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Abstract—Reachability analysis is a popular method to give
safety guarantees for stochastic cyber-physical systems (SCPSs)
that takes in a symbolic description of the system dynamics and
uses set-propagation methods to compute an overapproximation
of the set of reachable states over a bounded time horizon. In
this paper, we investigate the problem of performing reachability
analysis for an SCPS that does not have a symbolic description
of the dynamics, but instead is described using a digital twin
model that can be simulated to generate system trajectories. An
important challenge is that the simulator implicitly models a
probability distribution over the set of trajectories of the SCPS;
however, it is typical to have a sim2real gap, i.e., the actual
distribution of the trajectories in a deployment setting may be
shifted from the distribution assumed by the simulator. We thus
propose a statistical reachability analysis technique that, given a
user-provided threshold 1−ϵ, provides a set that guarantees that
any trajectory during deployment lies in this set with probability
not smaller than this threshold. Our method is based on three
main steps: (1) learning a deterministic surrogate model from
sampled trajectories, (2) conducting reachability analysis over the
surrogate model, and (3) employing robust conformal inference
using an additional set of sampled trajectories to quantify the
surrogate model’s distribution shift with respect to the deployed
SCPS. To counter conservatism in reachable sets, we propose
a novel method to train surrogate models that minimizes a
quantile loss term (instead of the usual mean squared loss), and
a new method that provides tighter guarantees using conformal
inference using a normalized surrogate error. We demonstrate
the effectiveness of our technique on various case studies.

Index Terms—Statistical reachability analysis; stochastic
cyber-physical systems; sim2real gap.

I. INTRODUCTION

SAFETY-critical cyber-physical systems operate in highly
dynamic and uncertain environments. It is common to

model such systems as stochastic dynamical systems where
given an initial configuration (or state) of the system, system
parameter values, and a sequence of exogenous inputs to the
system, a simulator can provide a system trajectory. Several
executions of the simulator can generate a sample distribution
of the system trajectories, and such a distribution can then
be studied with the goal of analyzing safety and performance
specifications of the system. In safety verification analysis, we
are interested in checking if any system trajectory can reach an
unsafe state. A popular approach for safety verification consid-
ers only bounded-time safety properties using (bounded-time)
reachability analysis [1]–[5]. Here, the typical assumption is
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that the symbolic dynamics of the simulator (i.e. the equations
it uses to provide the updated state from a previous state
and stimuli) are known. Most reachability analysis methods
rely on a deterministic description of the symbolic dynamics
and use set-propagation methods to compute a flowpipe or
an overapproximation of the set of states reachable over
a specified time horizon. Other methods allow the system
dynamics to be stochastic, but rely on linearity of the dynamics
to propagate distributions over initial states/parameters to
compute probabilistic reach sets [6]–[9].

However, for complex cyber-physical systems, dynamical
models may be highly nonlinear or hybrid with artifacts
such as look-up tables, learning-enabled components, and
proprietary black-box functions making the symbolic dynam-
ics either unavailable, or difficult for existing (symbolic)
reachability analysis tools to analyze them. To address this
issue, we pursue the idea of model-free analysis, where the
idea is to compute reachable sets for the system from only
sampled system trajectories [10], [11]. The main idea of data-
driven reachability analysis in [10] consists of the following
main steps: Step 1. Sample system trajectories based on
a user-specified distribution on a parametric set of system
uncertainties (such as the set of initial states). Step 2. Train a
data-driven surrogate model to predict the next K states from a
given state (for example, a neural network-based model). Step
3. Perform set-propagation-based reachability analysis using
the surrogate dynamics. Step 4. Inflate the computed flowpipe
with a surrogate error term that guarantees that any actually
reached state is within the inflated reach set with probability
not smaller than a user-provided threshold.

There are three main challenges in this overall scheme:
(1) In [10], a simple training loss based on minimizing the
mean square error between the surrogate model and the actual
system is used. This may lead to the error distribution to
have a heavy tail, which in turn leads to conservatism in
the inflated reach set. (2) The approach in [10] uses the
uncertainty quantification technique of conformal inference to
construct the inflated flowpipes, but quantifies surrogate error
per trajectory component (i.e, per state dimension and per
trajectory time-step). These per-component-wise probabilistic
guarantees are then combined using union bounding, i.e., using
that P (A ∪ B) ≤ P (A) + P (B), leading to conservatism.
This is because requiring a 1 − ϵ probability threshold on
the inflated reach set requires stricter probability thresholds in
the conformal inference step per component, i.e., thresholds
1 − ϵ′ with ϵ′ = ϵ

nK , where n is the number of dimensions
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and K is the number of time-steps in the trajectory. A stricter
probability threshold induces a larger uncertainty set, which
implies greater conservatism. (3) The most significant real-
world challenge is that the surrogate model is usually learned
based on the trajectories sampled from the simulator, and thus
distributed according to the assumptions on stochasticity made
by the simulator. However, the actual trajectory distribution in
the deployed system may change. Typically, such distribution
shifts can be quantified using divergence measures such as an
f -divergence or the Wasserstein distance [12].

To address these challenges, we propose a robust and
efficient approach to computing probabilistic reach sets for
stochastic systems, with the following main contributions:
(1) We propose novel training algorithms to obtain surrogate
models to forecast trajectories from sampled initial states (or
other model parameters). Instead of minimizing the mean
square loss between predicted trajectories and the training
trajectories, we allow minimizing an arbitrary quantile of the
loss function. This provides our models with better overall
predictive performance over the entire trajectory space (i.e.,
over different state dimensions and time steps). (2) Similar to
[10], we utilize conformal inference (CI) to quantify prediction
uncertainty. However, inspired by work in [13], we compute
the maximum of the weighted residual errors to compute the
nonconformity score to use with CI which has the effect of
normalizing component-wise residuals. In contrast to [13],
which solves a linear complementarity problem to compute
these weights, we obtain these weights when training the sur-
rogate model using gradient descent and backpropagation. (3)
Finally, to address distribution shifts, we use techniques from
robust conformal inference [14]. Our analysis is motivated by
[15] and valid for all trajectory distributions corresponding to
real-world environments that are close to the original trajectory
distribution used for training the surrogate model; here, the
proximity is measured by a certain f -divergence metric [16].

We show that our training procedure and the use of the max-
based nonconformity score noticeably enhances data efficiency
and significantly improves the conservatism in reachability
analysis. This improvement in data efficiency is the key factor
that enables us to efficiently incorporate robust conformal
inference in our reachability analysis. We empirically validate
our algorithms on challenging benchmark problems from
the cyber-physical systems community [17], and demonstrate
considerable improvement over prior work.

Related Work.

Reachability Analysis for Stochastic Systems with known Dy-
namics. Reachability analysis is a widely studied topic and
typically assumes access to the system’s underlying dynamics,
and the proposed guarantees are valid only on the given model
dynamics. In [18], the authors propose DeepReach, a method
using neural PDE solvers for Hamilton-Jacobi method-based
reachability analysis in high-dimensional systems. While it
incorporates neural methods for reachability analysis, it still
requires access to the system dynamics. In [19], the authors
identify Markovian stochastic dynamics from data through
specific parametric models, such as linear or polynomial,
followed by reachability analysis on the identified models. In

contrast, our method employs neural networks, which are not
confined to Markovian dynamics. The approach in [20] is an
algorithm that sequentially linearizes the dynamics and uses
constrained zonotopes for set representation and computation.
In [21], the authors develop a method utilizing Gaussian
Processes and statistical techniques to compute reachable sets
of dynamical systems with uncertain initial conditions or pa-
rameters, providing confidence bounds for the reconstruction
and bounding the reachable set with probabilistic confidence,
extending to uncertain stochastic models.

