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Abstract—This work addresses the challenge of adapting1

dynamic deadline requirements for the LiDAR object detection2

deep neural networks (DNNs). The computing latency of object3

detection is critically important to ensure safe and efficient4

navigation. However, the state-of-the-art LiDAR object detection5

DNNs often exhibit significant latency, hindering their real-6

time performance on the resource-constrained edge platforms.7

Therefore, a tradeoff between the detection accuracy and latency8

should be dynamically managed at runtime to achieve the9

optimum results. In this article, we introduce versatile anytime10

algorithm for the LiDAR Object detection (VALO), a novel11

data-centric approach that enables anytime computing of 3-D12

LiDAR object detection DNNs. VALO employs a deadline-13

aware scheduler to selectively process the input regions, making14

execution time and accuracy tradeoffs without architectural15

modifications. Additionally, it leverages efficient forecasting of16

the past detection results to mitigate possible loss of accuracy17

due to partial processing of input. Finally, it utilizes a novel input18

reduction technique within its detection heads to significantly19

accelerate the execution without sacrificing accuracy. We imple-20

ment VALO on the state-of-the-art 3-D LiDAR object detection21

networks, namely CenterPoint and VoxelNext, and demonstrate22

its dynamic adaptability to a wide range of time constraints while23

achieving higher accuracy than the prior state-of-the-art. Code is24

available at https://github.com/CSL-KU/VALOgithub.com/CSL-25

KU/VALO.26

Index Terms—3-D object detection, anytime computing,27

LiDAR.28

I. INTRODUCTION29

PERCEPTION plays a vital role in autonomous vehicles.30

Its primary objective is to identify and categorize objects31

of interest (e.g., cars and pedestrians) within the operational32

environment. While humans excel at this task effortlessly, it33

presents a significant challenge for the computers. For the34

object detection in 3-D space, LiDAR-based object detection35

deep neural networks (DNNs) [1], [2], [3] have emerged as36
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an effective approach as they can provide highly accurate 37

position, orientation, size, and velocity estimates. 38

In autonomous vehicles, however, the object detection 39

results must not only be accurate but also timely as the 40

outdated results are of little use in the path planning of a 41

fast-moving autonomous vehicle. Unfortunately, the LiDAR 42

object detection DNNs are often computationally expensive 43

and thus exhibit significant latency, especially when run- 44

ning on resource-constrained embedded computing platforms. 45

Moreover, they lack the ability to dynamically trade execution 46

time and accuracy, which makes it difficult to adapt to 47

dynamically changing real-time requirements in autonomous 48

vehicles [4], [5]. For example, when a vehicle moves at a 49

high speed, fast detection may be more important than high 50

accuracy (e.g., correct object classification) in order to avoid 51

collision in a timely manner. On the other hand, when the 52

vehicle moves slowly in a complex urban environment, accu- 53

rate detection may be more important than the fast detection 54

for safe navigation. 55

To enable schedulable tradeoffs between the accuracy and 56

latency in perception, the prior research efforts have focused 57

on the vision-based DNNs [6], [7], [8], [9], [10]. Model-level 58

innovations, such as early exit architectures [9] have been 59

widely adopted, where these models incorporate additional 60

output layers at the intermediate stages, allowing the network 61

to make predictions before the full depth of the model 62

is utilized. Nonetheless, these enhancements come with a 63

tradeoff. The repeated activation of the intermediate output 64

layers at several phases leads to a significant increase in the 65

computational overhead. This issue is particularly pronounced 66

in applications requiring complex detection heads capable of 67

producing granular object-level predictions, such as LiDAR- 68

based object detection and segmentation tasks. Recently, 69

AnytimeLidar [11] introduced a capability to bypass certain 70

components and detection heads in an LiDAR object detection 71

DNN to enable the latency and accuracy tradeoffs at runtime. 72

However, such model-level improvements may not work on 73

different model architectures, which are constantly evolving. 74

In this work, we present versatile anytime algorithm 75

for the LiDAR Object detection (VALO), a novel data- 76

centric approach to enable anytime computing in processing 77

the LiDAR-based object detection DNNs. VALO selectively 78

processes subsets of periodically given input data with the 79

aim of maximizing detection accuracy while respecting the 80

deadline constraint. It implements a deadline-aware scheduler 81
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Fig. 1. General LiDAR object detection DNN architecture.

