
1

Arch2End: Two-stage Unified System-level
Modeling for Heterogeneous Intelligent Devices

Weihong Liu, Zongwei Zhu∗, Boyu Li, Yi Xiong, Zirui Lian, Jiawei Geng, and Xuehai Zhou, Member, IEEE,

Abstract—The surge in intelligent edge computing has pro-
pelled the adoption and expansion of Distributed Embedded
Systems (DES). Numerous scheduling strategies are introduced to
improve the DES throughput, such as latency-aware and group-
based hierarchical scheduling. Effective device modeling can help
in modular and plug-in scheduler design. For uniformity in
scheduling interfaces, a unified device performance modeling is
adopted, typically involving system-level modeling that incorpo-
rates both hardware and software stacks, broadly divided into
two categories. Fine-grained modeling methods based on hard-
ware architecture analysis become very difficult when dealing
with a large number of heterogeneous devices, mainly because
much architecture information is closed-source and costly to
analyze. Coarse-grained methods are based on limited architec-
ture information or benchmark models, resulting in insufficient
generalization in the complex inference performance of diverse
DNNs. Therefore, we introduce a two-stage system-level modeling
method (Arch2End), combining limited architecture information
with scalable benchmark models to achieve a unified performance
representation. Stage one leverages public information to analyze
architectures in a uniform abstraction and to design benchmark
models for exploring device performance boundaries, ensuring
uniformity. Stage two extracts critical device features from end-
to-end inference metrics of extensive simulation models, ensuring
universality and enhancing characterization capacity. Compared
to the state-of-the-art methods, Arch2End achieves the lowest
DNN latency prediction relative errors in the NAS-Bench-201
(1.7%) and real-world DNNs (8.2%). It also showcases superior
performance in inter-group balanced device grouping strategies.

Index Terms—distributed embedded system, scheduling, het-
erogeneous device modeling, hardware architecture, end-to-end
inference, latency prediction, device grouping

I. INTRODUCTION

Artificial Intelligent (AI) edge computing offloads many
Deep Neural Network (DNN) tasks to embedded devices
closer to data sources to alleviate the computation and commu-
nication burdens on the cloud [1], [2]. Distributed Embedded

This work was supported by the National Key R&D Program of China
(2022YFB4501600), the National Natural Science Foundation of China (No.
62102390), the special fund for Jiangsu Natural Resources Development (In-
novation Project of Marine Science and Technology, No. JSZRHYKJ202218),
and the National Key Laboratory of Science and Technology on Space Mi-
crowave (No.HTKJ2022KL504021). (Corresponding author: Zongwei Zhu.)

Weihong Liu, Yi Xiong, Zirui Lian, Jiawei Geng and Xuehai Zhou
are with the School of Computer Science and Technology, University of
Science and Technology of China, Hefei 230026, China and also with
the Suzhou Institute for Advanced Research, University of Science and
Technology of China, Suzhou 215123, China (e-mail: {lwh2017, xiongyi,
ustclzr, gjw1998}@mail.ustc.edu.cn, xhzhou@ustc.edu.cn).

Zongwei Zhu and Boyu Li are with the School of Software Engineering,
University of Science and Technology of China, Hefei 230026, China and also
with the Suzhou Institute for Advanced Research, University of Science and
Technology of China, Suzhou 215123, China (e-mail: zzw1988@ustc.edu.cn,
llbbyy@mail.ustc.edu.cn).

Systems (DES), composed of multiple embedded devices,
enhance the performance of processing local data in AI edge
scenarios through cooperative scheduling among devices [3].
As DES scales up, various performance-aware scheduling
strategies are introduced to enhance the DES throughput [4],
[5], outperforming the non-performance-aware strategies [6].

In recent years, the implementation of DES schedulers has
tended to be modular and plug-in, necessitating unified and
device-independent interfaces [7]. However, as the embedded
device ecosystem becomes increasingly diverse [8], hetero-
geneous devices often employ specific analysis methods for
performance awareness [9]–[12], posing significant challenges
to designing unified interfaces. Thus, providing a unified in-
terface through unified device modeling is critical to facilitate
the understanding of device performance [13], [14]. Effective
device modeling captures the unique characteristics of each
device type, facilitating the specification of heterogeneous
devices, the unified design of scheduler interfaces, and the
rapid validation of scheduling strategies [15]. For instance,
with a manageable number of tasks (m) and device types (n),
unified device modeling aids schedulers in designing consis-
tent interfaces to perceive heterogeneous device performance
and predict DNN inference latencies, serving as a basis for
scheduling [16]; with significantly large m and n, the costs
of task scheduling and latency acquisition escalates. Hierar-
chical scheduling reduces complexity by dividing autonomous
regions, such as device grouping in Pigeon [17]. unified device
modeling provides standardized performance metrics for inter-
group balanced device grouping strategies.

In recent years, device modeling methods have been broadly
categorized into two types based on the depth of analysis of
the hardware architecture: fine-grained and coarse-grained.

Fine-grained modeling methods characterize device per-
formance by delving into hardware architecture features and
operational implementation details, invariably entailing high
analysis costs and dependence on detailed device information.
Some work such as Timeloop [9], MAESTRO [10], and nn-
Meter [11] focus on the detailed analysis of DNN opera-
tor implementations and inference processes, including data
mapping, memory reuse, causality, and operator fusion opti-
mization techniques. Such analyses require thorough hardware
architecture information and entail high costs, with nn-Meter
reporting an analysis time cost of up to several days per device
[11]. More seriously, hardware design details of intelligent
devices are often considered proprietary by manufacturers and
are not publicly disclosed, thus hindering such analyses.

Coarse-grained modeling methods utilize publicly avail-
able architecture configurations or end-to-end measured met-



2

rics to evaluate device performance fairly, circumventing the
significant overhead associated with in-depth architecture anal-
ysis. However, such methods fail to accurately represent the
complex inference performance of DNNs on heterogeneous
devices. For instance, the instruction-level Roofline model [18]
characterizes device differences by analyzing peak instruction
throughput during computation, offering a unified yet impre-
cise perspective. PCN [16] and Glimpse [19] rely solely on
available hardware configurations for predicting DNN latency
but fail to represent devices with different architectures uni-
formly (e.g., GPUs and NPUs). Either expansion or merging
of configuration vectors leads to a significant reduction in
the device characterization capability. MLPerf [20], AIPerf
[21], and HELP [22] have introduced benchmark suites for
heterogeneous devices to evaluate performance comparisons
of specific DNNs fairly, such as ResNet-50 and MobileNet-
v1. However, their limited benchmark models cannot cover
DNNs with different network structures or operators.

To simultaneously tackle the challenge of different archi-
tecture configurations and the limited coverage of benchmark
models, we are motivated to combine both for a more com-
prehensive evaluation of heterogeneous device performance.
Our primary objectives are to 1) design benchmark models
based on limited architecture information for a unified coarse-
grained representation of devices and 2) develop a generator to
extend the coverage of benchmark models, extracting a unified
representation of devices from extensive models.

Therefore, this paper presents a two-stage system-level
modeling method (Arch2End) for heterogeneous devices to
tackle significant architectural differences and partially dis-
closed device information. Stage one abstracts performance
differences of heterogeneous devices into three dimensions and
categorizes benchmark models based on partial information,
roughly delineating the performance differences of devices
under diverse boundary conditions. Stage two extracts black-
box features from extensive simulated model inference metrics
to compensate for the lack of performance perception due to
unknown device information. Ultimately, Arch2End integrates
features from both stages to support downstream tasks.

In summary, our main contributions are as follows:
• The proposed Arch2End is a unified device modeling

method, integrating public architecture information and
end-to-end inference metrics to deliver generalized and
precise performance vectors for heterogeneous devices.

• Leveraging public device information, we analyze device
performance from the architecture’s computation, mem-
ory, and communication dimensions. The types of bench-
mark models for each dimension are defined and designed
to systematically explore the performance boundaries.

• Utilizing a scalable simulation model generator, we apply
the linear fitting technique to reduce the dimensionality
of extensive simulation model metrics, thus providing a
comprehensive representation of device performance via
a standardized vector.

• Arch2End is evaluated on GPUs and NPUs. It achieves
the lowest DNN latency prediction relative errors in the
NAS-Bench-201 (1.7%) and the real-world DNNs (8.2%)
and outperforms in inter-group balanced device grouping.

TensorFlow PyTorch Caffe MXNetCambricanDeep Learning 
Framework ···

Graph
Compiler XLA Glow TVM ···

GPUs NPUs TPUs

Cores Memory Cache/Buffer FrequencyBandwidths

Hardware 
Architecture

FPGAs

···
···

Operator 
Library MKLDNN CuBLAS OpenBLAS ···Eigen

Fig. 1. Device system stack containing multiple heterogeneous dimensions.
Hardware architecture includes microarchitecture and configuration.