In [22], the authors introduce a scalable method utilizing
Fourier transforms to compute forward stochastic reach prob-
ability measures and sets for uncontrolled linear systems with
affine disturbances. Similar approaches are explored in [6],
[23] for stochastic reachability analysis of linear, potentially
time-varying, discrete-time systems. A constructive method
utilizing convex optimization to determine and compute prob-
abilistic reachable and invariant sets for linear discrete-time
systems under stochastic disturbances is introduced in [24]. We
note that most existing techniques are for systems with linear
dynamics, while we permit arbitrary stochastic dynamics. In
Thorpe et al. [25], a method utilizing conditional distribution
embeddings and random Fourier features is presented to effi-
ciently compute stochastic reachability safety probabilities for
high-dimensional stochastic dynamical systems without prior
knowledge of system structure. We note that this work does
not provide finite-data probability guarantees as we do, but
asymptotically converge to the exact reachset.

Probabilistic Guarantees and Reachability Analysis for un-
known Stochastic Systems. Recent work has studied compu-
tation of reachable sets with probabilistic guarantees directly
from data. In [26], the authors employ level sets of Christoffel
functions [27], [28] to achieve probabilistic reach sets for
general nonlinear systems. Specifically, let vd(x) denote the
vector of monomials up to degree d, and let M denote the
empirical moment matrix obtained by computing the expected
value of vd(x)

⊤vd(x) by sampling over the set of reachable
states. An empirical inverse Christoffel function Λ−1(x) is
then defined as vd(x)

⊤M−1vd(x). The main idea in [29],
[30] is to empirically determine Λ−1(x) and give probabilistic
bounds using the volume of the actual reachset contained in
the sublevel sets of Λ−1(x). In [30], the authors extend the
method proposed in [26] by including conformal inference.
A key challenge of this approach is estimating the moment
matrix M from data, which may not scale with increasing state
dimension n and user-selected degree d, as the dimension of
M is

(
n+d
d

)
, and the approach requires inverting M .

In [29], the authors use a Gaussian process-based classifier
to distinguish reachable from unreachable states and approx-
imate the reachset. However, the approach requires adaptive
sampling of initial states, which may require solving high-
dimensional optimization problems. They also propose an
interval abstraction of the reachset, which, though it pro-
vides sample complexity bounds, can be overly conservative
and computationally costly in high-dimensional systems. The
method in [31] assumes partial knowledge of the model and
leverages data to handle Lipschitz-continuous state-dependent
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uncertainty; their reachability analysis combines probabilistic
and worst-case analysis. Finally, the work presented [32]
combines simulation-guided reachability analysis with data-
driven techniques, utilizing a discrepancy function estimated
from system trajectories, which can be challenging to obtain.
Reachability analysis for Neural Networks. Recent approaches
have tackled the challenge of determining the output range of
a neural network. These methods aim to compute an interval
or a box (a vector of intervals) that encompasses the outputs of
a given neural network. Katz et al. [33] introduced Reluplex,
an SMT-based approach that extends the simplex algorithm
to handle ReLU constraints. Huang et al. [22] employed
a refinement-by-layer technique to verify the presence or
absence of adversarial examples in the vicinity of a specific
input. Dutta et al. [4] proposed an efficient method using
mixed-integer linear programming to compute the range of a
neural network featuring only ReLU activation functions. Tran
et al. [34] proposes star-sets that offer similar expressiveness
as hybrid zonotopes and are used to provide approximate and
exact reachability of feed-forward ReLU neural networks. In
our setting, this method was the most applicable.

II. PROBLEM STATEMENT AND PRELIMINARIES

Notation. We use bold letters to represent vectors and vector-
valued functions, while calligraphic letters denote sets and
distributions. The set {1, 2, · · · , n} is denoted as [n]. The
Minkowski sum is indicated by ⊕. We use x ∼ X to denote
that the random variable x is drawn from the distribution X .
Stochastic Dynamical Systems. We consider discrete-time
stochastic dynamical systems. While it is typical to describe
such systems using symbolic equations that describe how the
system evolves over time, we instead simply model the system
as a stochastic process. In other words, let S0, . . . , SK be a
set of K + 1 random vectors indexed by times 0, . . . ,K. We
assume that for all times k, each Sk takes values from the set
of states S ⊆ Rn. A realization of the stochastic process, or the
system trajectory is a sequence of values s0, . . . , sK, denoted
as σreal

s0 . The joint distribution over S0, . . . , SK is called the
trajectory distribution Dreal

S,K of the system, and the marginal
distribution of S0 is called the initial state distribution W . We
assume that the initial state distribution W has support over a
compact set of initial states I, i.e., we assume that W is such
that Pr[s0 /∈ I] = 0. For example, such a stochastic dynamical
system could describe a Markovian process, where for any
k ≥ 1, the distribution of Sk only depends on the realization
of Sk−1 and not the values taken at any past time. However,
it is worth noting that the techniques presented in this paper
can be applied to systems with non-Markovian dynamics.

In the rest of the paper, we largely focus on just the system
trajectories, so we abuse notation to denote s0

W∼ I to signify
that s0 is a value sampled from I using the initial state
distribution W .1 Similarly, σreal

s0 ∼ Dreal
S,K is used to denote

the sampling of a trajectory from the trajectory distribution.
Quantification of Distribution Shift. In practice, we usually
do not have knowledge of the distribution Dreal

S,K. However, one

1W is assumed to be uniform or truncated Gaussian distributed in practice.

may have access to trajectories sampled from a distribution
Dsim

S,K that is “close” to Dreal
S,K, e.g., a simulator. Given a

distribution D, we use the notation P(D) to denote a set of dis-
tributions close to D, where the notion of proximity is defined
using a suitable divergence measure or metric quantifying
distance between distributions. Common examples include f -
divergence measures (such as KL-divergence, total variation
distance) and metrics such as the Wasserstein distance [12],
[35]. In this paper, we assume that Dsim

S,K comes from the
ambiguity set P(Dsim

S,K) that is centered at Dsim
S,K using f -

divergence balls around Dsim
S,K [35].2 Given a convex function

f : R → R satisfying f(1) = 0 and f(z) = +∞ for z < 0, the
f -divergence [16] between the probability distributions Dsim

S,K

and Dreal
S,K that both have support Z is

Df (Dreal
S,K ∥ Dsim

S,K) =

∫
Z
f

(
dDreal

S,K

dDsim
S,K

)
dDsim

S,K.

Here, the argument of f is the Radon-Nikodym derivative
of Dsim

S,K w.r.t. Dreal
S,K. We define the set Pf,τ (Dsim

S,K) as a f -
divergence ball of radius τ ≥ 0 around Dsim

S,K as

Pf,τ (Dsim
S,K) =

{
Dreal

S,K | Df (Dreal
S,K ∥ Dsim

S,K) ≤ τ
}
.

The radius τ and the function f are both user-specified pa-
rameters that quantify the distribution shift between Dreal

S,K and
Dsim

S,K that we have to account for in our reachability analysis.
Specifically, we have to perform reachability analysis for
random trajectories σreal

s0 ∼ Dreal
S,K for all Dreal

S,K ∈ Pf,τ (Dsim
S,K).

Conformal Inference. Conformal inference [36]–[38] is a
data-efficient statistical tool proposed for quantifying uncer-
tainty, particularly valuable for assessing the uncertainty in
predictions made by machine learning models [39], [40].