that splits the detection area into regions and schedules them to82

reduce the computational costs while considering the accuracy83

impacts. To minimize the potential accuracy loss, VALO84

employs a lightweight forecasting algorithm to predict the cur-85

rent poses of the previously detected objects based on a simple86

physics model. The forecasted objects are merged with the87

DNN detected ones through the nonmaximum suppression to88

improve the overall accuracy. In addition, VALO implements89

a novel input reduction technique within its detection heads.90

This technique reduces the input volume to be processed by a91

factor of ten for the convolutions responsible for delivering the92

object attributes. Importantly, it accomplishes this without any93

loss in accuracy by eliminating the unnecessary computation94

in the areas where no object prediction exists.95

We have implemented VALO on the top of the two96

state-of-the-art LiDAR object detection DNNs [1], [3] and97

evaluated them using a large-scale autonomous driving dataset,98

nuScenes [12]. We utilized the Jetson AGX Xavier [13] as99

the testing platform, a commercially available off-the-shelf100

embedded computing platform. The results demonstrate that101

VALO enables the anytime capability across a wide spec-102

trum of timing constraints, while achieving higher accuracy103

across all the deadline constraints compared to the baseline104

LiDar object detection DNNs [1], [3] and a prior anytime105

approach [11].106

In summary, we make the following contributions.107

1) We propose a novel data scheduling framework for the108

LiDAR object detection DNNs that enables latency and109

accuracy tradeoffs at runtime.110

2) We apply our approach to the two state-of-the-art LiDAR111

object detection DNNs and show its effectiveness and112

generality on a real platform using a representative113

autonomous driving dataset.114

The remainder of this article is organized as follows.115

We provide the necessary background in Section II and the116

present motivation in Section III. We describe our approach117

in Section IV and present the evaluation results in Section V.118

After discussing the related work in Section VI, we conclude119

in Section VII.120

II. BACKGROUND121

In this section, we provide the necessary background on the122

LiDAR object detection DNNs and anytime computing.123

A. LiDAR Object Detection DNNs124

The primary objective of the LiDAR-based object detection125

is to identify objects of interest within the detection area126

by processing the input point clouds. Many LiDAR-based 127

object detection DNNs have been proposed [1], [2], [3], some 128

are optimized for latency, while the others are optimized for 129

accuracy. 130

Fig. 1 illustrates the general workflow of the LiDAR object 131

detection DNNs. Their encoders are designed to extract 132

features from the transformed input (e.g., voxels) with their 133

backbone(s), typically by employing convolutional neural 134

networks. An encoder can have a 3-D backbone that applies 135

sparse convolutions on the 3-D data, a 2-D backbone similar to 136

those used in vision object detection DNNs or both. When both 137

are used, the sparse output of the 3-D backbone is projected 138

to a bird-eye view (BEV) pseudo image to turn it into a 139

dense tensor so the 2-D backbone can process it with dense 140

convolutions. 141

After the encoder operation, the produced features are 142

further processed by the decoder, which consists of one or 143

more detection heads to output the 3-D bounding boxes of 144

the identified objects. When multiple detection heads are used, 145

the targeted object classes are separated into groups depending 146

on their size, and each detection head becomes responsible 147

for one group [14]. Within each detection head, a series 148

of convolutions is applied to infer various object attributes, 149

such as location, size, and velocity. Ultimately, nonmaximum 150

suppression or max pooling is used to extract the final results 151

from the predicted candidates. 152

B. Sparse Convolution 153

A point cloud P is represented as an array of 3-D point 154

coordinates (x, y, z), each accompanied by attributes, such as 155

LiDAR return intensity i 156

P = {(x1, y1, z1, i1), . . . , (xn, yn, zn, in)}. (1) 157

Unlike 2-D images, the indexes in the array of points do 158

not inherently establish neighborhood relationships, creating 159

a challenge for processing them with commonly used dense 160

convolutional neural networks operating on the dense tensors. 161

To address this issue, the point clouds are transformed into 162

alternative representations, such as a 3-D grid of fixed-size 163

voxels created by grouping spatially nearby points [1], [3]. 164

These voxels can be represented as a 3-D dense tensor 165

and processed by 3-D convolutions. However, this approach 166

is avoided due to the significant computational overhead it 167

incurs. Instead, voxels are represented as a sparse tensor and 168

processed by sparse convolutions [15]. A sparse tensor V 169

can be defined in coordinate list (COO) format, where each 170

coordinate has a corresponding array of values. These values 171

represent the features of each coordinate. 172
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Fig. 2. Two sparse convolution examples applying 3×3 filters. Blue squares
indicate voxels. Red markings indicate the coordinates where the filter is
applied.