II. MOTIVATION

A. Limitations of Fine-grained Modeling Methods on Hetero-
geneous Devices

In pursuit of high-performance DNN inference in DES, over
100 companies are currently dedicated to advancing custom
hardware architectures and software frameworks [23]. As
illustrated in Fig. 1, dimensions such as hardware architecture,
operator library, graph compiler, and deep learning framework
offer a wide array of choices [24], [25]. The combinations of
these options result in numerous heterogeneous devices with
varying performance levels. The intricate heterogeneity and
lack of publicly available information about these devices limit
users’ understanding of the devices they intend to model and
evaluate, preventing in-depth feature analysis.

Most fine-grained modeling mothods are restricted by their
reliance on invasive analysis tailored to specific heterogeneous
dimensions in Table I. The application of these methods in
heterogeneous scheduling scenarios faces several challenges:

Hardware Information Support: Invasive modeling is typ-
ically associated with hardware architecture information; how-
ever, both excessive reliance and insufficient consideration are
inappropriate. For instance, Timeloop [9] and MAESTRO [10]
require detailed architecture information, such as configuration
information of components and data flow patterns, to model
device performance, which is impractical for devices with
undisclosed information. In contrast, nn-Meter [11] designs
kernel-level test cases that do not depend on architecture
information, potentially failing to explore the performance
boundaries illustrated in Fig. 5 due to the omission of device-
specific cases.

Operator Library Support: The increasing complexity of
operator implementations poses challenges for device perfor-
mance modeling. Techniques like operator fusion significantly
enrich the operator library and enhance inference performance.
The nn-Meter [11] develops specific performance prediction
models for each device to account for variations in the opera-
tor library dimension. However, gathering substantial device
performance data to train these models requires extensive
analysis efforts and time costs (up to 4.4 days per device)
[11]. Furthermore, such specific prediction models contradict
the premise of unified device modeling.

These challenges lead to a reliance on detailed architectural
information and significant costs, highlighting the impracti-
cality of these methods in heterogeneous scenarios requiring
unified and generalized device performance modeling. Further-
more, the commercial applications of intelligent devices often
avoid delving into specific heterogeneous dimensions, opting
instead to model devices comprehensively [15].



3

TABLE I
DESCRIPTION OF ARCHITECTURE INFORMATION AND INTRUSIVE ANALYSIS REQUIRED FOR FINE-GRAINED MODELING METHODS.

Methods Architecture information Intrusive analysis of operator realization processes
Timeloop [9] Including the number of

processing elements (PEs), the
size of hierarchical memory
resources, and the structure of
interconnection networks.

Data flow: how the accelerator schedules operations and data under different architecture configurations?

MAESTRO [10] Data mapping: how to efficiently map and execute DNNs on a given architecture configuration, involving
data reuse and execution order?

nn-Meter [11] Operator library: it focuses on analyzing graph optimization techniques for different devices, such as
operator fusion.

Challenge 1. The device modeling process should be based
on public information to describe system-level performance of
devices, including hardware and its bundled software stack.

B. Inadequate Device Characterization for Coarse-grained
Modeling Methods

NAS-Bench-201 [26], a public dataset of diverse neural
networks, is frequently used to evaluate the representational
capabilities of heterogeneous device modeling through multi-
device latency prediction accuracy. We can contrast the rep-
resentational capacity of different device modeling results by
varying the device feature inputs to the prediction model.

Device Feature
(PCN, MLPerf, HELP, PCN+HELP)

Model Feature
(Encoded vectors in NAS-Bench-201) Prediction 

Model in 
PCN

Model
Inference 
Latency 

Input
Output

Fig. 2. Model latency prediction. The prediction model employs a neural
network with a self-attention module, as mentioned in PCN [16], employing
model features and device features as inputs and inference latencies as outputs.

The prediction experiment is shown in Fig. 2, and the rela-
tive prediction error is assessed via Absolute Percentage Error
(APE) [27], i.e., |At−Pt

At
|. At and Pt denote the actual and

predicted values at data point t, respectively. The experiments
compare the model latency prediction APE of different device
modeling methods in heterogeneous devices containing GPUs
and NPUs, whose details are elaborated in Section IV-A.

Due to the incomplete public disclosure of architecture
information, many architecture-aware methods such as PCN
[16] and Glimpse [19] rely solely on publicly available ar-
chitecture configurations from technical manuals for device
modeling. In the case of PCN, the APE of NAS-Bench-201
is shown in the upper part of Fig. 3. When heterogeneous
devices are composed solely of GPUs or NPUs, the prediction
accuracy within a 10% APE range can reach 97.1% and 96.3%,
respectively. However, when heterogeneous devices include
a combination of GPUs and NPUs, the prediction accuracy
within the same error range drops to 85.9%. This decrease is
attributed to the limited architecture configuration’s inability
to represent complex heterogeneous devices, affecting latency
prediction accuracy across diverse DNNs.

Similarly, as shown in the lower part of Fig. 3, device
modeling methods based on end-to-end measured metrics such
as MLPerf [20] and HELP [22] also show lower accuracy, with
only 72.3% and 86.8% accuracy within a 10% APE range,
respectively. Although the real-world model inference latency
directly reflects device performance, the limited coverage of
test cases selected by such methods fails to characterize device
performance across diverse DNNs. Surprisingly, we find that
combining architecture information with end-to-end measured

Fig. 3. Relative error distributions of latency prediction for NAS-Bench-201.
The upper part represents the application of PCN on different sets of devices,
and the lower part represents the application of different modeling methods
on a set of GPUs and NPUs.

data yields better prediction results, achieving 93.1% accuracy
within a 10% APE range. This suggests that architecture infor-
mation and end-to-end inference metrics are complementary
in characterizing device performance.

Challenge 2. Due to limitations in architecture information
and the coverage of benchmark models, it is challenging to
ensure the universality of coarse-grained modeling methods
across diverse devices and DNNs, resulting in lower DNN la-
tency prediction accuracy. Effectively integrating architecture
information and end-to-end inference metrics for modeling
presents a viable solution to this challenge.

In summary, fine-grained modeling methods are signifi-
cantly limited due to an overreliance on hardware architec-
ture information. Meanwhile, although generalizable across
heterogeneous devices, coarse-grained modeling methods face
substantial challenges in performance modeling for diverse
DNNs due to the limitations in architecture information and
the coverage of benchmark models. Therefore, how to effec-
tively integrate these two types of characteristics to develop
a better and more universal device modeling method is the
problem that Arch2End is proposed to address in this paper.

III. ARCH2END DESIGN

This section introduces a two-stage unified system-level
modeling method (Arch2End) for heterogeneous devices and
the details of its two stages.

A. Overview Design

Fig. 4 illustrates the two-stage unified system-level mod-
eling method (Arch2End) for heterogeneous devices, en-
compassing architecture-aware benchmark model design and
black-box modeling of end-to-end inference metrics. Innova-
tively, Arch2End abstracts device performance into a three-
dimensional space composed of computation, storage, and



4

Heterogeneous 
Devices

Black-box Modeling Features: 
	𝐻𝐸 = [𝑤!, 𝑤", . . . , 𝑤#]

Model-Latency Pairs
Train

Linear 
Fitting

𝑓(𝑥) = .𝑤#×𝑥#

$

#%!

Prediction for Single Device

Computation Architecture

Memory Hierarchy

Data Communication

Architecture-aware 
Benchmark Model 

Set

Real-world 
Model Set

Architecture-aware  Features:  
𝐻𝑃 = [𝑝!, 𝑝", . . . , 𝑝#]

Unified Device Modeling Vector: 𝑯𝑨 = [𝑯𝑷,𝑯𝑬]

Test

...

TestSimulation 
Model

Generator

Stage one: Architecture-aware Benchmark Model Design Stage two: Black-box Modeling of End-to-end Inference Metrics

...
Build

MLU270

NVIDIA P4

Jetson AGX

MLU220

Fig. 4. An overview of Arch2End. Stage one, positioned on the left, analyzes various architectures across three dimensions and designs corresponding
benchmark models, using their inference latencies as architecture-aware features. Stage two, located on the right, introduces a scalable simulation model
generator to gather extensive latency data and extracts device black-box modeling features based on linear fitting.

Computation

MemoryCommunication

Benchmark Models in Stage One
Simulation Models in Stage Two
Device Performance Boundary

Fig. 5. The positions of benchmark and simulation models within the device
performance boundary.

communication, as depicted in Fig. 5. The inference of DNNs
is represented as probing the device’s capabilities across
these three dimensions (i.e., a point in the space). Thus,
comprehensive model sampling within the device performance
boundaries, supported by their inference metrics, serves as the
basic data for device performance modeling.