Consider a set of random variables z1, z2, ..., zm+1 where
zi = (xi, yi) ∈ Rn × R for i ∈ [m + 1]. Assume that
z1, z2, ..., zm+1 are independent and identically distributed
(i.i.d.). Let µ(xi) be a predictor that estimates outputs yi
from inputs xi. With a pre-defined miscoverage level ϵ ∈
(0, 1), conformal inference enables computation of a threshold
d > 0 and a probabilistic prediction interval C(xm+1) =
[µ(xm+1) − d, µ(xm+1) + d] ⊆ R for ym+1 that guarantees
that Pr[ym+1 ∈ C(xm+1)] ≥ 1− ϵ. To compute the threshold
d, we reason over the empirical distribution of the residual
errors between the predictor and the ground truth data. Let
Ri := |yi −µ(xi)| be the residual error between yi and µ(xi)
for i ∈ [m+1]. Since the random variables z1, z2, ..., zm+1 are
i.i.d., the residuals R1, . . . , Rm+1 are also i.i.d. If m satisfies
ℓ := ⌈(m + 1)(1 − ϵ)⌉ ≤ m, then we take the ℓth smallest
error among these m values which is equivalent to

R∗
1−ϵ = Quantilec1−ϵ {R1, . . . , Rm,∞} , (1)

i.e., the (1− ϵ)-quantile over R1, . . . , Rm,∞, see [41].
Conformal inference uses this quantile to obtain the proba-

bility guarantee Pr[Rm+1 ≤ R∗
1−ϵ] ≥ (1− ϵ), see [36], [41].

For the choice of Ri := |yi − µ(xi)|, this can be rewritten as

Pr
[
ym+1 ∈ [µ(xm+1)−R∗

1−ϵ, µ(xm+1) +R∗
1−ϵ]

]
≥ 1− ϵ.

(2)
2Examples of f include f(z) = z log(z), which induces the KL-divergence

and f(z) = 1
2
| z − 1 |, which induces the total variation distance.
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The guarantees in (2) are marginal3, i.e., over the random-
ness in Rm+1, R1, R2, . . . , Rm. Note that R∗

1−ϵ is a provable
upper bound for the (1− ϵ)-quantile4 of the error distribution.

Robust Conformal Inference. Unlike conformal inference,
which assumes the data-point zm+1 is sampled from the same
distribution as the calibration samples zi, i ∈ [m], robust
conformal inference relaxes this assumption and allows zm+1

to be sampled from a different distribution. Let us denote the
distribution of zi for i ∈ [m] as U and the distribution of zm+1

as V . As illustrated before, the residual Ri is a distribution
and defined as a function of zi. Let us denote the distribution
of Ri for i ∈ [m] with P and the distribution of Rm+1 with
Q. Further, assume Q is in Pf,τ (P ). Utilizing the results from
[14] that assumes the distribution of residual Rm+1 is within
a f -divergence ball of the distributions for R1, . . . , Rm with
radius τ ≥ 0, for the miscoverage level ϵ ∈ (0, 1), we obtain:

Pr[Rm+1 ≤ R∗
1−ϵ,τ ] ≥ 1− ϵ

where R∗
1−ϵ,τ = Quantilec(1−ϵ̄) {R1, . . . , Rm,∞} is a robust

(1− ϵ)-quantile that is equivalent to the (1− ϵ̄)-quantile. We
refer to ϵ̄ as the adjusted miscoverage level which is computed
as ϵ̄ = 1− g−1

f,τ (1− ϵm) where ϵm is obtained as the solution
of a series of convex optimizations problems as5:

ϵm = 1− gf,τ

((
1 + 1

m

)
g−1
f,τ (1− ϵ)

)
,

gf,τ (β) = inf
{
z ∈ [0, 1]

∣∣∣βf(zβ)+ (1−β)f
(
1−z
1−β

)
≤ τ

}
g−1
f,τ (γ) = sup {β ∈ (0, 1) | gf,τ (β) ≤ γ}

(3)
Computation of gf,τ and g−1

f,τ is efficient since they are
both solutions to one dimensional convex optimization and
therefore admit efficient binary search procedures. In some
cases, we have also access to a closed form solution [14].

Example 1. For the total variation, f(z) = 1
2 |z−1|, we have

gf,τ (β) = max (0, β − τ), g−1
f,τ (γ) = γ + τ, γ ∈ (0, 1 − τ).

This implies that given radius τ ∈ [0, 1] an adjusted miscov-
erage level ϵ̄ is infeasible if ϵ ≤ τ , and ϵ̄ is computed as:

ϵ̄ = 1−
(
1 +

1

m

)
(1− ϵ+ τ) , ϵ ∈ (τ, 1], τ ∈ [0, 1] (4)

Problem Definition. We are given a black-box stochastic
dynamical system as the training environment with the tra-
jectory distribution Dsim

S,K. We assume that when this sys-
tem is deployed in the real world, the trajectories satisfy
σreal
s0 ∼ Dreal

S,K ∈ Pf,τ (Dsim
S,K). Given a user-specified failure

probability ε ∈ (0, 1) and an i.i.d. dataset of trajectories
sampled from Dsim

S,K, the problem is to obtain a probabilistically

3The guarantees from conformal inference are marginal over all potentially
sampled calibration sets. The guarantees over some fixed calibration set can
be shown to be a random variable that has distribution Beta(ℓ,m+ 1− ℓ)
[39]. For example, if m = 104, we get tight probabilistic guarantees for any
ϵ ∈ (0, 1) as the variance of the Beta distribution is bounded by 2.5×10−5.

4For any ϵ ∈ (0, 1), the (1− ϵ)-quantile of a random variable R is defined
as inf{z ∈ R|Pr[R ≤ z] ≥ 1− ϵ}.

5Following [14], Lemma A.2., we note that gf,τ is related to the worst-case
CDF of any distribution with at most τ distribution shift, and g−1 is related
to the inverse worst-case CDF.

guaranteed flowpipe X that contains σreal
s0 ∼ Dreal

S,K for all
Dreal

S,K ∈ Pf,τ (Dsim
S,K) with a confidence of 1− ε. Formally,

s0
W∼ I,

σreal
s0 ∼ Dreal

S,K ∈ Pf,τ (Dsim
S,K)

}
=⇒ Pr

[
σreal
s0 ∈ X

]
≥ 1− ε

(5)
In other words, we are interested in computing a proba-
bilistically guaranteed flowpipe X from a set of trajectories
collected from Dsim

S,K so that X is valid for all trajectories
Dreal

S,K ∈ Pf,τ (Dsim
S,K), i.e., despite a potential distribution shift.

III. LEARNING A SURROGATE MODEL SUITABLE FOR
PROBABILISTIC REACHABILITY ANALYSIS

As we do not have access to the system dynamics in
symbolic form, our approach to characterize the trajectory
distribution is to use a predictor, called the surrogate model.

Definition 1. A surrogate model F : X×Θ → Y is a function
that approximates a given function f : X → Y . Let dY
be some metric on Y , then the surrogate model guarantees
that for some value of θ ∈ Θ, and for any x sampled
from a distribution over X , the induced distribution over the
random variable dY(F(x; θ), f(x)) has good approximation
properties, such as bounds on the moments of the distribution
(e.g. mean value) or bounds on the quantile of the distribution.

