termination and correctness
of CheckSafetyII . Termination of CheckSafetyII immediately
follows from the fact that T ′ is finite and that CheckReach
always terminates.

For correctness in one direction, suppose the given system
has an unsafe trajectory π, and t is the first triangle in E that
it collides with. Let p be the T ′-path corresponding to π. Then
π must lie along this path in T ′, with the collision with t
happening from node M to N along direction d. Then the
algo will eventually check for collisions from M to N with t,
and take its projection R to N , and check for reachability of
R using CheckReach . Since R is reachable (via a execution
that extends π), CheckReach must return True , and our algo
will return “Unsafe”.

Conversely, if the algo returns “Unsafe”, it must have
encountered such nodes M and N , a direction d, a triangle t
in E with projection R in N , and CheckReach says that R
is reachable along the path to N . Again, by correctness of
CheckReach , there must be an execution (along p) that reaches
R, and hence must collide with t.

We now argue the correctness of CheckReach . We assume
the termination and correctness of the procedure Decompose ,
which follows from the correctness of our interval image
computation (Thm. 1), the DNN abstract interpreter, and the
invariant region computation of [17]. Suppose CheckReach is
called on a partial abstract tree T and a region R in a node
N of T . Let p be the sequence of directions along the root
to N path in T . We argue by induction on the depth of N
in T , that the procedure terminates and outputs True iff R
is reachable via an execution along p. For the base case, N
is the root node (whose associated region is the initial region
I). In this case CheckReach will return True since N has no
branching ancestors in T . This is correct since the whole of
N (and hence R) is indeed reachable.

For the inductive step let N be at a level k+1 from the root.
The procedure clearly terminates on a call at this level, by the
termination of Decompose and the inductive assumption. Let
us say R is reachable along p via an execution π. If N has no
branching ancestors the algorithm will return True and we are
done. Else, let M be the youngest branching ancestor of N ,
and let U be returned by Decompose on the retraction R′ of
R to M . Then clearly there must be a region S in U which is

reachable (via π). Since S is in node M which is at a level k or
less in T , by the induction hypothesis CheckReach(T , S,M)
must return True. Hence the call to CheckReach(T , R,N)
will also return True , and we are done. Conversely, suppose
the procedure returns True when called with T , R and N .
Then either N has no branching ancestors (in which case R
is indeed reachable), or it has a youngest branching ancestor
M with a reachable (by induction) region S belonging to U
in the decomposition of the retraction R′ of R to M . But this
implies that R is also reachable (since all points in S reach
R).

VII. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We have implemented our safety checking algorithm in a tool
called CAMVERIF. The tool takes as input the components of
an autonomous vehicle (with the neural network in Open Neural
Network eXchange format), a 3D-scene in Universal Scene
Description (USD) format, and the initial and target regions
as linear constraints on the x, y, z coordinates. We use the Z3
solver [28] for partitioning a region into invariant regions, and
to find solutions to constraints and check satisfiability. The
Parma Polyhedral Library (PPL) [3] is used to generate and
processes constraints representing invariant regions. We use
the alpha-beta-CROWN tool [42], [41] to interpret the neural
network on interval images. The image rendering module is
written in C++, while the rest of the implementation is in
Python. The code, including rendering and interval image
computation for a given region in the environment, is available
at https://github.com/camverif1/camverif 0.001.

We use two case studies involving purely camera-based
controllers, and environments generated using Blender [36].
The first is a road-following quadcopter [30], [17]. The
quadcopter’s camera has a focal length of 35 mm, a canvas
width and height of 0.9872 in and 0.735 in, respectively, and
pixel dimensions of 49×49. The neural network comprises six
layers: three convolutional layers, two fully connected layers,
and an argmax layer.

The second case study is a line-following warehouse robot
that navigates by tracking a yellow marking line on the floor.
Unlike the quadcopter, this vehicle is meant to run in a fixed
premises, though minor variations in terms of placement of
objects are possible. We designed a synthetic 3D-model of a
warehouse and trained a neural network controller on manually
labelled CG images in this scene. The neural network had five
layers: two convolutional layers, two fully connected layers,
and an argmax layer. The camera model and vehicle dynamics
were similar to the quadcopter system.