As shown on the left side of Fig. 4, stage one, abstracts
intelligent devices using limited available information to cope
with significant architectural variations and undisclosed details
among heterogeneous devices. It analyzes various architectures
from computation, memory, and communication dimensions.
Benchmark models corresponding to these three dimensions
are designed to explore the performance boundaries of differ-
ent devices, maximizing the distinction of device performance
differences and taking the model’s inference latency as an
architecture-aware feature. As shown on the right side of
Fig. 4, stage two introduces a scalable simulation model
generator based on a real-world model set, enabling random
sampling within the boundary to compensate for the insuffi-
cient sampling rate of benchmark models in space. To handle
the extensive data collected from numerous simulation models,
Arch2End treats the device inference process as a black-box
function that outputs inference latency, thus achieving feature
dimensionality reduction through linear fitting. The fitted
parameter vector becomes the device’s black-box modeling
feature. Finally, the unified device modeling vector includes
architecture-aware and black-box modeling features.

B. Stage one: Architecture-aware benchmark model design

As shown in Fig. 6, differences among intelligent devices
are primarily manifested in three dimensions: computation
architecture, memory hierarchy, and data communication [25].
First, different computational architectures in Fig. 6(a) offer
varied acceleration benefits for operators, which is the most
critical factor in device heterogeneity. Moreover, varying mem-
ory hierarchies in Fig. 6(b) affect the data access patterns
during inference, leading to variations in device performance.
Lastly, data communication in Fig. 6(c) influences the ef-
ficiency of data exchange between different memory levels
during inference, which is closely related to device infer-
ence latency. Therefore, this stage focuses on constructing
an architecture-aware benchmark model set based on public
information, delineating the performance disparities of devices
under boundary case conditions. Taking the ten devices men-
tioned in Section IV-A as examples, Table II lists cases of
benchmark models designed from three dimensions.

1) Computation Architecture: Intelligent devices can be
broadly categorized into Temporal Architecture and Spatial
Architecture [25], as shown in Fig. 6(a).

Devices based on Temporal Architecture, such as CPUs
and GPUs, are typically designed using Single-Instruction
Multiple-Data (SIMD) or Single-Instruction Multiple-Threads
(SIMT) parallel computing models. Multiple computational
units can execute a single instruction in parallel. An external
scheduler centrally controls these units and exchanges data
mainly through shared memory. Temporal Architecture devices
offer computational flexibility while accelerating inference.

Representatives of devices based on Spatial Architecture
include Google’s TPU and MIT’s Eyeriss, which often em-
ploy multiple homogeneous Processing Elements (PEs) in a
spatial array. PEs are interconnected via the Network on Chip
(NoC) and have independent computation, Register File (RF),
and control components. This setup facilitates data transfer
between PEs and supports various dataflow patterns to reuse



5

Memory Hierarchy

Control

Temporal Architecture

Memory Hierarchy

Control

Computation

PE

Spatial Architecture

Control

RF

Computation

ALU

(a) Computation Architecture

FP64 INT8 FP32 Tensor
core

Register File
16384 x 32bit

L1 Data Cache/Shared Memory
128KB

Global Memory

Stream Multiprocessor

X4
X8

NVIDIA AGX Xavier

DRAM

X4

Inst RAM 64KB

IPU
Control

Unit

Weight RAM 1MB

Neural RAM 1MB

Shared 
Memory

2MB

Arithmetic 
Unit

MPU
Control

Unit

Cambricon MLU270

X4

Cluster

PE

Weight 448 bytes (SRAM)

Input 24 bytes (Registers)

Output 48 bytes (Registers)

MIT Eyeriss

Arithmetic 
UnitOff-Chip

DRAM

Global 
Buffer
108KB

(b) Memory Hierarchy

Host Memory

PE ...
Computing

Core

Device Memory

Computing Core

Buffer

PE ...

②

①

③

②

②

③

(c) Data Communication

Fig. 6. Different architecture cases for heterogeneous devices in three dimensions: (a) computation, (b) memory, and (c) communication.

intermediate data in computations, such as weight-stationary,
output-stationary, and row-stationary. Spatial architecture de-
vices are more efficient for matrix multiplication and addition
due to their data flow design, but they lack efficient support
for nonlinear functions and complex irregular operations.

Furthermore, many commercial intelligent devices, such
as Cambricon MLU and Huawei Ascend 910, integrate the
advantages of both architectures through a hybrid architectural
design approach. Based on the analysis of computation archi-
tectures presented, we propose designing benchmark models
for computation architecture from three perspectives.

• Architectural affinity benchmark is devised to delineate
the distinct advantages and disadvantages of the two
architectures. Considering the differing sensitivities of
these architectures to data reuse patterns in convolution
operations [10], this benchmark can be constructed with
convolutional operators that vary in data dimensions.

• General computational benchmark aims to evaluate the
quantity and capability disparities of general computing
units using the most common computational tasks. Given
that the current demand for computational power predom-
inantly arises from convolution and matrix multiplication,
this benchmark may involve convolutional layers and ma-
trix multiplication tasks of varying computational scales.

• Special computational benchmark measures the com-
putational power of specialized device components by
designing nonlinear and sparse cases. Many intelligent
devices have incorporated support for unique computation
modes, such as exponential operations, max operations,
and sparse computations. Lack of support for these op-
erations on devices can result in offloading to the CPU,
significantly impacting device performance [28].

2) Memory Hierarchy: Fig. 6(b) illustrates the memory
hierarchy in intelligent computing devices, with the NVIDIA
AGX Xavier, MIT Eyeriss, and Cambricon MLU270 serving
as exemplars of temporal, spatial, and hybrid architecture
devices, respectively. AGX consists of eight Streaming Mul-
tiprocessors (SMs) that share data via the Global Memory.
Each SM incorporates four processing blocks, which share
data through shared memory and are capable of flexible
logical partitioning according to task requirements. Eyeriss
connects to off-chip storage through a monolithic design. Its
on-chip PE array temporarily stores and shares data through
a global buffer, with each PE independently housing on-chip
scratchpad memory for inputs, weights, and outputs. MLU270
comprises four Clusters and off-chip memory. Each Cluster
comprises four Intelligent Processing Units (IPUs) and one

Memory Processing Unit (MPU), with the MPU facilitating
data exchange between IPUs and across Clusters.

The data analysis from Fig. 6(b) reveals that intelligent
devices typically feature multi-level memory hierarchies with
varying capacities and functionalities. The capacity differences
across memory levels lead to varied preferences for tasks
with different memory demands. For instance, the AGX and
Eyeriss, with their numerous smaller registers, offer better
performance for small convolution tasks. In contrast, the
MLU270, equipped with larger buffer capacities, provides
enhanced support for large convolution tasks with greater reuse
distances. Beyond memory capacity differences, the division
proportion of buffers across different devices also varies, re-
sulting in distinct task affinities. Devices with larger activation
buffers are better suited for tasks with larger feature maps,
while those with larger weight buffers are more favourable for
tasks with larger parameter sizes. Thus, benchmark models are
designed from two perspectives:

• Memory scale awareness benchmark: Models with
varying magnitudes of total memory sizes are designed
to probe the memory boundaries of different devices and
illustrate how task execution varies with memory size.

• Memory distribution awareness benchmark: Under
equal total memory sizes, models with different memory
distributions (e.g., larger input activations, larger weight
parameters) are designed to reflect the functional differ-
ences in memory across devices distinctively.

3) Data Communication: Fig. 6(c) illustrates that the data
communication impacting DNN inference latency in intelligent
devices primarily consists of three parts: ¬ loading DNN
and data, ­ communication between computing cores during
parallel computing, and ® intra-core communication.

Before task execution, DNNs and data must be loaded
from the host memory to the device memory. Ideally, the
communication process for input data overlaps with the neural
network’s inference process in a pipelined fashion. However,
the relative matching of computation and communication ca-
pabilities across different intelligent devices may cause overall
computational latency to be constrained by the data transmis-
sion rate. During task execution, most devices perform model
or data parallelism based on the number of computing cores.
For instance, in the Cambricon MLU270, the neural network
is replicated across different Clusters for data parallelism to
enhance inference throughput. Such inter-core communication
incurs significant communication costs due to the need for
network replication and frequent data exchanges. Intra-core
communication mainly arises from the execution process of



6

TABLE II
THE CASE OF ARCHITECTURE-AWARE BASELINE MODEL DESIGN WITH EXPERIMENTAL DEVICES AS AN EXAMPLE.