In our setting, the set X is the set of states S with the
distribution over X being Dsim

S,K and Y is the set of K-step
trajectories SK, i.e., F maps a given initial state (or an un-
certain model parameter) to the predicted K-step trajectory of
the system. The metric dY can be any metric on the trajectory
space. One example surrogate model is a feedforward neural
network (NN) with n inputs and Kn outputs, represented as
σ̄s0 = F(s0; θ) where θ is the set of trainable parameters. To
train the surrogate model, we need to define a specific residual
error between a set of sampled trajectories and those predicted
by the model. While most surrogate models are trained using
the cumulative squared loss across a training dataset [42], we
consider a loss function that helps us reduce conservatism in
computing the probabilistic reach set of the system.
Training a Lipschitz-bounded NN based surrogate model.
Training is a procedure to identify the parameter value θ
which makes the surrogate model a good approximation; we
use backpropagatin to train the surrogate by sampling K-step
trajectories from the simulator of the original model. We call
this dataset T trn. The surrogate model predicts the trajectory
σsim
s0 starting from an initial state sampled from s0

W∼ I. We
denote the predicted trajectory σ̄s0 corresponding to σsim

s0 as:

σ̄s0 = [s⊤0 , F(s0 ; θ)], where,F(s0 ; θ) =[
F1(s0), · · · ,Fn(s0), · · · ,F(K−1)n+1(s0), · · · ,FnK(s0)

]⊤
.

Here, F(i−1)n+r(s0) is the rth state component at the ith time-
step in the trajectory. In other words, we stack the dimension
and time in the trajectory into a single vector6. We remark

6The main advantage of training the trajectory as a long vector in one shot
is that this approach eliminates the problem of compounding errors in time
series prediction; however, this comes with higher training runtimes.
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that a trained surrogate model with a non-restricted Lipschitz
constant is problematic for reachability analysis, as approx-
imation errors can get uncontrollably magnified resulting in
trivial bounds. As a result, we use techniques from [43] to
penalize the Lipschitz constant of the trained NN over the
course of the training process.
Residual Error. For training neural network surrogate models,
a common practice is to minimize a loss function, representing
the difference between the trajectory predicted by the surrogate
model and the actual trajectory. To formulate this difference,
we formally define the notion of the residual error as follows.

Definition 2 (Residual Error). Let ei ∈ Rn denote the i-
th basis vector of Rn. For a trajectory (s0, σ

sim
s0 ) with σsim

s0

sampled from Dsim
S,K, and s0

W∼ I, we define:

Rj =
∣∣e⊤j+nσ

sim
s0 − Fj(s0)

∣∣ , j ∈ [nK]. (6)

Note that Rj is a non-negative prediction error between the
(j + n)th component7 of σsim

s0 and its prediction Fj(s0), j ∈
[nK]. The trajectory residual R is then defined as the largest
among all scaled, component-wise prediction errors with scal-
ing factors αj > 0, j ∈ [nK], i.e., R is defined as

R = max
(
α1R

1, α2R
2, · · · , αnKR

nK
)
. (7)

Note that this definition is inspired by [13]8. Compared
to [10], utilizing the maximum of weighted errors obvi-
ates the need to union bound component-wise probability
guarantees to obtain a trajectory-level guarantee. Let Ri =
max(α1R

1
i , α2R

2
i , . . . , αnKR

nK
i ) for i ∈ [|T trn|] denote the

trajectory residual as in (7) for the training dataset T trn.
Training using a δ̄-quantile loss. Let δ̄ = 1 − ϵ̄ where ϵ̄
is the adjusted miscoverage level as defined previously. The
ultimate goal from training a surrogate model is to achieve a
higher level of accuracy in our reachability analysis. The mean
squared error (MSE) loss function is a popular choice to train
surrogate models; however, we later show that our proposed
flowpipe is generated based on the quantile of the trajectory
residual error. Although the MSE loss function is popular and
efficient, it may result in a heavy tailed distribution for the
residual error which can imply a noticeably larger quantile
and result in conservative flowpipes. Thus, to improve overall
statistical guarantees, we are interested in minimizing the δ̄-
quantile of the trajectory-wise residuals, for an appropriate
δ̄ ∈ [0, 1); towards that end, we add a new trainable parameter
q. We can also setup the training process such that the
scaling factors α1, . . . , αnK become decision variables for the
optimization problem. Thus, the set of trainable parameters
includes the NN parameters θ, the scaling factors α1, · · · , αnK

and the parameter q that approximates the δ̄-quantile of the
residual loss. We define two loss functions:
1) The first loss function L1 is to set the trainable parameter
q as the δ̄-quantile of trajectory-wise residuals. This loss

7There is offset of n as the first n components of σsim
s0

are the initial state.
8In this definition, we consider component-wise residual for Rj instead

of a state-wise residual as the component e⊤j+nσ
sim
s0

in σsim
s0

may represent
different quantities like velocity or position. State-wise residuals may lead to
a higher level of conservatism in robust conformal inference, as the magnitude
of error in different components of a state may be noticeably different.

function is inspired from literature on quantile regression [44],
and it is a well-known result that minimizing this function
yields q to be the δ̄-quantile of R1, . . . , R|T trn|. Thus, given a
batch of training data points of size M < |T trn|, let

L1 =

M∑
i=1

δ̄ ReLU(Ri − q) + (1− δ̄) ReLU(q −Ri). (8)

2) Assuming q as the δ̄-quantile of the i.i.d. residuals Ri, we
let the second loss function L2 minimize

L2 = q

(
1

α1
+

1

α2
+ · · ·+ 1

αnK

)
. (9)

This is motivated by the fact that, for all j ∈ [nK], Rj
i ≤

Ri/αj by the definition of Ri. Thus, the sum of errors over
the trajectory components is upper bounded by:

UBi = Ri

(
1

α1
+

1

α2
+ · · ·+ 1

αnK

)
, (10)

and the δ̄-quantile of UBi, i ∈ [|T trn|] is nothing but L2
9.

Therefore, we define the loss function as,

L = cL1 + L2, (11)

where c is a large number that penalizes L1 to make sure that q
serves as a good approximation for the δ̄-quantile. The training
itself uses standard back-propagation methods for computing
the gradient of the loss function, and uses stochastic gradient
descent to train the surrogate model.
Properties of surrogate model. We pick neural networks
(NN) as surrogate models due to their computational advan-
tages and the ability to fit arbitrary nonlinear functions with
low effort in tuning hyper-parameters. We note that the input
layer of the NN is always of size n (the state dimension), and
the output layer is of size nK (the dimension of the predicted
trajectory over K time-steps.) In our experiments, we choose
NNs with 2-3 hidden layers for which we observed good
results; picking more hidden layers will give better training
accuracy, but may cause overfitting. In each hidden layer we
pick an increasing number of neurons between n and nK.

IV. SCALABLE DATA-DRIVEN REACHABILITY ANALYSIS

In this section, we show how we can compute a robust prob-
abilistically guaranteed reach set or flowpipe X ⊂ Rn(K+1)

for a stochastic dynamical system. Given a miscoverage level
ϵ, we wish to be at least (1− ϵ)-confident about the reach-set
that we compute. For brevity, we introduce δ = (1 − ϵ). In
the procedure that we describe, we compute a probabilistically
guaranteed δ-confident flowpipe, defined as follows:

Definition 3 (δ-Confident Flowpipe). For a given confidence
probability δ ∈ (0, 1), a distribution Dsim

S,K, the radius τ , and
a f -divergence ball Pf,τ (Dsim

S,K), we say that X ⊆ Rn(K+1) is
a δ-confident flowpipe if we have Pr[σreal

s0 ∈ X] ≥ δ for any
random trajectory σreal

s0 ∼ Dreal
S,K ∈ Pf,τ (Dsim

S,K) with s0
W∼ I.

9In case we replace L2 with q, the trivial solution for scaling factors is
αj = 0, j ∈ [nK]. Therefore, the proposed secondary loss function L2 also
results in avoiding the trivial solution for scaling factors.
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Our objective is to compute X while being limited to sample
trajectories from the training environment Dsim

S,K. We will
demonstrate that we can compute X with formal probabilistic
guarantees by combining reachability analysis on the surrogate
model trained from T trn and error analysis on this model via
robust conformal inference.