We created several realistic 3D-environments as shown in
Fig. 7(a) and Fig. 7(b), each containing thousands of edges. For
example, we used Blender-OSM to create the ‘OSM London1’
environment shown in Fig.7(b), obtained from OpenStreetMap.
Factory floor environments are depicted in Fig. 7(c) and
Fig. 7(d), showing two tracks for to-and-fro movement.

We compared the performance of our tool with that of [17]
on all these environments, on a machine with an Intel(R)
Core(TM) i7-8700 3.20 GHz CPU and 64GB RAM. Table III
shows the bottom left corners of the initial regions. The initial



10

(a) PineTree (Pine) (b) OSM London1 (OSM1)

(c) WarehouseEnv4 (Wh4) (d) WarehouseEnv5 (Wh5)

Fig. 7. Images from Different Environments.

region I∗1 is a 3cm cube. The results are summarised in Table II.
The first column in the table is the name of the environment.
The ‘#Edge’ column indicates the number of edges in the
environment. The column titled ‘I’ gives the initial regions
used. The distance to the target region from the initial region in
meters is given in the ‘Tgt’ column. The ‘S?’ column indicates
whether the environment is safe (S) or unsafe (U) with respect
to the given initial region and the target region. A ‘-’ in this
column indicates that we ran these experiments for 20 hours
without finding a valid collision nor proving safety. The time
taken by AirVerif[17] and our tool CAMVERIF is shown in the
next two columns titled ‘Time’. An ‘X’ in a cell in this column
indicates that the tool hangs (usually because of a solver call
that does not return) on this input configuration. The column
titled ‘#SC’ gives the number of spurious collisions detected
and the ‘#Ref’ column gives the number of times we refined
the region before concluding that the collision was spurious,
respectively. The column titled ‘#N’ gives the number of nodes
in the abstract tree, which essentially indicates the number of
times we computed the interval image in the granularity of
the initial region. The ‘#P’ column indicates how many child
nodes of the above tree we were able to prune out (in our case
study, each node can have three child nodes) with the use of
interval images.

Some immediate take-aways from the table are the following.
Of the 15 environments in which both approaches terminate,
AirVerif takes significantly less time than CAMVERIF in 5,
CAMVERIF does significantly better in another 4, while in
the remaining 6 the peformances of the two approaches are
comparable (within 20% of each other). Secondly, AirVerif
does not terminate on 11 of the larger environments (700+
edges), while CAMVERIF completes its verification run on all
of them. For some of the larger environments, CAMVERIF
does take substantial time, but notably never gets stuck. Given
enough time, CAMVERIF will be able to prove the safety of
all environments considered in the experiments.

We present the following insights which explain these results.
The AirVerif algorithm essentially relies on a decomposition of
each reachable region into invariant regions to compute succes-
sors of a region in the tree. On the other hand, CAMVERIF uses
the interval image corresponding to a region to compute its
successors in the tree. Our first observation is that, in general,
computing the invariant region decomposition for a region is
far more expensive than computing an interval image for it. As

a case in point, AirVerif took more than 9h to generate a partial
set of 22 invariant regions for the initial region of the Buildings
(‘Build’) environment, while CAMVERIF generated the interval
image for the initial region in 3m and completed the entire
analysis in 48m 22s. This expense impacts the exploration of
the tree carried out by AirVerif, causing it to time-out on large
environments. Secondly, while the invariant region based tree is
very precise (fewer false positives), a coarser granularity than
invariant regions may often suffice. In the example environment
above, CAMVERIF was able to prove safety with the initial
granularity of 1cm3 itself. CAMVERIF refines the granularity
used on a need basis, refining only to check spuriousness
of a collision. This explains the advantage that CAMVERIF
has in environments like Buildings (‘Build’). Finally, the two
approaches use different abstraction techniques: AirVerif uses a
convex-hull based abstraction, while CAMVERIF uses a cubic
region abstraction. This may explain the incomparable results
on smaller environments.