Dimension Benchmark Type Scale1(S)

Computation
Architecture

Architectural affinity
benchmark

Under the premise of keeping one or two values among CI, CO, KH, KW larger while reducing the others, ten
different convolution layers are derived, such as [1024, 1, 3, 3, 8, 8].

General computational
benchmark

1) Convolution layers [3/64/256/..., 64/256/1024/..., 3, 3, 56, 56]; 2) Matrix multiplication [50/500/5000/...,
50/500/5000/..., 50/500/5000/...].

Special computational
benchmark

1) Similar to the general component computing power benchmark, the sparsity ratio is set to 50%, 70%, 90%; 2)
Vectors of length 5000 are activated by functions such as Sigmoid, ReLU, Tanh, Softmax.

Memory
Hierarchy

Memory scale awareness
benchmark Construct convolution layers with large CI, CO, KH, KW, e.g., [64/128/..., 64/128/..., 3, 3, 112/224/..., 112/224/...].

Memory distribution awareness
benchmark

While maintaining the same total storage consumption as the memory scale awareness benchmark, vary parameters
to construct different input, output, and weight ratios, e.g., [64, 128, 3, 3, 112, 224], [128, 64, 3, 3, 112, 224].

Data
Communication

Host-to-device communication
benchmark Utilize MobileNet series networks, setting image sizes to 56x56, 224x224, 1024x1024, etc.

Inter-core communication
benchmark Employ ResNet and VGG series networks, configuring various batch sizes, e.g., 1, 4, 16, 64, 128, etc.

Intra-core communication
benchmark

1) Convolution + batch normalization + ReLU; 2) Convolution + ReLU; 3) Convolution + ReLU + Max-pooling; 4)
Residual block; 5) Transformer encoder module; 6) Transformer decoder module.

1 [CI, CO, KH, KW, FH, FW] respectively represent the number of input channels, output channels, kernel height, kernel width, input feature map height,
and input feature map width for a convolution layer; [i, j, k] denote the matrix multiplication operation between the i× j matrix and the j × k matrix.

operators within the neural network, including the process of
writing results back to memory and loading data for the next
operation. For DNN tasks with strong inter-layer data depen-
dencies, many approaches fuse multiple layers into a single
operator to avoid intermediate result write-back [29]. However,
due to differences in hardware architecture, compiler, and deep
learning framework support, there is considerable variation in
layer fusion and operator implementation across devices.

Thus, following the DNN execution process, we design
benchmark models from the following three perspectives.

• Host-to-device communication benchmark focuses on
the efficiency of data communication across the host
and device interface (e.g., PCIe), employing DNN with
shorter latencies to emphasize the impact of data trans-
mission on overall latency.

• Inter-core communication benchmark evaluates com-
munication efficiency by adjusting the DNNs’ batch size.
Different batch sizes can influence parallelism strategies
(e.g., model and data parallelism), affecting the commu-
nication cost during inference [30].

• Intra-core communication benchmark consists of op-
erators composed of numerous fusible layers, aiming to
reflect intra-core communication performance from the
perspective of layer fusion operator implementation.

4) Benchmark model design: Based on the preceding analy-
sis, an architecture-aware benchmark model collection (S) can
be designed using publicly available information on heteroge-
neous devices. Taking the ten devices mentioned in Section
IV-A as examples, Table II presents the cases of benchmark
model designs for three dimensions. The measured inference
latencies of the benchmark models can serve as architecture-
aware features of the devices, which can be described as:

HPhk
= [phk,x1 , phk,x2 , . . . , phk,xm ]

(hk ∈ Hξ, xi ∈ S),
(1)

where, phk,xi is the inference latency of the models (xi)
on the platform (hk), xi is the sample of the architecture-
aware benchmark model set (S). Moreover, as the number
of heterogeneous devices grows and more information is

disclosed, S can be expanded by exploring the architecture
information, thus showcasing the scalability of this method.

C. Stage two: Black-box modeling of inference latencies

Since stage one can only design a limited set of benchmark
models based on publicly available architecture information, it
inevitably falls short of covering device diversity adequately.
To compensate for the benchmark models’ limited capability
in perceiving device performance, stage two introduces a
black-box analysis method based on end-to-end inference
metrics, primarily comprising simulation model generation via
generators and device feature dimensionality reduction through
linear fitting, as shown in Fig. 4. Specifically, this stage
generates extensive simulation models through a model gen-
erator and deploys them on different devices to collect model-
latency data. However, the abundance of simulation models
may include highly similar structures or models that cannot be
inferred on some devices, leading to data pair redundancy and
gaps. To characterize device performance with more refined
vectors, we propose a feature dimensionality reduction strategy
based on linear fitting, mapping numerous data pairs to unified
fitting parameters. The normalized fitting parameters are the
device’s black-box modeling vector, enabling comprehensive
and unified device characterization.

Next, we focus on constructing the simulation model gen-
erator and the feature dimensionality reduction strategy.

1) Simulation model generator: Fig. 7 demonstrates the
three steps of the simulation model generator realization.

Network Architecture Abstraction. To simplify the con-
struction of simulation models, the generator abstracts the
continuous operator set with complex data dependencies in
the seed model into blocks, serving as the basic units for
simulation model design. It facilitates the fusion of different
model structures to generate the simulation model. Therefore,
variations in the operator set and model structure rules are cru-
cial for the quality of case generation, achievable through the
extraction of operator parameter spaces and model structure
parameter spaces from the seed models.

Parametrization. Operator parametrization guides the gen-
eration of blocks, including both static and dynamic param-



7

Real-world 
Model Set
(Seed Set)

...
Input Output

Block

(1) Model
Architecture 
Abstraction

RangeParameter Name

[14, 28, 56, 112, 224]Input planes

[conv, pool, norm, full]Number of layers

[1, 2, 3, 4, 5]branches

[Direct, Add, Concat]Connection

Representing with 
adjacency matrixDependency

(2) Model Structure Parameterization

RangeParameter 
Name

Parameter 
Type

[14, 28, 56, 112, 224]Input planesStatic 
Parameters [3, 32, 64, 128, 256, 512]Input channels

[14, 28, 56, 112, 224]Output planes

Dynamic 
Parameters

[32, 64, 128, 256, 512]Output channels

[conv, pool, norm, full]Network type

[1, 3, 5, 7]Kernel size

ReLu, Smigod, Tanh, ...Activation

[1, 2]Stride

[1, 2, 3, 4, 5]branches

[Direct, Add, Concat]Connection

(2) Operator Parameterization

Simulation Model Set (𝕏)

(3) Simulation 
Model Generation

Randomized network 
structural parameters Randomized network 

block parameters

Fig. 7. Simulation Model Generator. (1) The generator abstracts the parameter
types of operators and model structures from a seed set. (2) Ranges for
parameters are customized based on the types and dependencies of blocks
in real-world models. (3) Using randomly generated parameters, blocks are
integrated into the overall model structure to form a simulation model.

eters. Static parameters, determined by the previous layer,
encompass the plane and channel of input feature maps;
dynamic parameters are randomly generated at runtime within
specific ranges, including the output feature map plane and
channel, layer type, kernel size, activation, stride, branch, and
connection, ensuring diversity in operator types and connec-
tions within blocks. Model structure parametrization guides
the overall model structure definition, such as single-branch,
multi-branch, dual, and residual structures, parametrized by
input feature map plane, number of layers, branch numbers
per layer, and interlayer data dependencies.

Model Generation. After parametrizing operators and
model structures, determining the value range for the altered
parameters is essential. The generator identifies the value
boundaries of various parameters within the seed models, then
covers the design space with a value range slightly larger than
it, as shown in the tables in Fig. 7. Based on above parameter
space, the generator randomly varies model structure and net-
work block parameters, outputting the final simulation model
cases. The inference execution of numerous simulation
models involves both the software stack and hardware,
with their end-to-end latency reflecting the impact of
software-hardware collaboration on device performance.

2) Device feature dimensionality reduction strategy: Due
to the randomness, simulation models may be instances of
high similarity or inability to execute on some devices, leading
to redundancy and gaps in model-latency data pairs. This
section introduces a linear fitting-based feature dimensionality
reduction strategy to extract critical features related to device
capabilities from a large volume of data pairs. This strategy
begins with acquiring a vast collection of model-latency data
pairs via the simulation model generator, followed by extract-
ing key model features based on Pearson coefficients [31] of
the parametric features shown in Fig. 7; and finally, perform-
ing linear fitting on the model-latency data pairs using the
extracted model key model features as independent variables,
from which fitting parameters are derived as the unified device

Algorithm 1 Key Model Feature Extraction
Input: F : model features vector; T : latency; K: max-length of V ; E: linear

fitting error; ε: min-threshold of E.
Output: V : key model features
1: function KMFE(F , T )
2: Load F and T , Initialize V by NULL
3: while length of V less than K do
4: Calculate Pearson coefficient (P ) of features in F w.r.t. T
5: Select the feature with the largest P into V
6: Delete the selected feature from F
7: Calculate E of each feature in V after linear fitting
8: if E < ε then
9: break

10: end if
11: T ← E
12: end while
13: return V
14: end function

black-box modeling features. The dimensionality reduction
process is described in detail next.