Deterministic Reachsets for the Surrogate Models. Using
the surrogate model from Section III, we show how to perform
deterministic reachability analysis to get surrogate flowpipes.

Definition 4 (Surrogate flowpipe). The surrogate flowpipe
X̄ ⊂ Rn(K+1) is defined as a superset of the image of F(I ; θ).
Formally, for all s0 ∈ I, we need that [s⊤0 , F(s0 ; θ)] ∈ X̄ .

Thus, to compute the surrogate flowpipe, we essentially
need to compute the image of I w.r.t. the F . This can be
accomplished by performing reachability analysis for neural
networks, e.g., using tools such as [3], [34], [45], [46].

Robust δ-Confident Flowpipes. In spite of training the surro-
gate model to maximize prediction accuracy, it is still possible
that a predicted trajectory is not accurate, especially when
predicting the system trajectory from a previously unseen
initial state. Note also that we trained the surrogate model on
trajectory data from Dsim

S,K. We thus cannot expect the predictor
to always perform well on trajectories drawn from Dreal

S,K. We
now show how to quantify this prediction uncertainty using
robust conformal inference. To do so, we first sample an i.i.d.
set of trajectories from the training environment Dsim

S,K, which
we again denote as the calibration dataset.

Definition 5 (Calibration Dataset). The calibration dataset
Rcalib is defined as:

Rcalib =

{
(s0,i, Ri)

∣∣∣∣∣ s0,i
W∼ I, σsim

s0,i ∼ Dsim
S,K,

Ri = max
(
α1R

1
i , · · · , αnKR

nK
i

) } .

Here, σsim
s0,i refers to the trajectory starting at the ith initial

state sampled from W and the resulting trajectory from Dsim
S,K,

and Rj
i is as defined in equation (6).

Remark 1. It is worth noting that although the data points
within a single trajectory may not be i.i.d., the trajectory σsim

s0

can be treated as an i.i.d. random vector in the Rn(K+1)-space,
and subsequently the residuals are also i.i.d. This is crucial
to apply robust conformal inference, which requires that the
calibration set is exchangeable (a weaker form of i.i.d.).

Let J sim
S,K be the distribution over trajectory-wise residuals

for trajectories from σsim
s0 ∼ Dsim

S,K. However, we wish to get
information about the trajectory-wise residual R for a trajec-
tory sampled from Dreal

S,K ∈ Pf,τ (Dsim
S,K). Let the distribution

of R induced by Dreal
S,K be denoted by J real

S,K. As a direct result
from the data processing inequality [47], the distribution shift
between Dreal

S,K and Dsim
S,K is larger than the distribution shift

between J real
S,K and J sim

S,K so that we have J real
S,K ∈ Pf,τ (J sim

S,K).
Knowing that J real

S,K ∈ Pf,τ (J sim
S,K), we can utilize robust

conformal inference in [14] to find a guaranteed upper bound
for the δ-quantile of R. We call this guaranteed upper bound as
robust conformalized δ-quantile, and we denote it with R∗

δ,τ ,

where, Pr[R ≤ R∗
δ,τ ] ≥ δ. Specifically, we utilize equation (3)

to compute R∗
δ,τ from the calibration dataset Rcalib.

Next we show that our definition of residual error introduced
in (7) allows us to use a single trajectory-wise nonconformity
score for applying robust conformal inference (instead of the
component-wise conformal inference as in [10]).

Lemma 1. Assume R∗
δ,τ is the δ̄-quantile computed over the

residuals Ri from the calibration dataset Rcalib. For the resid-
ual R = max

(
α1R

1, α2R
2, · · · , αnKR

nK
)

sampled from the
distribution J real

S,K ∈ Pf,τ (J sim
S,K), it holds that

Pr

nK∧
j=1

[
Rj ≤ R∗

δ,τ/αj

] ≥ δ

where Rj is again the component-wise residual for j ∈ [nK].

Proof. The proof follows as the residual R is the maximum
of the scaled version of component-wise residuals so that

R = max
(
α1R

1, α2R
2, · · · , αnKR

nK
)
⇐⇒

nK∧
j=1

[
Rj ≤ R

αj

]
.

Now, since Pr
[
R ≤ R∗

δ,τ

]
≥ δ as well as R < R∗

δ,τ ⇐⇒
Rj < R∗

δ,τ/αj for all j ∈ [nK], we can claim that

Pr

nK∧
j=1

[
Rj ≤ R∗

δ,τ/αj

] ≥ δ

Next, we introduce the notion of an inflating zonotope to
define the inflated flowpipe from the surrogate flowpipe.

Definition 6 (Inflating Zonotope). A zonotope Zonotope(b, A)
is defined as a centrally symmetric polytope with b ∈ Rk as
its center, and A = {g1, . . . , gp} is a set of generators, where
gi ∈ Rk, that represents the set {b + µigi | µi ∈ [−1, 1]}.
Here, we introduce the inflating zonotope with base vector,

A = diag

(
01×n,

R∗
δ,τ

α1
, · · · ,

R∗
δ,τ

αnK

)
,

and center, b is the vector 0 of length (n+ 1)K; the notation
diag(v) represents a diagonal matrix with the elements of v
along its diagonal and off-diagonal elements being zero.

Including this inflating zonotope in our probabilistic reach-
ability analysis leads to the following result.

Theorem 1. Let X̄ be a surrogate flowpipe of the surrogate
model F for the set of initial conditions I. Let R∗

δ,τ be
computed from the calibration dataset Rcalib, as shown before.
If we use R∗

δ,τ to construct the inflated surrogate flowpipe,

X = X̄ ⊕ Zonotope(0,diag([01×n, e)),

e =
[
R∗

δ,τ/α1, · · · , R∗
δ,τ/αnK

]
,

then it holds that X is a δ-confident flowpipe for any σreal
s0 ∼

Dreal
S,K ∈ Pf,τ (Dsim

S,K) with s0
W∼ I.

Proof. Assume again that σreal
s0 ∼ Dreal

S,K ∈ Pf,τ (Dsim
S,K) with

s0
W∼ I, and recall that R = max[α1R

1, . . . , αnKR
nK] where
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Rj =
∣∣e⊤j+nσ

real
s0 − Fj(s0)

∣∣. Applying Lemma 1 results in

Pr
[∧nK

j=1

(
Rj ≤ R∗

δ,τ/αj

)]
≥ δ. We rephrase this as

Pr

nK∧
j=1

(
| e⊤j+nσ

real
s0 − Fj(s0) |≤ R∗

δ,τ/αj

) ≥ δ.

Next, we define the interval Cj(s0) as

Cj(s0) :=
[
Fj(s0)−R∗

δ,τ/αj , Fj(s0) +R∗
δ,τ/αj

]
and accordingly obtain the guarantee that

Pr

nK∧
j=1

(
e⊤j+nσ

real
s0 ∈ Cj(s0)

) ≥ δ.

Based on this representation, we can now see that

Pr
[
σreal
s0 ∈ Zonotope

(
[s⊤0 ,F(s0 ; θ)],diag ([01×n, e])

)]
≥ δ.
(12)

Finally, since Pr[s0 /∈ I] = 0 and X̄ is a surrogate flowpipe
for the surrogate model F on I, i.e., s0 ∈ I implies
[s⊤0 ,F(s0 ; θ)] ∈ X̄ , we can conclude,

Zonotope
(
[s⊤0 ,F(s0 ; θ)],diag ([01×n, e])

)
⊂ X̄ ⊕ Zonotope (0,diag ([01×n, e])) = X

(13)

Consequently, we know that Pr[σreal
s0 ∈ X] ≥ δ holds.