We can quantify the precision of the interval image
abstraction used as follows. We can see that the interval
image abstraction is fairly precise, in that it leads to several
(immediate) directions being pruned from the top-level abstract
tree. For example, in ‘env1’ the algorithm explored 12 nodes,
and of the 36 possible directions (recall that in our case studies
each node has 3 possible directions/children), 24 were pruned
away despite the interval abstraction. Averaging across all the
environments considered, this gain was a significant 35.63%.
In most cases, the initial level of abstraction was sufficient
to decide the safety. However in some of the environments
(particularly where the target distance was high) our abstraction
needed to be refined to eliminate spurious collisions. The ‘#Ref’
column gives the number of pieces we needed to refine the
initial region into, to be able to rule out spurious collisions (or
find actual collisions). Recall that once a collision is detected,
we project the collision region and generate the interval image
for that region; for many of the unsafe environments, this was
the only refinement that took place. For the safe environments,
the number of pieces is as much as 240 (for ‘env2’ with I1
as initial region). This illustrates that in some cases we need
to refine down to this level to overcome the imprecision in
the initial abstraction. We note that this refinement takes place
purely on a need basis. Overall, the algorithm’s performance
is influenced by several factors, including the number of edges
in the environment, the size of the initial region, the need for
refinement, the number of nodes in the abstract tree, and the
number of child nodes.

VIII. RELATED WORK

We focus on work related to testing and verification of
environment-closed camera/lidar-based NN-controlled systems.

Testing and Simulation. Several works consider the problem
of testing or simulation-based analysis of camera-based systems
in a given 3D-scene, for properties like temporal logic and
STL based specifications [29], [40], [10], or fuzz testing [10].
These works use custom-made scene description languages (like
SDL) or generic scene-modelling tools like Scenic [13], and
analysis tools like S-TaLiRo [2] and dReach [24]. Simulation



11

TABLE II
EXPERIMENTAL RESULTS

AIRVERIF CAMVERIF
Env #Edge I Tgt

(m)
S? Time (s) Time (s) #SC #Ref #N #P

env1 36 I1 10.5 S 178 204 0 0 12 24
env2 39 I1 10.5 S 126 11340 3 240 84 124
env2 39 I∗

1 10.5 U X 3780 1 10 391 161
env2 39 I2 10.5 U 50 72 0 2 3 5
env3 39 I1 10.5 S 95 218 0 0 12 24
env4 66 I1 10.5 S 240 287 0 0 12 24
env5 186 I1 10.5 S 1096 527 0 0 12 24
env6 336 I1 10.5 S 1038 721 0 0 12 24
env7 636 I1 10.5 S 1658 17100 0 0 145 121
env8 786 I1 10.5 S X 4440 0 0 153 126
env9 100 I1 10.5 S 225 362 0 0 12 24
env12 313 I1 10.5 S 2409 7024 0 0 548 220
env13 313 I1 10.5 U 32 58 0 2 3 6
env14 51 I1 10.5 U 50 59 0 2 3 6
env15 57 I1 10.5 U 57 59 0 2 3 6
env16 78 I1 10.5 U 63 84 0 2 3 6
env17 171 I1 10.5 U 170 109 0 2 3 6
Build 5187 I1 6.5 S X 2902 0 0 12 23
Street 7779 I3 6.5 S X 11100 0 0 44 53
Trees 9987 I3 6.5 S X 2334 0 0 9 17
Pine 11091 I3 6.5 S X 3840 0 0 9 18
OSM1 68400 I4 10.5 S X 296700 0 0 403 0
OSM2 95850 I4 10.5 S X 275100 0 0 397 5
Wh1 8844 I5 10.5 S X 4260 0 0 73 45
Wh2 8334 I5 10.5 S X 35580 0 0 185 74
Wh3 23556 I5 10.5 S X 60120 0 0 214 90
Wh4 29496 I5 10.5 S X 77940 0 0 216 84
Wh5 50376 I5 10.5 S X 128220 0 0 218 81

Street 7779 I3 25.5 - X 72000 0 0 550 221
Trees 9987 I3 25.5 - X 72000 4 275 198 15
Pine 11091 I3 25.5 - X 72000 2 513 117 4
Wh4 29496 I6 25.5 - X 72000 2 77 137 64
Wh5 50376 I6 25.5 - X 72000 2 30 140 61

TABLE III
INITIAL REGIONS

Init Bot Left Corner
I1 0.1, 4.45, 194.5
I2 -0.95, 4.45, 194.5
I3 0.1, 4.45, 175.5
I4 0.1, 4.5, 121.5
I5 167, 1.4, 194.5
I6 130, 1.4, 71.5

tools like AirSim [33] and LGSVL [25] simulate the flight
of autonomous drones and other vehicles in a given synthetic
3D-scene. VIVAS [16] is a framework utilizing model checking
techniques to generate diverse driving scenarios on an abstract
model representing the behavior of an autonomous driving
system. These scenarios are designed to cover a given set
of criteria related to the system’s functionality and potential
failure modes. The generated scenarios are analyzed through
simulation to identify failures. Paracosm [26] systematically
generates test scenarios for autonomous driving simulations,
allowing users to programmatically define scenarios with road
layouts, weather, and dynamic traffic behavior. The test scenario
generator maximizes coverage of various behaviors for finding
problematic cases. All these tools and frameworks are good
for visualizing system behaviour and generating systematic test
cases for analysis. However, they are not capable of providing
any verification guarantees.