Initially, we generate a set of simulation models and obtain
their inference latencies on each device as follows:

Simhk
= [yhk,x1

, yhk,x2
, . . . , yhk,xd

] (hk ∈ Hξ), (2)

where yhk,xi is the inference latency of the model (xi) on the
device (hk), xi is the sample of the simulation models (X),
fixed across all tasks for each device. For the size (d) of X,
we customize it based on the size of the seed model set and
randomly select d simulation models from the generator to
represent the complete DNN set.

Subsequently, the key model feature (V ) extraction process
based on Pearson coefficients [31] primarily identifies the
model features most correlated with inference latency from
the parametric feature (F ) depicted in Fig. 7. This process
reduces the feature dimensionality by eliminating irrelevant
features, decreasing the likelihood of overfitting downstream
tasks. Specifically, we select the model features with the
highest correlation coefficients for inclusion in the key feature
set V and continue extracting features using the linear residual
fitting method until the number of key model features reaches
a predetermined threshold (K), or the fitting error falls below
the min-threshold (ε). The procedure of extracting the key
model features is illustrated in the Algorithm 1.

The feature dimensionality reduction process extracts the
device’s black-box modeling features by fitting the relation-
ship between the feature set V and inference latencies y.
Specifically, a linear fitting function (Fhk

(·)) is trained on a
single device, with Vxi

as the input and yhk,xi
as the output.

The device’s black-box modeling features are the normalized
fitting parameters (whk

) corresponding to each key model
feature. The formal expression of the linear fitting function
is as follows:

Fhk
(Vxi ;whk

) =Vxi × whk
→ yhk,xi

(xi ∈ X, hk ∈ Hξ),
(3)

where parameters whk
is used for the linear fit of Vxi

to yhk,xi
.

Finally, the black-box modeling features of the device
are represented by the parameter vector of the linear fitting
function as follows:

HEhk
= [whk,1, whk,2, . . . , whk,n] (hk ∈ Hξ). (4)



8

D. Unified Modeling Result

The two stages offer distinct focal points for intelligent de-
vice modeling. Stage one is devoted to designing architecture-
aware benchmark model sets from computational, memory,
and communication dimensions using limited architecture in-
formation, employing benchmark model inference latency as
coarse-grained features for architecture awareness. Stage two
extracts device performance-related features from extensive
simulation model latency data through black-box analysis,
enabling comprehensive modeling analysis without needing
in-depth hardware architecture dissection. The unified device
modeling vector of Arch2End represents a combination of
features from both stages, summarized as follows:

HAhk
= [HPhk

, HEhk
] =[phk,x1 , phk,x2 , . . . , phk,xm ,

whk,1, whk,2, . . . ,whk,n] (hk ∈ Hξ).
(5)

Modeling Applications. HAhk
facilitates a quantitative

evaluation of heterogeneous device performance. HPhk
rep-

resents the benchmark model’s inference performance, serv-
ing as a direct metric for quantifying device performance.
HEhk

, derived from end-to-end inference latencies, offers a
comprehensive characterization of device performance within
the standardized vector. In practical applications, Arch2End
proves highly versatile. For instance, in predicting DNN infer-
ence latency across heterogeneous devices, HAhk

delivers an
all-encompassing performance overview of the device, which
is incorporated into the prediction model as a device feature
vector. For device grouping, HPhk

acts as a quantitative
performance indicator, contributing to the computational as-
sessment of device groups to maintain grouping result balance.

IV. EXPERIMENT AND EVALUATION

This section provides two case studies demonstrating
Arch2End’s practical application in intelligent scenarios. Case
1 utilizes Arch2End to predict DNN inference latency across
various datasets, including NAS-Bench-201 and real-world
DNNs. The prediction error is assessed via Absolute Per-
centage Error (APE), i.e., |At−Pt

At
|, where At and Pt denote

the actual and predicted values at data point t, respectively.
Additionally, accuracy metrics of 5%, 10%, and 15% are
used to gauge the proportion of models whose prediction
APE falls within these ranges. Case 2 explores inter-group
balanced device grouping, aiming to demonstrate the advan-
tages of Arch2End in device grouping. Specifically, devices are
grouped based on modeling features, and numerous random
task loads are constructed to test the execution latency of each
group. The standard deviation in execution latency serves as
a metric to assess the balance among device groups.

A. Experiment Setup

1) Heterogeneous Device Platforms: In order to realize a
highly heterogeneous scenario, the devices in this experimental
environment include a variety of GPUs and NPUs, whose
architectural specifications are shown in the public datasheets
on the official website [32], [33]. The GPUs include NVIDIA
P100, NVIDIA V100, NVIDIA TITAN XP, NVIDIA P4, Jetson
Xavier AGX, Jetson Xavier NX, and Jetson TX2. The NPUs

include Cambricon MLU220 and Cambricon MLU270. MIT
Eyeriss, implemented by the Timeloop simulator [9], is added
to ensure the completeness of the device types.

2) Datasets: The experiment datasets comprise the NAS-
Bench-201 dataset [26] and the real-world DNNs. NAS-
Bench-201, a public dataset of diverse neural networks, eval-
uates the representational capabilities of heterogeneous device
modeling through multi-device latency prediction accuracy.
The real-world DNNs includes DenseNet121, DenseNet169,
EfficientNetB0, EfficientNetB1, EfficientNetB2, ResNet50,
ResNet101, VGG11, VGG16, EdgeViT-XS, EfficientViT-M1 and
MobileViT-XS, employed to assess the prediction accuracy of
real-world DNN inference latency.

3) Comparison Baselines: To better evaluate the contri-
bution of each stage to device representation, we designed
ablation experiments for the two-stage modeling of Arch2End.
In this setup, Arch2End-HP utilizes only the inference latency
vector from the benchmark models as the modeling outcome,
denoted as HA=HP. Arch2End-HE employs solely the stan-
dardized parameter vector extracted from black-box modeling,
denoted as HA=HE. Arch2End combines vectors from both
stages as the modeling result, indicated as HA=[HP, HE].

As a unified modeling method for heterogeneous devices,
Arch2End’s comparison baselines are also tailored for devices
with diverse architecture and configuration types. Accordingly,
we establish six comparison baselines: 1) ONE-HOT encoding
is considered for device representation without modeling,
expanding with the addition of device types. 2) FLOPS [13]
and PCN [16] are utilized for modeling based on public ar-
chitecture information, where FLOPS uses peak computational
capabilities, and PCN employs generic architecture configura-
tions for devices. 3) End-to-end inference data-based modeling
methods include MLPerf [20] and HELP [22]. MLPerf uses
model inference latency vectors from its benchmark suite to
depict heterogeneous platforms. HELP enhances the suite by
collecting runtime model inference latencies to improve device
performance representation. 4) PCN+HELP is considered a
method that combines optimal architecture information inte-
gration and end-to-end inference metric analysis.

B. Case 1: Latency Prediction on Heterogeneous Devices

Case 1 evaluates Arch2End’s capability to predict neural
network latency, covering NAS models and real-world DNNs.
The prediction experiment is shown in Fig. 8, which presents
the Latency Prediction Model (LPM) incorporating the self-
attention and cross-attention mechanism. In model evaluation,
the data are randomly split into training and validation sets
in an 8:2 ratio, with the data re-partitioned in each of the 20
repeated training cycles. The training consistently employs a
fixed learning rate (0.001), optimizer (Adam), batch size (600),
and epoch count (150). After training, the model’s prediction
error and confidence are evaluated on the validation set, with
repeated experiments assessing the average accuracy and its
standard deviation across different relative error ranges.

1) NAS Model Prediction: Table III presents the DNN
latency prediction percentage errors on the NAS-Bench-201
dataset for ten devices simultaneously. The average APE of



9

TABLE III
MEAN PREDICTION ACCURACY OF NAS-BENCH-201 WITHIN DIFFERENT APE RANGE ON TEN TYPES OF DEVICES.