We note that the surrogate reachability, and also use of the
Minkowski sum in the reachability analysis, results in some
level of conservatism.

Remark 2. We note that we can even compute the minimum
size of the calibration dataset required to achieve a desired
confidence probability δ ∈ (0, 1). Robust conformal inference
[14] imposes two constraints in this regard. The first constraint
specifies a relation between the adjusted miscoverage level ϵ̄
and the size of the calibration dataset as ⌈(L+1)(1− ϵ̄)⌉ ≤ L.
The second constraint is that the ranges of gf,τ and g−1

f,τ have
to be within [0, 1]. Thus, we can impose (1+1/L)g−1

f,τ (δ) < 1,
or in other words L > ⌈g−1

f,τ (δ)/(1− g−1
f,τ (δ))⌉.

Tightening the surface area of the flowpipe. The scaling
factors αj are trained to minimize the sum of errors over
the trajectory components, see equation (9). The expression
R∗

δ,τ

∑nK
j=1 1/αj arising from (9) can also be interpreted as

the surface area of the inflating zonotope, see Definition
6. We now show how we can update scaling factors after
training to reduce the surface area to tighten the δ-confident
flowpipe further. Let us sample a new trajectory dataset T LP

and compute the prediction errors Rj
i and residuals Ri for

i ∈ [|T LP|], and also their conformalized robust δ̄-quantile
R∗

δ,τ , using the trained scaling factors αj and surrogate model.
The main idea for an efficient update of the trained scaling

factors is as follows. Assume α
′

j is the updated version of
αj . If this update is such that the updated trajectory residuals
max(α

′

1R
i
1, · · · , α

′

nKR
i
nK), i ∈ [|T LP|] are the same as the

trajectory residuals Ri under αj , then R∗
δ,τ under the updated

α
′

j remains the same. By defining ω
′

j = 1/α
′

j , we see
that the surface area R∗

δ,τ

∑nK
j=1 ω

′

j of the inflating zonotope

depends linearly on ω
′

j . On the other hand the constraint

Ri = max
(
R1

i /ω
′

1, · · · , RnK
i /ω

′

nK

)
, is a linear constraint.

This constraint can be equivalently represented as

∀i ∈ [|T LP|], j ∈ [nK] Riω
′

j ≥ Rj
i

under the additional assumption that the updated scaling
factors ω

′

j are minimized. This means an efficient update on
scaling factors to reduce the surface area can be done via linear
programming with decision variables ω

′

j , j ∈ [nK], i.e.,

minimize
nK∑
j=1

ω
′

j s.t. ∀i ∈ [|T LP|], j ∈ [nK] ω
′

j ≥ Rj
i/Ri,

(14)
which has the analytical solution ω

′

j = maxi

[
Rj

i/Ri

]
.

V. EXPERIMENTAL RESULTS

To mimic real-world systems that can produce actual trajec-
tory data, we use stochastic difference equation-based models
derived from dynamical system models. In these difference
equations, we assume additive Gaussian noise that models
uncertainty in observation, dynamics, or even modeling errors.

Our theoretical guarantees depend on knowledge of the
distribution shift τ . In practice, however, τ is usually not
known a priori but can be estimated from the data. For
the purpose of providing an empirical examination of our
results, we fix τ a priori to compute the δ-confident flowpipe
and construct a system Dreal

S,K from Dsim
S,K by varying system

parameters such that J real
S,K ∈ Pf,τ (J sim

S,K). We ensure that this
holds by estimating the distribution shift, denoted by τ̃ , as the
f -divergence between J sim

S,K and J real
S,K and by making sure that

τ̃ ≤ τ . In our experiments, we used the total variation distance
for f , and used 3× 105 trajectories to estimate τ̃ .

We use ReLU activation functions in our surrogate NN-
based models motivated by recent advances in NN verifica-
tion with ReLU activations. We specifically use the NNV
toolbox from [34] for reachability analysis of the surrogate
model. While other activation functions could be used, we
expect more conservative results in case we utilize non-ReLU
activation functions. The approach in [34] uses star-sets (an
extension of zonotopes) to represent the reachable set and
employs two main methods: (1) the exact-star method that
performs exact but slow computations, (2) the approx-star
method that is conservative but faster. To mitigate the runtime
of the exact-star technique and the conservatism of the approx-
star technique, set partitioning can be utilized [48], where
initial states are partitioned into sub-regions and reachability
is done on each sub-region in parallel.

As per Theorem 1, our results are guaranteed to be valid
with a confidence of δ. To determine how tight this bound
is, we will empirically examine the computed probabilistic
flowpipes. We do so by sampling i.i.d. trajectories from Dreal

S,K
10 and computing the ratio of the trajectories that are included
in the probabilistic flowpipes, which we denote by ∆̃. Addi-
tionally, to check the coverage guarantee δ for R∗

δ,τ directly,
we also report the ratio of the trajectories that provide a

10We use trajectories close to the worst case where τ̃ is close to τ .
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residual less than R∗
δ,τ , which we denote with δ̃. We emphasize

that ∆̃ and δ̃ are both expected to be greater than δ.
In the remainder, we first present a case study to compare

between reachability with surrogate models using the mean
square error (MSE) and our proposed quantile loss function in
(11). We show that the quantile loss function results in tighter
probabilistic flowpipes. After that, we present several case
studies on a 12-dimensional quadcopter and the time reversed
van Der Pol dynamics. The results are also summarized in
Table I. We visualize our flowpipes by their two-dimensional
projection. Therefore, in case a trajectory is included in all the
visualized bounds, it does not necessary mean the trajectory
is covered. We instead, determine the inclusion of traces in
our star-sets using the NNV toolbox which determines set
inclusion by solving a linear programming feasibility problem.
Comparison between MSE and Quantile minimization.
Experiment 1. Our first experiment will show the advantage
of training a surrogate model with quantile loss function
compared to training a surrogate model using the MSE loss
function. Therefore, we model Dsim

S,K as the non-linear system

xk+1 = 0.985yk + sin(0.5xk)− 0.6 sin(xk + yk)− 0.07 + 0.01v1

yk+1 = 0.985xk + cos(0.5yk)− 0.6 cos(xk + yk)− 0.07 + 0.01v2

that generates a periodic motion. Here, v1 and v2 denote
random variables sampled from a normal distribution. In this
experiment, we do not consider a shifted stochastic system
Dreal

S,K, and instead sample trajectories from Dsim
S,K for compar-

ison of our two surrogate models. The first surrogate model is
trained as proposed in Section III using quantile minimization,
while the other surrogate model is trained with the MSE loss
function. Our results are shown upfront in Figure 1a where we
compare the probabilistic reachable sets of these two models.

In more detail, recall that the scaling factors α1, . . . , αnK of
our proposed method in Section III are jointly trained with the
surrogate model. However, since we do not train these scaling
factors jointly when we use the MSE loss function, we instead
compute them beforehand following [15]. In other words, we
normalize the component-wise residuals as

αj = 1/ωj where ωj = max
(
Rj

1, Rj
2, . . . , Rj

|T trn|

)
.

for each j ∈ [nK]. We utilized |T trn| = 105 random
trajectories with K = 50 for training the surrogate model. The
initial states were uniformly sampled from the set of initial
states I1 = [−0.5, 0.5]× [−0.5, 0.5]. In both case, we trained
a ReLU surrogate model with structure [2, 20, 50, 90, 100]
and we applied approx-star from the NNV [34] toolbox for
the reachability analysis. To lower the conservatism of approx-
star, we partition the set of initial states into 400 partitions, and
perform the surrogate reachability analysis for every partition
separately. The flowpipe is also computed for the confidence
level of δ ≥ 95%. The details of the experiment via quantile
minimization are also provided in Table I.

