
IE
EE P

ro
of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Revisiting Dynamic Scheduling of Control Tasks:
A Performance-Aware Fine-Grained Approach

Sunandan Adhikary , Graduate Student Member, IEEE, Ipsita Koley , Saurav Kumar Ghosh, Sumana Ghosh ,
and Soumyajit Dey , Senior Member, IEEE

Abstract—Modern cyber–physical systems (CPSs) employ an1

increasingly large number of software control loops to enhance2

their autonomous capabilities. Such large task sets and their3

dependencies may lead to deadline misses caused by platform-4

level timing uncertainties, resource contention, etc. To ensure5

the schedulability of the task set in the embedded platform6

in the presence of these uncertainties, there exist co-design7

techniques that assign task periodicities such that control costs8

are minimized. Another line of work exists that addresses9

the same platform schedulability issue by skipping a bounded10

number of control executions within a fixed number of control11

instances. Considering that control tasks are designed to perform12

robustly against delayed actuation (due to deadline misses,13

network packet drops etc.) a bounded number of control skips14

can be applied while ensuring certain performance margin.15

Our work combines these two control scheduling co-design16

disciplines and develops a strategy to adaptively employ control17

skips or update periodicities of the control tasks depending on18

their current performance requirements. For this we leverage a19

novel theory of automata-based control skip sequence generation20

while ensuring periodicity, safety and stability constraints. We21

demonstrate the effectiveness of this dynamic resource sharing22

approach in an automotive Hardware-in-loop setup with realistic23

control task set implementations.24

Index Terms—Adaptive scheduling, control system synthesis,25

cyber–physical systems (CPSs).26

I. INTRODUCTION27

W ITH the increasing number of autonomous fea-28

tures available in modern-day cyber–physical systems29

(CPSs), the corresponding task sets to be executed in their30

electronic control units (ECUs) have also increased signifi-31

cantly. To cope with this and utilize bandwidth efficiently,32

significant research has been reported in the domain of33

dynamic scheduling of control tasks, where unlike static34

schedules, depending on run-time performance requirements,35

the task period is dynamically switched while satisfying36

Manuscript received 3 August 2024; accepted 3 August 2024. This work
was supported in part by the Qualcomm Innovation Fellowship. This article
was recommended by Associate Editor S. Dailey. (Corresponding author:
Sunandan Adhikary.)

Sunandan Adhikary, Ipsita Koley, Saurav Kumar Ghosh, and
Soumyajit Dey are with the Department of Computer Science and
Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302,
India (e-mail: mesunandan@kgpian.iitkgp.ac.in; ipsitakoley@iitkgp.ac.in;
saurav.kumar.ghosh@cse.iitkgp.ac.in; soumya@cse.iitkgp.ac.in).

Sumana Ghosh is with the Computer and Communication Science
Unit, Indian Statistical Institute, Kolkata 700108, India (e-mail:
sumana@isical.ac.in).