APE
Range

Prediction Accuracy (%) ± Standard Deviation (10−2)
Not modeling Architecture information End to end inference metrics Combination Ours

ONE-HOT FLOPS PCN MLPerf HELP PCN+HELP Arch2End-HP Arch2End-HE Arch2End

5% 44.34±3.22 40.78±1.92 55.22±8.78 51.41±6.12 57.44±5.07 64.6±3.36 73.37±2.78 76.67±3.51 94.31±0.82
10% 72.16±3.64 68.79±2.00 77.9±8.77 79.32±4.49 84.98±3.49 86.45±3.22 87.85±1.44 92.62±1.48 98.84±0.24
15% 85.05±2.55 82.5±1.38 88.19±7.00 89.63±2.81 93.99±1.96 94.71±2.17 92.59±0.86 96.3±0.83 99.53±0.08

TABLE IV
APE OF DIFFERENT MODELING METHODS FOR REAL-WORLD DNN LATENCY PREDICTION.

Method Absolute Percentage Error (APE, %) ± Standard Deviation
P100 V100 TITAN XP P4 AGX NX TX2 MLU220 MLU270 Eyeriss Average

PCN 10.12±15.35 26.56±23.55 14.66±22.77 15.41±12.72 19.87±17.84 39.91±23.61 43.28±13.16 36.34±28.42 44.25±16.54 15.29±24.68 26.57
HELP 26.85±22.15 14.16±14.98 32.56±20.45 13.95±14.34 18.24±17.48 12.36±10.08 14.29±20.82 35.15±28.16 30.53±29.26 13.38±16.82 21.15

PCN+HELP 19.37±13.82 14.57±13.16 20.26±15.64 11.64±15.04 6.57±14.69 10.77±15.57 14.73±16.4 33.69±29.27 36.44±29.95 11.85±15.63 17.99
Arch2End 11.25±8.77 6.63±3.89 6.52±5.46 6.7±6.13 5.58±4.15 8.19±4.48 10.46±7.93 9.02±5.5 9.71±5.71 7.24±4.07 8.13

DNN 
Feature

Se
lf 

At
te

nt
io

nQ

K

V

Se
lf 

At
te

nt
io

nQ

K

V

C
ro

ss
 

At
te

nt
io

n

Q

K V

Device Feature

Inference 
Latency

M
LP

Pr
oj

ec
tio

n 
H

ea
d

Backbone Network

Fig. 8. Latency Prediction Model (LPM). Its inputs include DNN features
(NAS-Bench-201’s encoded vectors) and device features (results from differ-
ent device modeling methods). Its output is the predicted inference latency.

the prediction results of Arch2End is 1.7%, and the prediction
accuracies at the 5% and 10% APE ranges are 94.3% and
98.8%, respectively. Meanwhile, the prediction accuracies us-
ing architecture-aware features or black-box modeling features
decrease slightly but remain above 92%.

As shown in Table III, Arch2End’s modeling methods
(Arch2End-HP 87.85%, Arch2End-HE 92.62%, Arch2End
98.84%) significantly outperform the baseline models (ONE-
HOT 72.16%, FLOPS 68.79%, PCN 77.9%, MLPerf 79.32%,
HELP 84.98%, PCN+HELP 86.45%) in prediction accuracy
within a 10% APE range. Notably, Arch2End shows the best
stability with standard deviation within 0.82.

ONE-HOT, used for comparative analysis, lacks device
modeling, resulting in poor predictions. FLOPS, identifying
devices by peak computational capacity, and PCN, relying
on opaque architecture information, fail to adequately cap-
ture performance variances among increasingly heterogeneous
devices. Similarly, limited reliance on end-to-end inference
latency data (MLPerf and HELP) fails to accurately reflect
device performance across varied DNNs. Arch2End, by effec-
tively integrating both types of features, improved accuracy
within the 10% APE range by 12.39% with a standard devia-
tion of only 0.24 compared to PCN+HELP.

Furthermore, to validate the robustness of Arch2End on
other prediction models, we added common machine learning
models such as MLP, SVR, and XGBoost [34]. Fig.9 displays
the prediction outcomes under various prediction models and
modeling methods combinations. Among the four predictive

Fig. 9. Mean prediction accuracy of different prediction models within 5%
APE range. The inputs and outputs of the mentioned prediction models are
consistent. During training, the relevant settings for MLP are the same as for
LPM. SVR settings include kernel=’linear’, C=100, gamma=0.1, epsilon=0.1.
XGBoost settings include n-estimators=15, learning rate=0.1, max depth=2.

models, Arch2End performs the best, achieving an absolute
improvement in accuracy of 14.4% to 31.2% over the second-
best model (PCN+HELP).

2) Real-world DNN Prediction: To demonstrate the ad-
vantages of Arch2End in real-world DNN latency predic-
tion, Table IV compares the predictions of various modeling
methods, and Table V shows Arch2End’s prediction result in
detail. The APE of the real-world DNNs is about 8.13%,
which is significantly lower than that of PCN (26.57%),
HELP (21.15%), and PCN+HELP (17.99%) with the same
devices and tasks. The APE of HELP and PCN+HELP on
EdgeViT, EfficientViT and MobileViT reaches more than 34%
due to the lack of generalization to new network structures
and operators, especially on NPUs. PCN has poor prediction
accuracy and stability in most models due to the lack of
consideration for diverse DNNs. In comparison, Arch2End
not only perceives the overall performance boundaries of
devices through benchmark models but also covers a wide
range of network architectures and operators via the simulation
model generator. Consequently, Arch2End outperforms other
modeling methods in terms of APE and stability in prediction.

3) Prediction Error Analysis: The errors in Arch2End
primarily originate from two sources: (1) Small models, such
as EfficientNetB0, VGG11, and MobileViT XS, typically exhibit
greater relative errors due to shorter inference times, with



10

TABLE V
APE OF ARCH2END IN REAL-WORLD DNN LATENCY PREDICTION.

network
Arch2End APE(%) of Each Device

P100 V100
TITAN

XP
P4 AGX NX TX2

MLU
220

MLU
270

Eyeriss

DenseNet121 14.40 3.08 2.75 5.99 0.60 4.11 3.71 1.12 4.61 1.85
DenseNet169 27.39 3.36 13.39 1.90 3.86 3.74 8.23 9.46 8.55 9.83

EfficientNetB0 8.84 8.42 4.05 4.75 13.70 15.38 24.48 3.58 12.65 12.39
EfficientNetB1 8.20 2.76 5.07 7.25 4.77 6.58 2.69 10.15 0.87 11.28
EfficientNetB2 5.05 5.58 1.37 4.25 1.36 0.52 1.77 13.21 5.16 4.70

ResNet50 6.81 7.54 6.93 11.74 10.11 10.59 16.53 4.96 13.12 11.62
ResNet101 1.66 7.83 10.44 4.98 6.30 7.59 4.13 18.38 17.28 2.09

VGG11 26.49 15.10 1.95 0.13 9.57 14.17 16.60 12.62 15.90 1.99
VGG16 7.06 5.48 2.64 4.04 5.30 7.64 8.67 13.58 15.38 7.98

EdgeViT XS 6.58 7.13 16.65 21.96 0.23 11.57 17.83 3.15 3.60 8.72
EfficientViT M1 1.27 2.25 0.24 14.86 2.09 6.64 7.18 4.50 5.70 5.01
MobileViT XS 17.59 12.06 12.68 10.42 4.73 3.90 21.92 -1 -1 0.61

Average 11.25 6.63 6.52 6.70 5.58 8.19 10.46 9.02 9.71 7.24

1 The inference testing of MobileViT-XS is unavailable due to the lack of
support for operators with large feature maps on MLU270 and MLU220.

latencies under 150ms. For these models, even minor absolute
errors can result in significant relative errors. This type of
error is particularly pronounced with other modeling methods.
Compared to PCN+HELP, Arch2End significantly reduces the
average relative error for the small models in Table V from
28.3% to 10.9%. (2) Models with long dependencies, such
as DenseNets, require larger buffer capacities to store feature
maps from other layers, minimizing frequent data exchanges
between buffers and memory that degrade performance. This
impact is most critical on the P100 because it has the smallest
shared memory/L1 cache (24K) among GPU devices. Addi-
tionally, the effect becomes more noticeable with increased
network layers, as observed with DenseNet169 on the P100.

C. Case 2: Inter-group Balanced Device Grouping

Case 2 focuses on applying Arch2End results to inter-
group balanced device grouping. This process entails evenly
grouping devices based on various modeling features to ensure
similar computation task completion times, minimizing the
standard deviation in execution latency. Due to the diversity
and randomness of actual tasks, the task sets executed by each
device group follow the Poisson Distribution.

As shown in Section IV-A, device features from the men-
tioned modeling methods are represented by vectors composed
of multiple feature values, collectively denoted as U . In
Arch2End, this is expressed as U = HA. Since each feature
value denotes the device’s computational capability, the feature
set of a device group can be defined as the summation of cor-
responding feature values, i.e., Fgroupi,k =

∑
j∈groupi Uj,k.