We additionally compare the surface area R∗
δ,τ

∑nK
j=1 1/αj

of the inflating zonotopes, see Definition 6, for both surrogate
models. Note that this surface area is the L2 loss in equation
(9) when q = R∗

δ,τ , which we enforce during training. The
δ̄-quantile of UBi as defined in (10) is the L2 loss, and

(a) Flowpipe for xk and yk over time steps. The red borders are
for flowpipes generated by MSE loss function and the blue ones
are for quantile based loss function. The shaded region shows an
approximation of flowpipe by recording trajectories, and the darkness
of the green color shows the density of the trajectories. The black
lines are the borders for the shaded region. The shaded area is
generated via 300000 trajectories.

(b) Distribution of UB/(nK) for the MSE and the quantile-based
NNs for 3× 105 samples. The 95%-quantile of variable UB/(nK)
represents the surface area of the obtained inflating zonotope. The
figure is cropped for better visibility.

Fig. 1: Figures (a) and (b) show a comparison between flow-
pipes and distributions of UB/(nK) respectively for training
via MSE and training via our proposed loss function (11).

hence approximates the surface area of the inflating zonotope.
To compare the distributions of UBi, we simulate 3 × 105

trajectories and compute UBi/(nK) for both the MSE and
the quantile loss-based NNs. We present the histograms of
UBi/(nK) for both loss functions in Figure 1b where we see
that the quantile of UBi for MSE is larger. This emphasizes
the advantage of training via quantile loss function.

12-Dimensional Quadcopter. Next, we consider a 12 dimen-
sional quadcopter model from the benchmarks in [17] that
is designed to hover around a pre-specified elevation. The
ODE model for this system is provided in Fig. (4), where
the state consists of the position and velocity of the quadrotor
x1, x2, x3 and x4, x5, x6, respectively, as well as the Euler
angles x7, x8, x9, i.e., roll, pitch, and yaw, and the angular
velocities x10, x11, x12. We also add additive noise to the
system that is detailed in Table II, and we generate data
with time step δt = 0.05 seconds over 100 time steps (i.e.
5 seconds). The controller is a neural network controller that
was presented in [17]. We present 3 experiments on this model.
Learning a surrogate model to map the 12-dimensional initial
state to a 1200-dimensional trajectory is impractical. We thus
use an interpolation technique to resolve this issue. To that
end, we select only certain time-steps of the 1200-dimensional
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Specification Reachability Analysis with Robust CI

Experiment #: Confidency Maximum Number of Conformal Reachability Overal Size of
Underlying of flowpipe, distribution Star-sets inference technique reachability calibration
dynamics i.e. δ shift’s radius from NNV runtime(sec) runtime(sec) dataset (|Rcalib|)
1: Periodic δ = 95% 0 400 0.0892 approx-star 22.5233 10, 000
2: Quadcopter δ = 99.99% 0 64 1.4299 approx-star 160.0486 20, 000
3: Quadcopter δ = 80% 0.15 64 0.4971 approx-star 148.9815 10, 000
4: Quadcopter δ = 70% 0.25 64 0.4971 approx-star 148.9815 10, 000
5: TRVDP δ = 99.99% 0 1 4.8218 exact-star 1.5761 30, 000
6: TRVDP δ = 77% 0.225 1 0.2876 exact-star 0.1404 10, 000

Training

Training Size of training Linear programming Size of dataset for
runtime dataset (|T trn|) runtime linear programming (|T LP|)

Experiment 1: 41 minutes 100, 000 1.7422 seconds 10, 000
Experiment 2: 124 minutes 40, 000 29.3255 seconds 2, 000
Experiment 3,4: 112 minutes 40, 000 21.1406 seconds 2, 000
Experiment 5: 25 minutes 40, 000 6.3559 seconds 50, 000
Experiment 6: 27 minutes 40, 000 2.8236 seconds 10, 000

Examination

Example of induced Coverage Estimation (i.e. ∆̃) Coverage Estimation (i.e. δ̃)
distribution shift’s for flowpipe generated by: for R∗

δ,τ generated by:
radius (i.e. τ̃) Robust CI Vanilla CI Robust CI Vanilla CI

Experiment 1: 0 96.31% 96.31% 95.05% 95.05%
Experiment 2: 0 100% 100% 99.99% 99.99%
Experiment 3: 0.1445 100% 100% 88.58% 70.86%
Experiment 4: 0.2395 100% 100% 80.50% 49.64%
Experiment 5: 0 99.99% 99.99% 99.99% 99.99%
Experiment 6: 0.2085 95.91% 56.52% 95.87% 55.73%

TABLE I: Shows the detail of our computation process to provide probabilistically guaranteed flowpipes. The time horizon for
experiments 1,5,6 is K = 50 time-steps and for the experiments 2,3,4 is K = 100 time-steps. The sampling time for quadcopter
and TRVDP are 0.05 and 0.02 seconds, respectively. We examine the results with a valid distribution shift (explained in detail
in Table II) that is less than the maximum specified distribution shift in terms of total variation. This shift is estimated through
the comparison between 300, 000 trajectories from Dreal

S,K and Dsim
S,K. We also utilize 10, 000 trajectories (number of trials) from

this specific distribution Dreal
S,K to examine the coverage of flowpipes and 300, 000 trajectories for examination of the coverage

level for R∗
δ,τ (i.e.∆̃, δ̃). To evaluate the contribution of robust conformal inference, we also solve for the flowpipes again

neglecting the distribution shift, i.e. ϵ̄ = ϵ, and show the coverage guarantee for R∗
δ,τ and flowpipes may get violated, (δ̃ < δ

or ∆̃ < δ), in case the shifted distribution (deployment distribution) is considered. The runtimes we report for reachability
assumes no parallel computing.

trajectory in order to map the initial state to state values at
the selected time steps, while we take care of the remaining
time steps via interpolation. If the trajectories are smooth,
as is the case in this case study, this is expected to work
well. We here select every second time-step to extract a 600-
dimensional trajectory (δt = 0.1,K = 50) to train a surrogate
model of structure [12, 200, 400, 600]. Finally we interpolate
the sampled 600-dimensional trajectory to approximate the
original 1200-dimensional trajectory (δt = 0.05,K = 100).
This interpolation process is integrated in the model in an
analytical way, and is done by multiplying a weight matrix,
W ∈ R1200×600 to the last layer. This converts the model’s
structure to [12, 200, 400, 1200] which will be utilized for the

surrogate reachability. The scaling factors ωj , j ∈ [nK] will be
also interpolated for un-sampled time-steps after the training
and before the linear programming.

Experiment 2. In comparison with [10], we provide a higher
level of data efficiency. Consider a confidence level of 99.99%,
and no distribution shift. We assume a calibration dataset
of size |Rcalib| = 2 × 104 to compute R∗

δ,τ and the δ-
confident flowpipe, and a ReLU neural network of struc-
ture [12, 20, 400, 1200] to train the surrogate model. The
methodology proposed in [10] requires a calibration dataset
of at least 24 × 106 data-points11 to provide the mentioned

11Minimum data size in [10] is |Rcalib| > ⌈ 1+γ
1−γ

⌉, where γ = 1− 1−δ
nK

.
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Expt. Dist. Σ for added noise
Gaussian N (0,Σ)

Dsim
S,K

1 uni(I1) diag([0.01, 0.01])2

2 uni(I2) diag([0.05 · 1⃗1×6, 0.01 · 1⃗1×6])
2

3 uni(I2) diag([0.05 · 1⃗1×6, 0.01 · 1⃗1×6])
2

4 uni(I2) diag([0.05 · 1⃗1×6, 0.01 · 1⃗1×6])
2

5,6 uni(I3) diag([0.1, 0.1])2

Dreal
S,K ∈

Pτ,f (Dsim
S,K)

3 uni(I2) Σ× 1.8
4 uni(I2) Σ× 2.2
6 uni(I3) diag([0.1378, 0.1378])2

TABLE II: Initial state distribution and added Gaussian noise
(mean:0, covariance:Σ) for the training and the shifted envi-
ronments; uni(I) denotes the uniform distribution over I.