Digital Object Identifier 10.1109/TCAD.2024.3443007

the stability and baseline performances [1]. Such techniques 37

enable control tasks with steady system response to operate in 38

lower frequencies. This, in turn, allows other control tasks that 39

occasionally require more frequent actuation for maintaining 40

the desirable performance to switch to a higher frequency, 41

availing the relinquished bandwidth. However, such multirate 42

approach of control task co-scheduling is limited by the allow- 43

able choice of sampling periods for each task and their joint 44

schedulability for the task set. As a fine-grained alternative 45

scheduling approach, researchers have proposed to convert 46

hard temporal scheduling constraints for each job in a task into 47

weakly hard ones [2]. Weakly hard constraints of a closed loop 48

system is often captured as (m, k)-firm specifications [3] where 49

a maximum of (k − m) deadline misses or control execution 50

skips are allowed in every k consecutive control task instances 51

to maintain a desired performance. Such control skips are often 52

introduced due to platform-level faults, jitters, task execution 53

overruns, communication delays, etc., in embedded processing 54

units and/or complex network components. Numerous research 55

has been carried out over the past few years exploring systems 56

performances under different weakly hard constraints [4], [5], 57

[6], [7] and identifying weakly hard constraints that can be 58

leveraged to co-schedule control tasks in a more efficient 59

way [6], [8]. 60

Related Work: Analysis and synthesis of control execution 61

sequences with skips has been done in the literature with 62

two primary objectives, a) establishing stability under various 63

uncertainties for handling deadline overruns, b) leveraging 64

control execution skips for the bandwidth-efficient co-design. 65

The first kind of work focuses on weakly hard modeling 66

of control systems, analyzing their stability under timing 67

uncertainties introduced due to faults or interference of other 68

tasks [4], [5], [7], [9], [10]. For example, Pazzaglia et al. [4] 69

analyzed the effect of deadline misses (caused by faults) on 70

the stability of the closed-loop and its control cost. This 71

is done by analyzing all possible deadline-miss sequences 72

allowed by weakly hard specifications and applying novel 73

scheduling (e.g., killing the current job that missed its deadline 74

or letting it continue and killing the later jobs instead) and 75

control (e.g., actuating with the last control input or resetting 76

the control input) strategies to maintain asymptotic stability 77

or minimize control cost. Works done by Linsenmayer and 78

Allgower [5] and Pazzaglia et al. [10] looked into this problem 79

from a switched system perspective, where the system under 80

control actuation/execution and system under missed control 81

actuation/execution due to packet drops or deadline-miss are 82

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2882-8702
https://orcid.org/0000-0001-9033-3295
https://orcid.org/0000-0002-5999-3313
https://orcid.org/0000-0001-9329-6389