Where, Fgroupi,k represents the kth feature value of group i,
j ∈ groupi stands for iterating over each device within the
groupi, and Uj,k denotes the kth feature value of device j.

To achieve balanced grouping across all feature values, the
grouping process incorporates a local search heuristic algo-
rithm [35], with the specific objective formalized as follows:

minV arh =
∑
k∈U

V ar(Fgroupi,k|groupi ∈ G), (6)

Fig. 10. Evaluation in the two-group experiment. The evaluation metrics for
each method consisted of the execution latency of each group and the standard
deviation between groups.

TABLE VI
STANDARD DEVIATION OF GROUPS IN FOUR-GROUP EXPERIMENTS.

T=1900 T=2100 T=2300 T=2500

FLOPS 1.693 1.882 2.046 2.216
PCN 1.078 1.192 1.305 1.412

HELP 0.886 0.972 1.072 1.152
PCN+HELP 1.336 1.468 1.612 1.722

MLPerf 0.438 0.505 0.548 0.584
Arch2End 0.118 0.130 0.126 0.130

where, V arh denotes the inter-group performance variance
metric, U represents the set of device features, and G is the
set of device groups.

This section evaluates the device group load by the latencies
incurred while executing the same task set. The standard devi-
ation in latencies across groups is used to quantify the degree
of inter-group balance offered by various modeling methods.
Device grouping aims to organize and schedule devices in
overloaded clusters to distribute the load evenly across groups.
Hence, reflecting the performance review of the device groups
in the experiment, we deliberately choose the task arrival rate
per second (T ) to exceed 1900, pushing the groups into an
overloaded state. T manipulates device loads to assess their
equilibrium under diverse workloads. The experiment specifies
a batch size (16) for inference images. The duration of each
experiment is 10 seconds, and the grouped devices include
nine types of GPUs and NPUs, detailed in Section IV-A.

The results of the two-group experiment on 27 devices are
shown in Fig. 10. There are nine types of devices, including
GPUs and NPUs, three of each device. For the two groups of
devices divided by Arch2End, the latencies for completing the
same set of tasks are much closer to each other, with standard
deviations within 0.14 (T = 2100) and 0.14 (T = 2300). At
T = 2300, the latency variance between groups for Arch2End
decreases by 95.4%, 91.5%, 87.5%, 88.1%, and 52.8% for
FLOPS, PCN, HELP, PCN+HELP, and MLPerf, respectively.

To further validate the advantages of Arch2End, we ex-
tended the four-group experiment on 54 devices and under
different loads. There are nine types of devices, including
GPUs and NPUs, six of each device. As shown in Table VI,
the standard deviation of groups for Arch2End is significantly
lower than the other five baseline methods. As the value of T
increases, the load standard deviation of FLOPS, PCN, HELP,
PCN+HELP, and MLPerf increases rapidly. Arch2End has
outstanding stability with varying loads, with less than 0.012
fluctuations in latency standard deviation between groups.



11

Arch2End Modeling
Offline: model latency collection, unified vector acquisition.

Case 2: Device GroupingCase 1: Latency Prediction
Offline: initialization grouping in
distributed systems.

Offline: DNN latency collection,
prediction model training.

Online: dynamically fine-tune
based on new devices or targets.

Online: predictive model infer-
ence.

Scheduler
Online: position routing and sending of models and data.

Support

Optimize

Fig. 11. Cost analysis including device modeling, cases and scheduling.

D. Cost Analysis

The cost analysis comprises three stages, as shown in Fig.
11. The cost of Arch2End modeling occurs solely during the
offline phase, including: 1) Inference latency collection for
benchmark and simulation models, dependent on the model
count and device performance, with the highest (V100) and
lowest (TX2) performance devices requiring 0.5 and 6.3 hours
respectively in our experiments. 2) The fitting cost for the
unified parameter vector in Stage 2 is minimal for linear fitting
small data batches and thus negligible.

In Case 1, the offline cost for DNN latency prediction
involves collecting latencies and training the prediction model.
The online phase allows for rapid latency prediction through
batch input of task and device features, completing the pre-
diction of 5,400 latencies for 200 DNNs and 27 devices in 0.1
seconds.

In the ideal scenario of no waiting and concurrent testing
between devices, the total time cost is primarily constrained by
the processing speed of the slowest device, such as the TX2,
which may exceed 450s. Furthermore, as the prediction cost
constitutes a small portion of the overall execution latency,
it can be offset through pipeline parallelism in continuous
tasks [36]. In Case 2, device grouping costs depend on the
replaceable grouping strategy, such as the heuristic search [35].
Offline costs occur only during the initialization process of the
distributed system. Subsequently, adding new devices requires
only online fine-tuning using group vectors (Fgroup) with a
O(n) complexity, where n is the number of groups. Related
work on downstream tasks [16], [35] provides a detailed
analysis of these costs.

Based on the task scheduling directions determined by
latency prediction and device grouping, scheduling costs
include position routing and sending models and data. This
part belongs to the inherent cost of the scheduling algorithm
and has been detailed in many scheduling works [5], [6], [16].
Thus, it is not the focus of analysis in this paper.

V. RELATED WORK

A. Scheduling in Embedded Distributed Systems

Embedded distributed systems are tasked with scheduling a
wide array of DNNs across heterogeneous devices to enhance
system throughput and minimize task wait times [1]. While
extensive work utilizes measured DNN latencies for task

scheduling [4], [5], [37], [38], the associated costs increase
polynomially with task and device quantities. Some work
mitigates this by predicting DNN latencies offline [16], [39],
[40], but the lack of comprehensive device modeling affects
prediction accuracy. With system scale expansion, hierarchical
scheduling through device grouping gains importance [17],
[35], simplifying scheduling and reducing wait times, yet
device heterogeneity complicates unified grouping metrics.
These challenges underscore the necessity of a unified mod-
eling framework for heterogeneous devices.

B. Device Modeling Methods

Recently, device modeling methods have been broadly cat-
egorized into fine-grained and coarse-grained.

Fine-grained modeling methods analyze hardware ar-
chitecture and DNN operator details to characterize device
performance. Work like Timeloop [9], MAESTRO [10], and
nn-Meter [11] investigates architectural differences across de-
vices, focusing on DNN inference acceleration through data
mapping, memory reuse, and operator optimization. While
these methods provide detailed insights into specific device
performance, the proprietary nature of hardware designs limits
their generalization across heterogeneous devices [24], [25].
The reliance on extensive architecture information and manual
analysis poses challenges for applying these methods.

Coarse-grained modeling methods leverage accessible de-
vice data and end-to-end benchmarks to generalize device per-
formance. The Roofline model [18] quantifies computational
differences through peak instruction rates but falls short in
reflecting the nuances of DNN inference due to fluctuating re-
source utilization. Work like PCN [16] and Glimpse [19] offers
hardware-based predictions for GPU DNN latencies without
invasive measures, but the diversity of hardware architectures
limits their applicability. Comprehensive benchmarking suites
such as MLPerf [20], AIPerf [21], and HELP [22] attempt to
bridge these gaps by assessing devices against a selection of
real-world DNNs. However, their effectiveness is constrained
by the limited scope of the DNNs used, highlighting a chal-
lenge in capturing the full spectrum of device performance
across varied DNN workloads.

Among all these works on inference scheduling and de-
vice modeling, the unique contribution of Arch2End lies in
effectively compensating for the shortcomings of architecture
information and end-to-end inference metrics through its two-
stage modeling process. It provides a unified representation
vector for heterogeneous devices, offering more reliable device
performance perception for distributed systems.

VI. CONCLUSION

This paper proposes Arch2End, a two-stage unified system-
level modeling method that utilizes a unified feature vector to
depict the performance of heterogeneous devices. Abstracting
architecture features enables uniform analysis across heteroge-
neous devices, and benchmark models are designed from three
dimensions to probe the boundaries of device performance.
The black-box analysis, based on end-to-end inference metrics,
not only designs simulation models to expand the coverage of



12

device performance but also maps extensive inference metrics
into a unified vector through dimensionality reduction. Exper-
imental results demonstrate the effectiveness of this method in
DNN inference latency prediction and device grouping strat-
egy. Future work will integrate the unified modeling method
with more intelligent application scenarios to further enhance
the performance of heterogeneous distributed systems.

REFERENCES

[1] Thomas Barnett, Shruti Jain, and et al. Cisco visual networking index
(vni) complete forecast update, 2017–2022. Americas/EMEAR Cisco
Knowledge Network (CKN) Presentation, pages 1–30, 2018.