Sparse convolutions can yield the same result as dense173

convolutions while operating on the sparse tensors. If the174

input tensor is significantly sparse, as in the LiDAR point175

clouds, this saves a bulk of computational time compared176

to the dense convolutions. For this reason, the state-of-the-177

art LiDAR object detection DNNs commonly employ sparse178

convolutions. Sparse convolutions apply given filters on all the179

coordinates where an input coordinate overlaps with any part180

of the filter.181

It is important to note that a sparse convolution operation182

can generate a differently shaped output tensor, depending183

on the shape of the input tensor as shown in Fig. 2. As we184

will discuss in Section IV-C, this introduces input-dependent185

timing variability in processing the sparse convolutions.186

C. Anytime Computing187

Anytime algorithms refer to a class of algorithms that can188

trade deliberation time for the quality of the results [16].189

An anytime algorithm is capable of delivering a result190

whenever it is requested, and the quality of the result191

improves as the algorithm dedicates more time to finding192

the solution. For example, a path planning algorithm that193

progressively enhances its solution by continuously refining194

the path it has discovered can be considered as an anytime195

algorithm [16]. In real-time systems, anytime algorithms are196

highly valuable for meeting dynamically changing deadlines197

as they can effectively tradeoff between the latency and198

quality.199

Contract algorithms are a special type of anytime algorithms200

that require a predetermined time budget to be set prior to their201

activation [17]. They are noninterruptible and deliver results202

within the time budget, unlike the arbitrarily interruptible203

anytime algorithms. In deadline-driven real-time systems, such204

as self-driving cars, the contract algorithms can be used to205

effectively trade the execution time for accuracy. Providing a206

framework to transform an LiDAR object detection DNN into207

a contract algorithm to make it deadline aware is the primary208

focus of our work.209

III. MOTIVATION210

To understand the requirements of an effective latency211

and accuracy trading approach, we profile two representative212

LiDAR object detection DNNs in detail on the Jetson AGX213

Xavier.214

TABLE I
EXECUTION TIME (MS) STATISTICS OF POINTPILLARS

TABLE II
EXECUTION TIME (MS) STATISTICS OF CENTERPOINT

Table I presents the execution time statistics for the 215

PointPillars [2], a well-known LiDAR object detection DNN 216

recognized for its low latency. We observe that approximately 217

79% of the total processing time is consumed by its 2-D 218

backbone and detection heads. Therefore, a latency-accuracy 219

tradeoff approach targeting these two stages can yield satis- 220

factory results as explored in a recent prior work [11]. 221

However, when the state-of-the-art LiDAR object detection 222

DNNs are considered, an approach that only focuses on the 223

2-D backbone and detection heads might not be efficient. 224

Table II shows the execution time breakdown of 225

CenterPoint [1], a recent 3-D LiDAR object detection 226

DNN that achieves higher detection accuracy than the 227

PointPillars [2]. Note that, it spends significantly more time 228

on the 3-D backbone stage, accounting for 41% of the total 229

execution time. 230

Although adopting sparse convolutions partially alleviates 231

the computational burden of the 3-D backbone [15], [18], 232

it still demands significant computational resources. Thus, 233

the 3-D backbone becomes another computational bottleneck, 234

which must be addressed when trading the accuracy for lower 235

latency. 236

One simple approach for achieving the latency-accuracy 237

tradeoff is training multiple models with varying input gran- 238

ularity (i.e., resolutions) and dynamically switching between 239

them. However, this approach can be cumbersome during 240

runtime due to the overhead involved in the model switching 241

(in terms of the memory overhead and switching latency). It 242

also necessitates training and fine tuning a large number of 243

models to achieve finely tuned tradeoffs. 244

Instead, we focus on developing a single model that can 245

deliver the highest possible accuracy when there is flexibility 246

with the deadline, while intelligently adjusting input data when 247

the deadline becomes more stringent, as will be discussed in 248

the next section. 249

IV. VALO 250

In this section, we introduce VALO, a scheduling framework 251

that transforms aN LiDAR object detection DNN into a 252
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Fig. 3. Overview of VALO.

noninterruptable anytime (contract) algorithm. VALO allows253

detection results to be produced in time for a gamut of deadline254

requirements, with a controlled tradeoff in accuracy.255

A. Overview256

The fundamental concept underpinning VALO’s design is257

the scheduling of data to facilitate the tradeoffs between the258

time and accuracy rather than scheduling the architectural259

components of the targeted DNN. This design choice makes260

VALO versatile, as it is not constrained by the architec-261

tural specifics of the LiDAR object detection DNNs. Fig. 3262

illustrates VALO’s three main components: 1) scheduling;263

2) forecasting; and 3) detection head optimization, highlighted264

in green, and their positions within the DNN pipeline. The265

region drop component is considered a part of scheduling.266

First, VALO’s scheduler comes into play after the DNN has267

completed the feature transformation stage. This allows it to268

make scheduling decisions at the voxel level instead of the269

raw point clouds, enabling more accurate predictions of the270

timing for the 3-D backbone stage.271

During the scheduling phase, VALO decides which regions272

of the input data will be processed to maximize detection273

accuracy within the deadline constraint. Once a decision is274

made, the data outside the selected regions is filtered out,275

and the remaining data is forwarded to the subsequent stage276

(Section IV-B).277

For effective region scheduling, VALO predicts execution278

times of subsequent network stages of each possible region279

selection (Section IV-C). VALO also employs a mechanism to280

recover from the execution time mispredictions (Section IV-D).281

Next, while filtering part of the input can reduce latency,282

it can also negatively impact accuracy. To mitigate potential283

accuracy loss, VALO employs a forecasting mechanism that284

updates the positions of the previously detected objects to285

the current time of execution. This operation is performed286

mostly in parallel while the DNN executes. After the, detection287

heads generate object proposals, these proposals are combined288

with the list of forecasted objects. The combined list is then289

subjected to nonmaximum suppression, which yields the final290

detection results (Section IV-E).291

Finally, to further improve the efficiency, we introduce a292

novel optimization technique for the efficient detection head293

processing. This optimization technique eliminates the sig-294

nificant amount of redundant computation in detection heads295

without compromising the detection accuracy (Section IV-F).296

B. Region Scheduling297

The scheduler decides which subset of input data (vox-298

els) should be processed to meet a given deadline while299

Fig. 4. Two examples of how the region scheduler partitions the detection
area into regions. (a) Partitioning example 1. (b) Partitioning example 2.

maximizing the accuracy. Intuitively, the less data it selects, 300

the less time it takes for the DNN to process it, albeit at the 301

expense of reduced accuracy. To make the scheduling problem 302

tractable, we partition the fixed-size detection area into equally 303

sized chunks along the X (width) axis, which we refer to as 304

regions. 305

Fig. 4 illustrates two examples of partitioning a 108 × 306

108 m2 detection area into 18 vertical regions. In Fig. 4(a), 307

the input point cloud is spread to all 18 regions. In contrast, 308

Fig. 4(b) shows that only a portion of the regions, 8 out of 309

18, contain points due to the structure of the environment 310

scanned by LiDAR. In scenarios with empty regions, the 311

scheduler skips all the empty regions located before the first 312

nonempty region and after the final nonempty region. As a 313

result, partitioning the input in the X axis for some inputs 314

allows for latency reduction without sacrificing accuracy in 315

later stages. 316

To determine which regions to process, we employ a 317

greedy policy that sequentially selects the maximum number 318

of input regions while adhering to the deadline constraint. 319

Consequently, all regions are treated with equal priority. 320

Fig. 5 provides an illustrative example of the proposed region 321

scheduling algorithm, which selects regions for processing 322

over three consecutive inputs. For each input, the scheduler 323

decides the regions to be scheduled for processing, starting 324

from the next to the final of the previously scheduled regions, 325

which can meet the given deadline. 326

Algorithm 1 outlines our proposed scheduling algorithm. 327

Initially, the scheduler counts the number of voxels in each 328

region and returns the list of schedulable regions (RS), and 329

their voxel counts (CS) (line 8). 330

The scheduler then reorders the obtained list so the selec- 331

tions start from the first nonempty region coming after rlast 332

(lines 9). Subsequently, candidate region selections are iterated 333

from largest to smallest until one that meets the deadline is 334

identified (lines 10–18). 335
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Fig. 5. Example of region scheduling on three consecutive samples over time. The regions outlined in orange represent the selections made by the scheduler
for processing. The green and purple bounding boxes indicate the objects detected as a result of processing the selected regions and the forecasted objects,
respectively. Best viewed in color.