Fig. 2: This figure shows the proposed flowpipes computed
for the quadcopter dynamics for each state component over
the time horizon of 100 time steps with δt = 0.05 that means
5 seconds operation of quadcopter. The red borders show the
flowpipe that contains trajectories from Dsim

S,K with provable
coverage of δ ≥ 99.99%. The green shaded area shows the
density of a collection of 300, 000 of these trajectories, and
the darker color means the higher density of traces. The blue
borders are also for a flowpipe that contains the trajectories
from distribution Dsim

S,K with δ ≥ 95%. The dotted black line
also shows the border of collected simulated trajectories.

level of confidence. On the other hand, we only require 104

trajectories. Fig. 2 shows the proposed reach set and Table I
presents the detail of the computation process. Our estimation
shows that we achieve δ̃ = 0.9999 via 3×105 trials and ∆̃ = 1
via 104 trials, which aligns with our expectations.

Experiments 3, 4. In this case study, we generate a 95%
confident flowpipe for the trajectories from Dsim

S,K and we
utilize it to study the distribution shift on two different deploy-
ment environments Dreal

S,K. This flowpipe is plotted in Figure
2 and the details of the computation process is included in
Tables I and II. For this generated flowpipe, given a maximum
distribution shift radius τ ∈ [0, 1], the flowpipe’s confidence
level δ for trajectories from Dreal

S,K has to satisfy δ ≥ 0.95− τ .
The bound δ ≥ δ̄ − τ can be derived from equation (4).
Therefore, we consider two different scenarios. In Experiment
3, we examine our flowpipe for the case τ = 0.15. In this

case, for a deployment environment with distribution shift,
τ̃ < 0.15 we numerically show that ∆̃, δ̃ > 0.95−0.15 = 0.8.
In addition, in Experiment 4, we assume τ = 0.25 and for
a deployment environment with τ̃ < 0.25 we show that
∆̃, δ̃ > 0.95 − 0.25 = 0.7. Tables I and II show the detail
of the experiments and distribution shift respectively.
Time-reversed van Der Pol Oscillator Dynamics. The time-
reversed van Der Pol (TRVDP) dynamics is known for its
inherent instability, which makes it a pernicious challenge for
computing reach sets. The SDE model for TRVDP is:[

ẋ1 ẋ2

]⊤
=
[
x2 µx2(1− x2

1)− x1

]⊤
+ v, µ = −1,

here, v is an additive Gaussian noise, detailed in Ta-
ble II. We generate data from this dynamics with sampling
time δt = 0.02 seconds, and we target reachability for
K = 50 time step. We use a limited set of initial states
I3 = {s0 | [−1.2,−1.2] ≤ s0 ≤ [−1.195,−1.195]} to inves-
tigate the instability of the system dynamics. Our analysis
centers on discerning how this instability manifests as a
divergence in trajectories originating from this restricted set
of initial states. We also assume a model with structure
[2, 50, 90, 100] to train the surrogate model. We perform
two experiments on this system, explained below.
Experiment 5. In this experiment, we target the flowpipe
computation for the TRVDP dynamics for the confidence
probability of δ ≥ 99.99% and no distribution shift. Figure
3a shows the resulting flowpipe and Table I shows the details
of the process. In this experiment, we also generate another
0.9999-confident flowpipe excluding the linear programming
(proposed in equation (14)) from the process. Figure 3a
also compares these flowpipe and shows removing the linear
programming increases the level of conservatism.
Experiment 6. We target an arbitrary confidence level of
δ ≥ 0.77 for the flowpipe, despite distribution shifts within
radius τ < 0.225 measured in total variation. As suggested
by robust conformal inference, we should target a flowpipe
with confidence level of 99.5% = 77% + 22.5% on Dsim

S,K

to ensure the confidence level of 77% on Dreal
S,K. Figure 3b

shows our probabilistically guaranteed flowpipe, and Tables
I,II present the detail of the experiment. These tables also show
that, in case we set ϵ̄ = ϵ in reachability analysis (Vanilla CI)
then our flowpipe, violates the guarantee (i.e. δ ≥ 0.77). This
emphasizes on the contribution of robust conformal inference.
Conclusion. This paper addresses challenges in data-driven
reachability analysis for stochastic dynamical systems, specif-
ically focusing on distribution shifts between training and test
environments. By leveraging a dataset of K-step trajectories,
the approach constructs a probabilistic flowpipe, ensuring that
the probability of trajectory violation remains below a user-
defined threshold even in the presence of distribution shifts.
We propose the reliable guarantees with higher data-efficiency
compared to the existing techniques assuming knowledge of
an upper bound for distribution shift. The methodology relies
on three key principles: surrogate model learning, reachability
analysis using the surrogate model, and robust conformal
inference for probabilistic guarantees. We illustrated the ef-
ficacy of our approach via reachability analysis on high-
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(a) (τ, δ) = (0, 0.9999) (b) (τ, δ) = (0.225, 0.77) (c)

Fig. 3: Shows the density of trajectories starting from I3 versus their computed flowpipes. The green color-bar represents the
density of traces from, Dsim

S,K and the blue color-bar is for traces from Dreal
S,K. The shaded areas are generated via 3 × 105

different trajectories, and the dotted lines represents their border. a) Shows two different flowpipes for TRVDP dynamics with
confidence level of 0.9999 on Dsim

S,K. The tighter flowpipe (blue color) utilizes the linear programming (14) while the looser
one (red color) does not. b) Shows a flowpipe that covers trajectories from Dreal

S,K with the confidence level of 77% and also
covers the traces from Dsim

S,K with the confidence level of 99.5%. The blue shaded area is for Dreal
S,K and the green shaded area

is for Dsim
S,K. c) Shows the vector field of TRVDP dynamics that illustrates the instability of the system.

ẋ1 = cos(x8) cos(x9)x4

+(sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+(cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6 + v1
ẋ2 = cos(x8) sin(x9)x4

+(sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+(cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6 + v2
ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6 + v3
ẋ4 = x12x5 − x11x6 − 9.81 sin(x8) + v4
ẋ5 = x10x6 − x12x4 + 9.81 cos(x8) sin(x7) + v5
ẋ6 = x11x4 − x10x5 + 9.81 cos(x8) cos(x7)− 9.81− u1/1.4 + v6
ẋ7 = x10 + (sin(x7)(sin(x8)/ cos(x8)))x11

+(cos(x7)(sin(x8)/ cos(x8)))x12 + v7
ẋ8 = cos(x7)x11 − sin(x7)x12 + v8
ẋ9 = (sin(x7)/ cos(x8))x11 + (cos(x7)/ cos(x8))x12 + v9
ẋ10 = −0.9259x11x12 + 18.5185u2 + v10
ẋ11 = 0.9259x10x12 + 18.5185u3 + v11
ẋ12 = v12

Fig. 4: Dynamics for the quadcopter. Here, initial set of states
I2 = {s0 | i ∈ [1, 6] : −0.2 ≤ s0(i) ≤ 0.2, i ≥ 7 : s0(i) = 0}.

dimensional systems like a 12-dimensional quadcopter and
unstable systems like the time-reversed van Der Pol oscillator.
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