Verification of lidar-based systems. Sun et al [37] consider the
problem of verifying the safe trajectory of a lidar-based robot

in a given 2D-environment. They use an abstraction-refinement
based approach to prove safety. Ivanov et al [20] consider a
lidar-based NN-controlled vehicle in a 2D race track. They
propose a compositional technique by verifying each segment
of the track separately, using hybrid automata models and the
Verisig tool [21] to verify safety. Both these works consider
only 2D-scenes and do not model camera sensors.

Verification of camera-based systems. Several works abstract
the camera component by using, for example, Generative Ad-
versarial Networks (GANs) that are trained to generate images
based on the position of the vehicle [23], or “approximate”
[18] and probabilistic (via a confusion matrix) [32] abstractions
in place of the camera+NN perception component. None of
these techniques are able to give exact guarantees about the
original camera-based system. In [8], [9] the authors propose a
framework to verify a camera-based NN-controlled autonomous
landing system, by discretizing the state-space. In contrast to
our technique, they use a simplified camera model with only
black and white pixels, use a simple geometric-shaped model
of the runway, and carry out only conservative verification
(an unsafe verdict does not necessarily mean the system is
unsafe). Finally, the work in [17] is closely related and gives
a decision similar to ours by carrying out an exact exploration
of the state space based on image-invariant regions. In contrast,
our approach is based on abstraction-refinement using interval
images, leverages abstract interpretation of the NN in a white-
box manner, and scales to more complex 3D-scenes.

Several other works focus on testing or verifying closed-loop
behaviors of dynamical systems with neural network controllers,
excluding the perception component. These include tools such
as CORA [1], JuliaReach [5], and NNV [39], which competed
in the AINNCS category of the ARCH-COMP competition
[27]. Additionally, there are tools like α-β-CROWN [42], [41],
NNV [39], nnenum [4], Marabou [22], NeuralSAT [11], and
FastBATLLNN [12], which focus on open-loop specification
of neural networks and participated in the VNN-COMP [6].

IX. CONCLUSION

We have presented an abstraction-refinement technique to
solve the reach-avoid problem of camera-based autonomous
systems. The technique is based on the notion of interval
images which yields a new computational technique to attack
the problem and appears to be effective in practice. Some
interesting future directions include incorporating the orienta-
tion of the vehicle in the interval image computation, allowing
dynamically evolving scenes, and combining multiple sensor
inputs.

REFERENCES

[1] Althoff, M.: An introduction to CORA 2015. In: Frehse, G., Althoff, M.
(eds.) 1st and 2nd International Workshop on Applied veRification for
Continuous and Hybrid Systems, ARCH@CPSWeek 2014, Berlin, Ger-
many, April 14, 2014 / ARCH@CPSWeek 2015, Seattle, WA, USA, April
13, 2015. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair
(2015). https://doi.org/10.29007/ZBKV, https://doi.org/10.29007/zbkv

[2] Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo:
A Tool for Temporal Logic Falsification for Hybrid Systems. In: Proc.
17th Intl. Conf. Tools and Alg. Constr. Anal. Systems (TACAS 2011),
Saarbrücken. pp. 254–257. Springer (2011)



12

[3] Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Sci. Comput. Program.
72(1–2), 3–21 (2008)

[4] Bak, S.: nnenum: Verification of relu neural networks with optimized
abstraction refinement. In: NASA formal methods symposium. pp. 19–36.
Springer (2021)

[5] Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.:
Juliareach: a toolbox for set-based reachability. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation
and Control. pp. 39–44 (2019)

[6] Brix, C., Bak, S., Liu, C., Johnson, T.T.: The fourth international
verification of neural networks competition (vnn-comp 2023): Summary
and results. arXiv preprint arXiv:2312.16760 (2023)