Once scheduling is completed, input voxels falling outside336

the selected regions (Rsel) are filtered, and the remaining337

voxels are forwarded to the 3-D backbone as input. If the338

subsequent stage employs dense convolutions, the sparse339

output of the 3-D backbone is then converted to a dense tensor340

where the regions are placed following the order in Rsel.341

Our scheduling method brings three advantages. First,342

selecting the adjacent regions maintains spatial continuity343

and processes the input with minimal fragmentation, thereby344

avoiding accuracy degradation that can happen through slicing345

and batching nonadjacent regions. Second, it ensures a consis-346

tent level of “freshness” of object detection results over all the347

regions, which is needed for effective forecasting operations348

(Section IV-E). Third, it incurs minimal scheduling overhead.349

C. Execution Time Prediction350

For effective region scheduling, the key challenge is to351

determine whether a candidate list of regions can be processed352

within a given deadline constraint (line 13 in Algorithm 1).353

The predicted execution time E of a candidate list of regions354

can be calculated as355

E = ES + ED + ER (2)356

where ES is the time to process sparse data (i.e., 3-D357

backbone), ED is the time to process dense data (i.e., 2-D358

backbone and convolutions in detection heads), and ER is the359

time to process the final stage of object detection task, such360

as nonmaximum suppression.361

For ED, since the number of candidate regions (|Rsel|)362

determines the size of the dense input tensor that will be363

passed to the 2-D backbone, it can be defined as an one-to-one364

function, where each possible |Rsel| is mapped to an execution365

time determined through the offline profiling. This mapping366

is feasible because the execution time of dense convolutions367

remains largely fixed as a function of input size, and there is368

a small finite number of possible regions.369

On the other hand, ES, the execution time of the sparse 3-D370

backbone, is difficult to predict as it depends on the number of371

input voxels in a highly nonlinear manner as shown in Fig. 6.372

Algorithm 1: Scheduling Algorithm

1 Input:
2 Input voxels (V),
3 Number of input regions (NR),
4 Last scheduled region (rlast),
5 Relative deadline (D),
6 Output: Selected regions to be processed
7 function schedule(V, NR, rlast, D)
8 RS, CS ← count_voxels(V, NR)

9 RS, CS ← reorder(RS, CS, rlast)

10 i← length_of (RS)

11 while i ≥ 1 do
12 Rsel, Csel ← RS[:i], CS[:i]
13 E← calc_wcet(Rsel, Csel)

14 rem_time← D− get_elapsed_time()
15 if E < rem_time then
16 i← 0

17 else
18 i← i− 1

19 return Rsel

Fig. 6. Profiled execution time CenterPoint’s 3-D Backbone.

This nonlinearity mainly stems from the fact that a sparse 373

convolution layer can generate a different number of output 374

voxels for the same number of input voxels depending on 375

their relative positions as illustrated in Fig. 2. Consequently, 376
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Fig. 7. CenterPoint’s 3-D backbone broken into blocks. SM: submanifold
sparse convolution. SP: sparse convolution.

Fig. 8. Profiled execution time of the blocks of CenterPoint’s 3-D backbone
and the quadratic models regressed from their execution times data.

the computational demand of processing a subsequent layer,377

which takes the output of the previous layer as input will vary378

accordingly. To make the time prediction tractable, we break379

the 3-D backbone into blocks at points where the count of380

forwarded voxels changes as illustrated in Fig. 7.381

We then focus on separately predicting the execution time382

of each block. Note that, unlike a sparse convolution layer,383

batch normalization, activation functions, and submanifold384

sparse convolution [19], all of which heavily used in 3-D385

backbones, do maintain the same input and output shapes (thus386

the voxel counts), and thus can be safely grouped within a387

block. Denoting Vi as the input voxels of a layer Li, we define388

a block B as389

B = {Lk, . . . , Ll | ∀i, k ≤ i ≤ l, |Vk| = |Vi|} (3)390

where Vk is the input voxels of the first layer Lk. The input391

of a block B denoted as VB is the same as Vk.392

Fig. 8 shows the execution time profiles of all the four393

blocks of the CenterPoint’s 3-D backbone. As can be seen in394

the figure, each block’s execution time, as a function of the395

number of input voxels of the block, is more predictable using396

a simple quadratic prediction model397

EBi(|VBi |) = α|VBi |2 + β|VBi | + γ (4)398

where the coefficients α, β, and γ are determined by regression399

against the profiling data collected offline. Then, the execution400

time of the 3-D backbone can be predicted as follows: 401

ES =
n∑

i=1

EBi(|VBi |). (5) 402

However, a major challenge is that, except for the first block, 403

the number of input voxels of the remainder of the blocks, 404

Crest, are not known until the execution of the preceding blocks 405

is completed 406

Crest =
{|VB2 |, . . . , |VBn |

}
. (6) 407

To predict Crest for any given list of candidate input regions, 408

we use a history-based approach, leveraging the fact that there 409

is a strong similarity between the consecutive LiDAR scans, 410

as the movements of objects between the scans are limited. 411

Specifically, for the block B2 to Bn, we keep track of each 412

block’s most recent input voxel counts of all the input regions, 413

which are updated whenever they are selected by the region 414

scheduler and processed. Assuming voxel counts would be 415

similar over time, we then aggregate the latest voxel counts 416

of the current candidate regions to obtain Crest. 417

Finally, for ER, the execution time to perform nonmaximum 418

suppression and other operations can vary depending on the 419

number of object proposals in the detection pipeline. However, 420

because it is relatively small compared to the remainder of the 421

pipeline, namely ED and ES, we simply use the 99th percentile 422

of the measured execution time through offline profiling, which 423

provides a safe upper bound without significantly affecting the 424

time prediction accuracy. 425

D. Region Drop 426

The aforementioned execution time prediction method for 427

the 3-D backbone can inevitably introduce some inaccuracy. 428

For LiDAR object detection models with 2-D backbones, such 429

as CenterPoint [1], after the execution of the 3-D backbone, 430

we additionally check if it will be possible to meet the deadline 431

(see Fig. 3), considering the predicted execution time of the 432

remainder of the pipeline. If deemed not possible, we further 433

reduce the number of input regions so that the deadline can 434

be met. Note, however, that some recently proposed LiDAR 435

object detection models, such as VoxelNext [3] do not employ 436

a 2-D backbone as they are fully sparse. For such networks, 437

the region dropping does not apply. 438

E. Forecasting 439

Forecasting estimates the present pose of the objects identi- 440

fied in the past invocations of the object detector. Because our 441

region scheduling method (Section IV-B) can skip part of the 442

input LiDAR scan due to the deadline constraints, forecasting 443

plays a critical role in mitigating the potential accuracy loss. 444

We define a pose P of an object at time t as 445

Pt = {T, S, α, v, c, l} (7) 446

where T is the 3-D coordinate of the object expressed in the 447

LiDAR coordinate frame, S is the bounding box, α is the 448

heading angle, v is the velocity vector, c is the confidence 449

score, and l is the label (e.g., car or pedestrian). In this work, 450
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Fig. 9. General detection head architecture.