[2] Yangguang Cui, Kun Cao, Guitao Cao, Meikang Qiu, and Tongquan
Wei. Client scheduling and resource management for efficient training in
heterogeneous iot-edge federated learning. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 41(8):2407–2420, 2022.

[3] Matthew Sibanda, Ernest Bhero, and John Agee. Ai edge processing-
a review of distributed embedded systems. In 2023 31st Southern
African Universities Power Engineering Conference (SAUPEC), pages
1–6. IEEE, 2023.

[4] Liekang Zeng, Xu Chen, Zhi Zhou, and et al. Coedge: Cooperative
DNN inference with adaptive workload partitioning over heterogeneous
edge devices. IEEE/ACM Trans. Netw., 29(2):595–608, 2021.

[5] Wonik Seo, Sanghoon Cha, Yeonjae Kim, and et al. Slo-aware inference
scheduler for heterogeneous processors in edge platforms. ACM Trans.
Archit. Code Optim., 18(4):43:1–43:26, 2021.

[6] Shuai Liu, Zidong Wang, and et al. Distributed set-membership filtering
for multirate systems under the round-robin scheduling over sensor
networks. IEEE Trans. Cybern., 50(5):1910–1920, 2020.

[7] Wei Gao, Zhisheng Ye, and et al. Unisched: A unified scheduler for
deep learning training jobs with different user demands. IEEE Trans.
Computers, 73(6):1500–1515, 2024.

[8] Sparsh Mittal and et al. A survey of CPU-GPU heterogeneous computing
techniques. ACM Comput. Surv., 47(4):69:1–69:35, 2015.

[9] Angshuman Parashar, Priyanka Raina, and et al. Timeloop: A systematic
approach to DNN accelerator evaluation. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS 2019,
Madison, WI, USA, March 24-26, 2019, pages 304–315. IEEE, 2019.

[10] Hyoukjun Kwon, Prasanth Chatarasi, and et al. MAESTRO: A data-
centric approach to understand reuse, performance, and hardware cost
of DNN mappings. IEEE Micro, 40(3):20–29, 2020.

[11] Li Lyna Zhang, Shihao Han, and et al. nn-meter: towards accurate
latency prediction of deep-learning model inference on diverse edge
devices. In MobiSys ’21: The 19th Annual International Conference on
Mobile Systems, Applications, and Services, Virtual Event, Wisconsin,
USA, pages 81–93. ACM, 2021.

[12] Weihong Liu, Jiawei Geng, Zongwei Zhu, and et al. Ace-sniper: Cloud-
edge collaborative scheduling framework with DNN inference latency
modeling on heterogeneous devices. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 43(2):534–547, 2024.

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differen-
tiable architecture search. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[14] Hanfei Yu, Athirai A. Irissappane, and et al. Faasrank: Learning
to schedule functions in serverless platforms. In IEEE International
Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Washington, DC, USA, September 27 - Oct. 1, 2021, pages
31–40. IEEE, 2021.

[15] Diana Marculescu, Dimitrios Stamoulis, and Ermao Cai. Hardware-
aware machine learning: modeling and optimization. In Iris Bahar,
editor, Proceedings of the International Conference on Computer-Aided
Design, ICCAD 2018, San Diego, CA, USA, November 05-08, 2018,
page 137. ACM, 2018.

[16] Weihong Liu, Jiawei Geng, and et al. Sniper: cloud-edge collaborative
inference scheduling with neural network similarity modeling. In DAC
’22: 59th ACM/IEEE Design Automation Conference, San Francisco,
California, USA, July 10 - 14, 2022, pages 505–510. ACM, 2022.

[17] Zhijun Wang, Huiyang Li, Zhongwei Li, and et al. Pigeon: an effective
distributed, hierarchical datacenter job scheduler. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA,
USA, November 20-23, 2019, pages 246–258. ACM, 2019.

[18] Nan Ding, Muaaz G. Awan, and Samuel Williams. Instruction roofline:
An insightful visual performance model for gpus. Concurr. Comput.
Pract. Exp., 34(20), 2022.

[19] Byung Hoon Ahn, Sean Kinzer, and et al. Glimpse: mathematical
embedding of hardware specification for neural compilation. In DAC
’22: 59th ACM/IEEE Design Automation Conference, San Francisco,
California, USA, July 10 - 14, 2022, pages 1165–1170. ACM, 2022.

[20] Vijay Janapa Reddi, David Kanter, Peter Mattson, Jared Duke, and
et al. Mlperf mobile inference benchmark: An industry-standard open-
source machine learning benchmark for on-device AI. In Proceedings
of Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA,
USA, August 29 - September 1, 2022. mlsys.org, 2022.

[21] Zhixiang Ren, Yongheng Liu, Tianhui Shi, Lei Xie, and et al. Aiperf:
Automated machine learning as an AI-HPC benchmark. Big Data Min.
Anal., 4(3):208–220, 2021.

[22] Hayeon Lee, Sewoong Lee, and et al. Hardware-adaptive efficient
latency prediction for nas via meta-learning. Advances in Neural
Information Processing Systems, 34:27016–27028, 2021.

[23] David Kanter. Supercomputing 19: Hpc meets machine
learning. Website, 2019. https://www.realworldtech.com/
sc19-hpc-meets-machine-learning/.

[24] Chen Yiran, Xie Yuan, Song Linghao, Chen Fan, and Tang Tianqi. A
survey of accelerator architectures for deep neural networks. Engineer-
ing, 6(3):264–274, 2020.

[25] Maurizio Capra, Beatrice Bussolino, and et al. An updated survey
of efficient hardware architectures for accelerating deep convolutional
neural networks. Future Internet, 12(7):113, 2020.

[26] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of
reproducible neural architecture search. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020.

[27] Sungil Kim and Heeyoung Kim. A new metric of absolute percent-
age error for intermittent demand forecasts. International Journal of
Forecasting, 32(3):669–679, 2016.

[28] Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, and et al.
Full stack optimization of transformer inference: a survey. CoRR,
abs/2302.14017, 2023.

[29] Jie Zhao, Xiong Gao, Ruijie Xia, and et al. Apollo: Automatic
partition-based operator fusion through layer by layer optimization. In
Proceedings of Machine Learning and Systems 2022, MLSys 2022, Santa
Clara, CA, USA, August 29 - September 1, 2022. mlsys.org, 2022.

[30] Yu Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu,
and CPU platforms for deep learning. CoRR, abs/1907.10701, 2019.

[31] Jeremy Adler and Ingela Parmryd. Quantifying colocalization by cor-
relation: The pearson correlation coefficient is superior to the mander’s
overlap coefficient. Cytometry Part A, 77A(8):733–742, 2010.

[32] Sparsh Mittal and Shraiysh Vaishay. A survey of techniques for
optimizing deep learning on gpus. J. Syst. Archit., 99, 2019.

[33] Tao Luo, Shaoli Liu, Ling Li, and et al. Dadiannao: A neural network
supercomputer. IEEE Trans. Computers, 66(1):73–88, 2017.

[34] Halima Bouzidi, Hamza Ouarnoughi, Smail Niar, and Abdessamad
Ait El Cadi. Performance prediction for convolutional neural networks
in edge devices. arXiv preprint arXiv:2010.11297, 2020.

[35] Yubin Duan and Jie Wu. Optimizing resource allocation in pipeline
parallelism for distributed DNN training. In 28th IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2022, Nanjing,
China, January 10-12, 2023, pages 161–168. IEEE, 2022.

[36] Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel CPU/GPU
scheduling for multi-dnn real-time inference. In IEEE Real-Time Systems
Symposium, RTSS 2019, Hong Kong, SAR, China, December 3-6, 2019,
pages 392–405. IEEE, 2019.

[37] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu, and
et al. Balancing efficiency and fairness in heterogeneous GPU clusters
for deep learning. In EuroSys ’20: Fifteenth EuroSys Conference 2020,
Heraklion, Greece, April 27-30, 2020, pages 1:1–1:16. ACM, 2020.

[38] Jiamin Li, Hong Xu, Yibo Zhu, and et al. Lyra: Elastic scheduling
for deep learning clusters. In Proceedings of the Eighteenth European
Conference on Computer Systems, EuroSys 2023, Rome, Italy, May 8-12,
2023, pages 835–850. ACM, 2023.

[39] Zhihao Jia, James Thomas, Todd Warszawski, and et al. Optimizing
dnn computation with relaxed graph substitutions. In Proceedings of
Machine Learning and Systems, volume 1, pages 27–39, 2019.

[40] Yihui He, Ji Lin, Zhijian Liu, and et al. AMC: automl for model
compression and acceleration on mobile devices. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part VII, volume 11211 of Lecture Notes in
Computer Science, pages 815–832. Springer, 2018.