[7] Cousot, P., Cousot, R.: Abstract interpretation and application
to logic programs. J. Log. Program. 13(2&3), 103–179 (1992).
https://doi.org/10.1016/0743-1066(92)90030-7, https://doi.org/10.1016/
0743-1066(92)90030-7

[8] Cruz, U.S., Shoukry, Y.: NNLander-VeriF: A Neural Network Formal
Verification Framework for Vision-Based Autonomous Aircraft Landing.
In: Proc. Intl. Symp. NASA Formal Methods (NFM 2022), Pasadena,
USA, 2022. LNCS, vol. 13260, pp. 213–230. Springer (2022)

[9] Cruz, U.S., Shoukry, Y.: Certified vision-based state estimation
for autonomous landing systems using reachability analysis. CoRR
abs/2309.05167 (2023)

[10] Dreossi, T., Fremont, D.J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-
Chanlatte, M., Seshia, S.A.: VerifAI: A Toolkit for the Formal Design
and Analysis of Artificial Intelligence-Based Systems. In: Proc. 31st
Intl. Conf. on Computer Aided Verification (CAV 2019), New York City,
USA. pp. 432–442 (2019)

[11] Duong, H., Nguyen, T., Dwyer, M.: A dpll (t) framework for verifying
deep neural networks. arXiv preprint arXiv:2307.10266 (2023)

[12] Ferlez, J., Khedr, H., Shoukry, Y.: Fast batllnn: fast box analysis of
two-level lattice neural networks. In: Proceedings of the 25th ACM
International Conference on Hybrid Systems: Computation and Control.
pp. 1–11 (2022)

[13] Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli,
A.L., Seshia, S.A.: Scenic: a language for scenario specification and
scene generation. In: Proc. 40th Conf. Programming Language Design
and Implementation (PLDI 2019), Phoenix, USA, 2019. pp. 63–78. ACM
(2019)

[14] Fremont, D.J., Kim, E., Pant, Y.V., Seshia, S.A., Acharya, A., Bruso, X.,
Wells, P., Lemke, S., Lu, Q., Mehta, S.: Formal scenario-based testing
of autonomous vehicles: From simulation to the real world. In: 23rd Intl.
Conf. Intelligent Transportation Systems (ITSC 2020), Rhodes, Greece.
pp. 1–8. IEEE (2020)

[15] Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri,
S., Vechev, M.T.: AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In: Proc. IEEE Symp. Security
and Privacy (SP 2018), San Francisco, USA. pp. 3–18 (2018)

[16] Goyal, S., Griggio, A., Kimblad, J., Tonetta, S.: Automatic Generation of
Scenarios for System-level Simulation-based Verification of Autonomous
Driving Systems. In: Proc. 5th Intl. Workshop on Formal Methods for
Autonomous Systems (FMAS@iFM 2023), Leiden, The Netherlands.
EPTCS, vol. 395, pp. 113–129 (2023)

[17] Habeeb, P., Deka, N., D’Souza, D., Lodaya, K., Prabhakar, P.: Verification
of camera-based autonomous systems. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems 42(10), 3450–3463 (2023)

[18] Hsieh, C., Li, Y., Sun, D., Joshi, K., Misailovic, S., Mitra, S.: Verifying
controllers with vision-based perception using safe approximate abstrac-
tions. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 41(11), 4205–4216 (2022)

[19] Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.:
Case study: verifying the safety of an autonomous racing car with a
neural network controller. In: Proc. 23rd International Conference on
Hybrid Systems: Computation and Control (HSCC 2020). pp. 1–7 (2020)

[20] Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.:
Compositional learning and verification of neural network controllers.
ACM Trans. Embed. Comput. Syst. 20(5s), 92:1–92:26 (2021)

[21] Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying
safety properties of hybrid systems with neural network controllers.
In: Proc. 22nd ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 2019), Montreal, Canada, 2019. pp.
169–178 (2019)

[22] Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R.,
Shah, P., Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework
for verification and analysis of deep neural networks. In: Computer

Aided Verification: 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. pp. 443–452.
Springer (2019)

[23] Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification
of image-based neural network controllers using generative models. In:
Proc. IEEE/AIAA 40th Digital Avionics Systems Conference (DASC).
pp. 1–10 (2021)