we focus on estimating T and α and assume the others to stay451

consistent over time.452

The first part of forecasting involves maintaining a queue of453

previously detected object poses. For all the processed input454

regions of an input frame, VALO removes the old objects455

corresponding to the processed regions from the queue and456

appends the freshly detected objects in these regions to the457

queue. Thus, the queue maintains the latest detected objects458

of all the regions.459

The second part of forecasting involves performing the460

mathematical calculations to estimate Ptcur for all the objects in461

the pose queue. For each pose of an object in the pose queue,462

we first rotate and translate the object pose to be expressed463

in the global coordinate frame using the ego-vehicle pose. We464

then add the distance traveled by the object (v×(tcur− tdet)) to465

the translation component (T) of the pose. Finally, we translate466

and rotate the pose to be expressed in the current LiDAR467

coordinate frame.468

At the runtime, we update the queue on the CPU and469

perform the actual pose updates on the GPU. We have470

developed a custom GPU kernel to update the poses of all the471

objects in parallel. The forecasting GPU kernel is executed in472

a separate CUDA stream to maximize the parallelism.473

F. Detection Head Optimization474

LiDAR object detection DNNs include detection heads that475

are designed to extract specific attributes of objects, such as476

position, size, and orientation. Surprisingly, we discovered477

that a significant amount of redundant computations occur in478

processing the detection heads of the state-of-the-art LiDAR479

object detection DNNs [20].480

Fig. 9 illustrates the general architecture of a detection head,481

which performs a series of convolutions to infer attributes of482

the objects. The width and height dimensions of the output483

tensors from these convolutions correspond to the width and484

height of the detection area in the BEV. Among the inferred485

attributes, the heatmap plays the most important role, as it486

Fig. 10. Optimized detection head architecture.

holds the confidence scores of the objects used for classifying 487

and locating them. In a heatmap tensor, any score value above 488

a predefined score threshold indicates an object proposal. The 489

list of object proposals, R, extracted from the heatmap can be 490

expressed as 491

R = {(c1, x1, y1), . . . , (cn, xn, yn)} (8) 492

where c is the confidence score and x and y are a position 493

in the detection area. Once R is generated, remaining object 494

attributes (e.g., orientation, velocity, size, etc.) are obtained 495

from their corresponding output tensors at the x and y positions 496

in R, and combined into object poses (7). 497

The problem with this approach is that it performs con- 498

volutions on all the parts of the input while only the output 499

locations that correspond to the object proposals (R) are 500

utilized. As a result, the convolutions inferring object attributes 501

except the heatmap involve a significant amount of redundant 502

computation. 503

To improve efficiency, we propose to optimize the detection 504

head processing as follows. 505

1) The heatmap is computed in the same manner as in the 506

baseline approach. 507

2) The detected object list R from the heatmap is utilized 508

to selectively gather and batch small patches from the 509

input tensor. 510

3) Convolutions are applied to this batch of patches to 511

derive the object attributes. 512

Fig. 10 provides a visual representation of the proposed 513

approach. Note that, the proposed optimization ensures that 514

convolutions are applied only to the data that is needed for 515

producing the desired output corresponding to the locations 516

in R. This approach significantly reduces the number of 517

multiply accumulate operations (MACs) without any loss of 518

detection accuracy. 519

However, due to the reduction in the input size, there is 520

a potential issue of GPU underutilization if we execute the 521

attribute-inferring convolutions one by one as in the baseline. 522

To maximize GPU utilization, we concatenate them into a 523
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single convolution operation followed by a group convolution.524

This improves GPU utilization and reduces the GPU kernel525

invocation overhead.526

Note that, some recent LiDAR object detection networks,527

such as VoxelNext [3] employ sparse convolutions in detection528

heads instead of dense convolutions. For such a model, we529

replace the slice and batch part of detection head optimization530

with filtering all the sparse tensor coordinates that do not531

contribute to the output, and do not group the convolutions532

as they are sparse. In this way, we significantly reduce533

computational overhead without losing detection accuracy and534

allow utilizing of the model trained for the baseline.535

V. EVALUATION536

For evaluation, we implemented VALO as an extension to537

OpenPCDet [20], an open-source framework for LiDAR 3-D538

object detection DNNs, which supports the state-of-the-art539

methods. For this study, we mainly target CenterPoint [1] as a540

baseline and apply VALO to demonstrate its effectiveness. In541

addition, we also apply VALO on a more recently proposed542

VoxelNext [3], a fully sparse DNN, to demonstrate the versa-543

tility of our approach.544

As for the dataset, we utilize nuScenes [12], a large-scale545

autonomous driving dataset, and use the nuScenes detection546

score (NDS) [12] as the detection accuracy metric since547

it was reported to correlate with the driving performance548

better than the classic average precision (AP) metric [21].549

In the remainder of the evaluation, unless noted otherwise,550

we normalize the NDS score with respect to the maximum551

NDS score we observed among the all compared methods. We552

utilize 30 distinct scenes from the nuScenes evaluation dataset,553

with each scene containing annotated LiDAR scans spanning554

20 s, sampled at intervals of 350 ms. The sample period is555

chosen to match the worst-case execution time of the slowest556

baseline method on our evaluation platform.557

To capture the timeliness aspect of the detection558

performance, we evaluated the methods under a range of559

deadline constraints from 350 to 90 ms. The deadline range560

is chosen to be between the best-case execution time of the561

fastest baseline method and the worst-case execution time of562

the slowest baseline model. During each test, we kept a buffer563

holding the latest detection results and updated this buffer564

every time the method being tested met the deadline. In case of565

a deadline miss, we considered the buffered detection results566

as the output and ignored the produced ones by assuming the567

job was aborted.568

As for the hardware platform, we used an NVIDIA Jetson569

AGX Xavier [13], equipped with 16 GiBs of RAM for570

the runtime performance evaluation. We maximized all the571

hardware clocks and allocated the GPU resources only for the572

method being tested. For software, we used Jetson JetPack573

5.1 and Ubuntu 20.04. Training of the models was done on a574

separate desktop machine with an NVIDIA RTX 4090 GPU.575

We present the evaluation results in the following three576

subsections. First, we compare VALO with a set of baselines577

to evaluate its performance. Second, we perform an ablation578

study to demonstrate the benefits of VALO’s components.579

Finally, we shift our focus to the intrinsic details of VALO 580

and analyze the execution time behavior of its components. 581

A. Comparison With the Baselines 582

Below is the list of methods we compared in this section. 583

1) CenterPoint [1]: This is a representative state-of-the- 584

art LiDAR object detection network architecture that 585

employs a voxel encoder as its 3-D backbone, fol- 586

lowed by a region-proposal-based 2-D backbone and 587

six detection heads, each of which focuses on a subset 588

of the object classes [14]. Before being forwarded to 589

the 3-D backbone, the input point cloud is transformed 590

into fixed-sized voxels. The size of a voxel is a design 591

parameter of the network, which should stay consistent 592

during training and testing. In this work, we consider 593

three voxel configurations 75 × 75 × 200 mm3, 100 × 594

100 × 200 mm3, and 200 × 200 × 200 mm3, which 595

are called CenterPoint75, 100, and 200, respectively. 596

Employing bigger voxels reduces the computing cost at 597

the expense of accuracy. 598

2) VoxelNext [3]: A recently proposed LiDAR object detec- 599

tion network, featuring a voxel encoder as its 3-D 600

backbone deeper than the CenterPoint’s followed by six 601

detection heads. Unlike CenterPoint, all the convolutions 602

in its detection heads operate on the sparse tensors. Like 603

CenterPoint, VoxelNext also can be configured to have 604

a different voxel size. We focus only on the setting 605

that employs voxels of size 75 × 75 × 200 mm3 (i.e., 606

VoxelNext75). 607

3) AnytimeLidar [11]: To the best of our knowledge, this 608

is the only work that can provide runtime latency 609

and accuracy tradeoff (i.e., anytime computing) for 610

the LiDAR object detection DNNs in the literature. 611

It achieves the anytime capability by utilizing early 612

exits in processing the 2-D backbone and skipping 613

a subset of the detection heads dynamically. While 614

AnytimeLidar is originally based on the PointPillars [2], 615

we ported it to the CenterPoint75 baseline to make a fair 616

comparison, which we call AnytimeLidar-CP75. Note 617

that, AnytimeLidar cannot be applied to the VoxelNext 618

since it lacks a 2-D backbone. 619

4) VALO: The proposed method in this work. VALO can 620

be applied to the CenterPoint and VoxelNext baselines. 621

We call VALO-CP75 and VALO-VN75 when it is 622

applied to the CenterPoint75 and VoxelNext75 baselines, 623

respectively. 624

1) VALO Versus AnytimeLidar: In this experiment, we 625

compare the performance of VALO and AnytimeLidar with 626

the CenterPoint75 baseline from which they are applied. 627

Fig. 11 shows the results. Fig. 11(a) compare how detec- 628

tion accuracy changes in relation to the varying deadline 629

constraints. Fig. 11(b), on the other hand, compare the corre- 630

sponding deadline miss rates of the tested methods under the 631

deadline constraints. 632

Note first that, under the 350 ms deadline constraint, all 633

the methods can meet the deadline without a need for the 634

tradeoffs and demonstrate their maximum accuracy. When the 635
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Fig. 11. VALO versus AnytimeLidar on CenterPoint. (a) Detection accura-
cies. (b) Deadline miss rates.

deadline tightens, however, the CenterPoint baseline imme-636

diately begins to miss deadlines as it cannot adjust its637

computing demand according to the given deadline, resulting638

in a significant drop in accuracy. AnytimeLidar and VALO,639

on the other hand, can trade accuracy for lower latency (i.e.,640

anytime capable), and thus achieve improved performance641

as they can meet the deadlines better. However, when the642

deadline is 155 ms, AnytimeLidar starts to miss deadlines643

due to its limited anytime computing capability. But VALO644

respects the deadline constraints down to 90 ms and achieves645

higher accuracy.646

AnytimeLidar falls short of matching the effectiveness of647

VALO primarily due to dismissing the contribution of the 3-648

D backbone on the total latency. Moreover, AnytimeLidar’s649

effectiveness will be further reduced if a single detection head650

architecture, instead of the multihead detection architecture in651

this work, is used because its ability to make a tradeoff is in652

large part enabled by skipping a subset of the detection heads,653

which is possible only in the multihead architecture.654

In contrast, VALO can make fine-grained execution time655

and accuracy tradeoffs, primarily due to its ability to schedule656

a portion of the data to process, independent of the neural657

network architectural specifics, such as 3-D/2-D backbone or658

the number of detection heads. This distinct focus on the data659

makes VALO a more versatile framework that can be applied660

in any LiDAR object detection DNN.661

2) VALO Versus Other Nonanytime Baselines: Fig. 12662

shows the detection performance of VALO-CP75 and three663

other CenterPoint baselines. All the baselines have distinct664

execution time demands and accuracy they can deliver. For665

example, when the deadline is 350 ms, CenterPoint75 achieves666

the best accuracy among the three baselines. But when the667

Fig. 12. VALO versus CenterPoint variants.