[24] Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-Reachability
Analysis for Hybrid Systems. In: Proc. 21st Intl. Conf. Tools and Alg.
Constr. Anal. Systems (TACAS 2015), London. pp. 200–205. Springer
(2015)

[25] LG Electronics America R&D Lab: SVL Simulator. https://www.
svlsimulator.com/, last accessed: 2022-06-07

[26] Majumdar, R., Mathur, A.S., Pirron, M., Stegner, L., Zufferey, D.:
Paracosm: A Test Framework for Autonomous Driving Simulations. In:
Proc. 24th Intl. Conf. Fundamental Approaches to Software Engineering
(FASE 2021), Luxembourg, 2021. Lecture Notes in Computer Science,
vol. 12649, pp. 172–195. Springer (2021)

[27] Manzanas Lopez, D., Althoff, M., Forets, M., Johnson, T.T., Ladner,
T., Schilling, C.: Arch-comp23 category report: artificial intelligence
and neural network control systems (ainncs) for continuous and hybrid
systems plants. In: EPiC Series in Computing (2023)

[28] de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proc.
14th Intl. Conf. Tools and Alg. Constr. Anal. Systems (TACAS 2008).
pp. 337–340. Springer (2008)

[29] O’Kelly, M., Abbas, H., Mangharam, R.: Computer-Aided Design for
Safe Autonomous Vehicles. Tech. rep., U. Pennsylvania (May 2017),
https://repository.upenn.edu/mlab papers/99

[30] Prakash, P., Murti, C., Nath, J.S., Bhattacharyya, C.: Optimizing DNN
Architectures for High Speed Autonomous Navigation in GPS Denied
Environments on Edge Devices. In: Proc. 16th Pac. Rim Intl. Conf. on
Artificial Intelligence (PRICAI 2019), Fiji. pp. 468–481 (2019)

[31] Prunier, J.C.: Scratchapixel: An Overview of the Rasterization
Algorithm. https://www.scratchapixel.com/lessons/3d-basic-rendering/
rasterization-practical-implementation, last accessed: 2020-09-28

[32] Păsăreanu, C.S., Mangal, R., Gopinath, D., Yaman, S.G., Imrie, C.,
Calinescu, R., Yu, H.: Closed-loop analysis of vision-based autonomous
systems: A case study. In: Proc. 35th Intl. Conf. Computer Aided
Verification (CAV 2023), Paris, France, 2023. LNCS, vol. 13964, pp.
289–303. Springer (2023)

[33] Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: High-Fidelity Visual
and Physical Simulation for Autonomous Vehicles. In: Res. 11th Intl.
Conf. on Field and Service Robotics (FSR 2017), Zurich, Switzerland.
pp. 621–635. Springer (2017)

[34] Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model
of safe and scalable self-driving cars. CoRR abs/1708.06374 (2017),
http://arxiv.org/abs/1708.06374

[35] Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for
certifying neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

[36] Blender 3D Creation Suite: https://www.blender.org/, last accessed: 2022-
03-08

[37] Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network
controlled autonomous systems. In: Proc. 22nd ACM Intl. Conf. on
Hybrid Systems: Computation and Control (HSCC 2019), Montreal,
Canada. pp. 147–156 (2019)

[38] Tesla: Tesla vision update: Replacing ultrasonic sensors with tesla
vision. https://www.tesla.com/support/transitioning-tesla-vision (October
5, 2023), accessed: 22/01/2024

[39] Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V.,
Xiang, W., Bak, S., Johnson, T.T.: Nnv: the neural network verification
tool for deep neural networks and learning-enabled cyber-physical
systems. In: International Conference on Computer Aided Verification.
pp. 3–17. Springer (2020)

[40] Tuncali, C.E., Faniekos, G.E., Ito, H., Kapinski, J.: Sim-ATAV:
Simulation-Based Adversarial Testing Framework for Autonomous
Vehicles. In: Proc. 21st Intl. Conf. on Hybrid Systems: Computation and
Control (HSCC 2018), Porto, Portugal. pp. 283–284 (2018)

[41] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter,
J.Z.: Beta-CROWN: Efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification.
Advances in Neural Information Processing Systems 34 (2021)

[42] Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.J.:
Fast and Complete: Enabling complete neural network verification with
rapid and massively parallel incomplete verifiers. In: Proc. Intl. Conf.
Learning Representations (ICLR) (2021)