deadline is 220 ms, CenterPoint75’s accuracy falls down to 668

zero because it no longer is able to meet the deadline. On 669

the other hand, CenterPoint200’s accuracy does not change 670

all the way down to the deadline of 155 ms as it can still 671

meet the deadline albeit at a somewhat lower accuracy. Note, 672

however, that these baseline models are fixed and cannot make 673

accuracy versus latency tradeoffs on the fly at runtime. VALO, 674

on the other hand, can adapt itself to a wide range of deadline 675

constraints from 90 to 350 ms on the fly while providing the 676

best possible accuracy for a given deadline constraint. 677

As an alternative way to adapt to the varying deadline 678

constraints on the fly, one can consider using multiple 679

DNN models of differing latency-accuracy tradeoffs (like 680

CenterPoint75, 100, and 200 in this experiment) and switch 681

between them depending on a given deadline constraint at 682

runtime as done in [4]. However, the problems of such an 683

approach are that it needs to train, fine-tune, and manage all 684

these models separately. Furthermore, these models need to be 685

loaded into the precious (GPU) memory all the time for the 686

real-time operations, even when only one of them is actually 687

used at a time. In contrast, VALO can make such tradeoffs at 688

runtime from a single model without requiring any additional 689

memory overhead. 690

3) VALO on VoxelNext: To demonstrate VALO’s versatility, 691

we applied it to the VoxelNext [3], which has a signif- 692

icantly different architecture than the CenterPoint. Unlike 693

CenterPoint, VoxelNext does not use a 2-D backbone and 694

instead relies solely on the 3-D sparse convolution layers. 695

Fig. 13 shows the result. As in the CenterPoint case, VALO- 696

VN75 performs better than the baselines in all the deadline 697

constraints. The region scheduling (Section IV-B) allows 698

VALO-VN75 to dynamically adjust the time spent on the 699

3-D backbone and the detection heads effectively, effectively 700

making it anytime capable. 701

4) Effectiveness of Time Prediction: The effectiveness of 702

VALO’s region scheduling critically depends on the accu- 703

racy of its time prediction (Section IV-C). To evaluate the 704

effectiveness of the proposed history-based time prediction 705

method, we compare its accuracy with a simple quadratic 706

prediction model that directly predicts the execution time of 707

the entire 3-D backbone from the number of input voxels 708

(as opposed to predicting per block-based prediction in our 709

proposed history-based time prediction approach). We denote 710

this baseline method as quadratic whereas our history-based 711

approach as history. 712
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Fig. 13. VALO on VoxelNext.

Fig. 14. Cumulative distribution function of time prediction error for history-
based and baseline methods.

Fig. 14 compares the accuracy of both time prediction713

methods in predicting 3-D backbone execution time against the714

evaluation dataset. As can be seen in the figure, our history-715

based prediction method significantly outperforms the baseline716

quadratic method, which helps reduce deadline violations and717

improve detection accuracy.718

B. Ablation Study719

In this experiment, we investigate the contribution of region720

scheduling and forecasting by comparing VALO with its two721

variants explained below. We also include the CenterPoint75722

baseline for comparison.723

1) VALO-NSNF-CP75: This variant of VALO operates724

without scheduling (Section IV-B) and forecasting725

(Section IV-E), hence denoted as “no scheduling no fore-726

casting” (NSNF). However, it does perform detection727

head optimization (Section IV-F).728

2) VALO-NF-CP75: This variant of VALO performs729

region scheduling (Section IV-B) and detection head730

optimization (Section IV-F), but not forecasting731

(Section IV-E).732

Fig. 15 presents the experimental results where we observe733

improved performance as additional VALO components are734

introduced to the baseline CenterPoint75. First, VALO-735

NSNF-CP75 achieves a higher accuracy over the baseline736

CenterPoint75 when the deadline is tighter than 350 ms. For737

instance, at the 285 ms deadline, VALO-NSNF-CP75 matches738

the accuracy of CenterPoint75 at 350 ms. This underscores the739

effectiveness of the detection head optimization in reducing the740

execution time without compromising accuracy. Next, VALO-741

NF further improves accuracy across a wider range of deadline742

constraints by enabling region scheduling because it can make743

Fig. 15. Detection accuracy achieved by the variants of VALO.

execution time and accuracy tradeoffs, preventing deadline 744

misses and boosting accuracy over VALO-NSNF. Finally, 745

VALO achieves the highest accuracy across all the deadline 746

constraints by additionally utilizing forecasting, which is 747

particularly effective on the tight deadlines. This is because 748

forecasting plays a more crucial role when the number of 749

scheduled regions reduces as the deadline tightens. 750

C. Component-Level Timing Analysis 751

In this experiment, we delve into the execution timing 752

characteristics of the components of VALO when it is applied 753

to the CenterPoint75. 754

Fig. 16 shows the execution timing of the 3-D backbone, 755

2-D backbone, and detection heads. For each component, 756

we consider five different cases. The first two involve using 757

CenterPoint75 and VALO-CP75, where there is no deadline. 758

The remainder are the results of VALO-CP75 executed with 759

220, 115, and 90-ms deadline constraints, respectively. 760

1) 3-D Backbone: Fig. 16(a) shows the execution time pro- 761

file of the 3-D backbone portion of the network. Note first that 762

the CenterPoint75 baseline shows a high degree of variations, 763

influenced by the varying count and positioning of the input 764

voxels. When there is no deadline, the time spent on the 3-D 765

backbone of VALO-CP75 is about the same as CenterPoint75 766

as expected. As the deadline gets tighter, however, VALO’s 767

execution time of the 3-D backbone is progressively reduced 768

because its region scheduler dynamically selects a subset of 769

input regions that can be executed within the given time 770

budget. 771

2) 2-D Backbone: Fig. 16(b) shows the execution time 772

profile of processing the 2-D backbone, where the convolutions 773

on the dense tensors take place. Unlike the 3-D backbone 774

processing, even when there is no deadline, we can observe 775

a notable decrease in the execution time in VALO compared 776

to the CenterPoint75 baseline. This is because our data 777

partitioning scheme (Section IV-B), which exploits the sparsity 778

of the LiDAR data, can skip empty input regions in the 2-D 779

backbone, thus reducing latency. As the deadline get tighter, 780

we also observe a further reduction in the execution time of 781

the 2-D backbone as a result of reduced input data selected 782

by the scheduler. 783

3) Detection Heads: Fig. 16(c) shows the execution time 784

profile of processing the detection head. Note first that, we 785

observe more than 50% reduction in detection head process- 786

ing latency on VALO-CP75 compared to the CenterPoint75 787
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(a) (b) (c)

Fig. 16. Component-level execution time profile of the baseline and VALO on Centerpoint75 under different deadline constraints. (a) 3-D backbone (Voxel
encoder). (b) 2-D backbone (RPN). (c) Detection head (CenterHead).

baseline even when there is no deadline constraint. This is788

due to the proposed detection head optimization described in789

Section IV-F, which significantly reduce the amount of data to790

be processed by eliminating the redundant data. In addition,791

as the deadline get tighter, we again observe progressive792

reduction in the execution time in VALO due to further793

reduction in the input data to the detection head thanks to its794

scheduler.795

4) Overhead: We measured 3 ms of scheduling overhead796

in the worst case, including the input filtering time. There is797

also 3 ms overhead due to the voxel counting operations as798

a part of history-based time prediction. We did not observe799

any overhead incurred by the forecasting operation when the800

end-to-end latency is considered, as it is efficiently executed801

in parallel with the backbones. Note that, the total overhead of802

VALO on the CenterPoint75 is only about 6 ms, which is less803

than 2% of the average execution time of the CenterPoint75.804

VI. RELATED WORK805

Timely execution of autonomous driving software is essen-806

tial to ensure safe and efficient navigation. Traditionally, the807

timing requirements (i.e., deadlines) of the autonomous driving808

tasks are often fixed at the design time [22], [23], which is not809

adaptable to the highly varying execution time demands [24].810

Recently, Gog et al. [4] have highlighted the potential benefits811

of adopting a flexible approach, which can dynamically change812

deadlines in the autonomous driving software based on the813

specific driving situation, such as the speed of the vehicle or814

sudden pedestrian appearance to improve the performance and815

safety of the vehicle.816

LiDAR object detection is a critical component in many817

autonomous driving systems [25]. With the release of large-818

scale autonomous driving datasets [12], [26], researchers have819

developed deep learning-based object detection models that820

achieve the state-of-the-art performance. Besides aiming to821

achieve high accuracy, the recent work has also considered822

reducing latency as an objective [1], [2], [3], [27], [28],823

[29], [30] for the real-time operation. These works can824

achieve remarkable accuracy in real time when executed on825

high-end GPUs and accelerators. However, their deployment826

on the edge computing platforms, such as Jetson AGX827

Xavier [13] still poses a challenge due to their significant828

computational overhead and latency. More importantly, they 829

lack the capability to dynamically adapt their execution time 830

in a deadline-aware manner, which is needed for the real-time 831

cyber–physical systems. 832

Recent studies have explored the concept of “anytime 833

perception” for the neural networks, which enables them 834

to execute within defined deadlines while making trade- 835

offs between execution time and accuracy. For example, 836

Kim et al. [6] achieved this by iteratively adding layers to an 837

image classification network and retraining it to incorporate 838

“early exits.” Lee and Nirjon [31] focused on the neuron 839

level, prioritizing critical neurons for accuracy while deac- 840

tivating the others to save time. Bateni and Liu [7] used 841

perlayer approximation instead of early exits and presented 842

a scheduling solution for the multiple DNN tasks. Yao et al. 843

[8] also dealt with the scheduling of multiple DNN tasks, 844

utilizing imprecise computation alongside early exits. While 845

these works primarily targeted image classification tasks, 846

object detection tasks present unique challenges. 847

Heo et al. [32] introduced a multipath DNN architecture 848

designed for anytime perception in vision-based object detec- 849

tion. Another work by the same Heo et al. [33] designed 850

an adaptive image scaling method that respects the deadline 851

constraints for the multicamera object detection task. Gog et al. 852

[34] proposed to switch between the DNNs to make latency 853

and accuracy tradeoffs dynamically at runtime. Hu et al. [35] 854

suggested reducing the resolution of less critical parts of the 855

scene to lower computational costs. Lie et al. [9], [36] divided 856

individual image frames into smaller subregions with varying 857

levels of criticality, using the LiDAR data to batch-process 858

essential subregions to meet deadlines. However, these prior 859

efforts mainly focus on 2-D vision and do not account for the 860

unique characteristics of the 3-D point cloud processing. 861

Recently, Soyyigit et al. [11] proposed a set of techniques 862

that enable anytime capability for the LiDAR object detection 863

DNNs. They focused on the object detection models where 864

the bulk of the computation is performed on the 2-D backbone 865

and detection heads, such as PointPillar [2] and Pillarnet [27]. 866

However, the effectiveness of their approach diminishes on the 867

recent state-of-the-art object detection models where the bulk 868

of time is spent on the 3-D backbone [1], [3]. Fundamentally, 869

such effort that focuses on the model-level improvements may 870

fail to work when the architecture of the model changes. 871
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In contrast, our work focuses on the data-level scheduling,872

independent of the architectural details of the backbones and873

detection heads, and thus can be seamlessly applied to any874

state-of-the-art LiDAR object detection DNNs.875

VII. CONCLUSION876

In this work, we presented VALO, a versatile anytime877

computing framework for the LiDAR object detection DNNs.878

VALO’s superior performance compared to the prior state-of-879

the-art comes from three major contributions: 1) partitioning880

the input data into regions and efficiently scheduling them881

with the goal of maximizing accuracy while respecting the882

deadlines; 2) lightweight forecasting of the previously detected883

objects to mitigate the potential accuracy loss due to par-884

tially processing the input; and 3) and intelligently reducing885

redundant computations in processing the detection heads of886

the object detection neural network with no loss of accuracy.887

Evaluation results have shown that our approach can adapt888

to a wide-range of deadline constraints in processing the889

LiDAR object detection DNNs, and enables a fine grained and890

effective execution time and accuracy tradeoff.891
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