IE
EE P

ro
of

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

considered as two modes to switch between. They analyze83

and bound the maximum asymptotic growth of such a system84

under all possible control skipping strategies given as a weakly85

hard specification. In [9], this growth is quantified in terms86

of joint spectral radius. Pazzaglia et al. [11] computed and87

schedule stable controller gains to mitigate the effects of such88

deadline-miss scenarios on system stability.89

The limitations of these works can be summarized in the90

following two points.91

1) With fault-tolerance being the primary objective, such92

works often do not consider realistic performance cri-93

teria like exponential decay rate (explained later in94

Definition 1) as their objectives and mostly rely on95

analytical [4], [9] or heuristic-based [7] approaches for96

assuring asymptotic stability. Works that give theoretical97

stability guarantee mostly rely on common Lyapunov98

function (CLF)-based stability for a given performance99

criteria. This heavily restricts the number of possible100

control theoretic switching sequences which transpire101

in the platform as stable deadline-miss (i.e., control102

execution skip) possibilities [5], [12].103

2) Moreover, most of the aforementioned works evaluate104

their strategies on different standalone control system105

models. How effectively these strategies scale and106

contribute to the overall bandwidth sharing between107

multiple closed loops in real-world networked, embed-108

ded control systems is not evaluated. Although works109

like [7] consider a realistic implementation setup, they110

rely on heuristic-based scheduling under faulty scenarios111

that lack theoretical underpinning.112

The second kind of state-of-the-art (SOTA) works utilize113

these weakly hard specifications to bound intentionally skipped114

control executions and achieve better-scheduling solutions115

while ensuring performance or safety guarantees [6], [8], [13].116

Xu et al. [8] achieved a resource-aware aperiodic schedule117

(different time intervals between multiple executions) by118

switching between all possible deadline-miss sequences that119

abide by a weakly hard constraint. They deploy a scheduler120

automaton that ensures state deviation within a safe upper121

bound, whereas works like [6], [13] address a similar problem122

by developing an automaton that skips control executions123

abiding by certain weakly hard constraints derived from a given124

performance criteria. Ghosh et al. [13] used a multirate controller125

gain scheduling approach to ensure performance during the126

deployment of such resource-optimized control execution127

schedules. Works like [1], [20], on the other hand, do not rely on128

weakly hard constraints but propose an optimal sampling period129

assignment method to achieve a similar optimized resource130

consumption objective. They assign optimal periodicities for the131

controllers by analyzing the cumulative control costs or system132

output deviations incurred by a schedulable set of periodicities.133

To avoid unstable behaviors and overshoot/undershoot beyond a134

safe range while switching between periodicities, most of these135

works again use asymptotic stability or CLF-based theoretical136

analysis. Similar criticisms (as described in the last paragraph)137

are applicable to these co-design-focused works as well, i.e.,138

they rely on a CLF-based stability guarantee and do not consider139

a realistic implementation setup. However, the work in [14] aptly140

analyses the maximum number of allowable control execution 141

skips in an embedded platform to ensure certain stability criteria, 142

using multiple Lyapunov function (MLF)-based approach that 143

is less restrictive than CLF-based approaches (more allowable 144

skips). This also does not consider a realistic implementation 145

in the presence of multiple closed loops. 146

Novelty and Contributions: Our main motivation stems from 147

the limitations of these SOTA works. For a set of control 148

loops and their performance criteria, our methodology, as 149

highlighted in Fig. 1, performs a stepwise synthesis and 150

deployment as discussed next. 151

1) For each participating control loop, we work out an 152

MLF-based performance-aware switching strategy for 153

switching between the choices of periodicities as well 154

as the choices of control execution skips that operate 155

within a given safe region (box 1 in Fig. 1). The use 156

of exponential decay-based performance criteria makes 157

our methodology more applicable to real-world system 158

design, and the use of MLF admits more control- 159

scheduling choices than SOTA works. 160

2) For each participating control loop, we synthesize a 161

control skipping automaton (CSA), which utilizes the 162

theoretically derived stable switching strategies to gen- 163

erate stable aperiodic activation patterns for the control 164

tasks (box 2 in Fig. 1). All possible control skip and 165

multirate possibilities are captured as performance and 166

safety-constrained transitions between modes/locations 167

in this finite representation. It generates more fine- 168

grained aperiodic scheduling options compared to the 169

SOTA techniques as it combines CLF-based multi- 170

rate control switching along with MLF-based control 171

skipping. 172

3) We devise an algorithmic framework that dynamically 173

observes the current performance degradations of dif- 174

ferent control loops and accordingly deploys suitable 175

periodic/aperiodic execution patterns to the correspond- 176

ing control tasks respecting a processor utilization 177

budget (box 4 in Fig. 1). 178

4) We evaluate our performance-aware dynamic resource- 179

sharing technique in a practical real-world setup and 180

compare it with SOTA approaches to analyze its 181

effectiveness. 182

To summarize, the theoretically performance-preserving 183

control design guided by resource-aware dynamic scheduling 184

makes this work ideal for efficient bandwidth distribution in 185

resource-limited networked and embedded CPSs. 186

II. SYSTEM MODEL 187

We express the physical system/plant model as a linear time- 188

invariant (LTI) system having dynamics as follows: 189

ẋ(t) = �x(t)+ �u(t)+ w(t), y(t) = Cx(t)+ v(t). (1) 190

Here, the vectors x ∈ R
n, y ∈ R

m, and u ∈ R
p define the plant 191

state, output, and control input, respectively. x(t), y(t), u(t) are 192

their values at time t. w(t) ∼ N (0, Qw), v(t) ∼ N (0, Rv) are 193

process and measurement noises. They follow Gaussian white 194

noise distributions with variances Qw ∈ R
n×n and Rv ∈ R

m×m, 195

IE
EE P

ro
of

ADHIKARY et al.: REVISITING DYNAMIC SCHEDULING OF CONTROL TASKS 3

Fig. 1. Overview of the proposed framework.

respectively. The matrices �,� are the continuous-time state196

and input-to-state transition matrices, respectively. C is the197

output transition matrix. Considering that the plant outputs198

are sampled and control inputs are actuated once in every h199

sampling interval, we have the following:200

x̂[k + 1] = Ax̂[k]+ Bu[k]+ L
(
y[k]− Cx̂[k]

)
201

u[k] = −Kx̂[k], A = e�h, B =
h∫

0

e�t�dt. (2)202

Here, A, B are the discrete-time counterparts of �, �, respec-203

tively. L is the Kalman gain in the Luenberger observer that is204

used to filter the Gaussian noises from the output and estimate205

states. K is the feedback control gain designed as per the206

performance requirements. x[k], x̂[k], y[k], u[k] denote state,207

estimated state, output and control input vectors at kth (k ∈ N)208

sampling instance or t = kh time unit, respectively.209

1) Control Design, Performance Metrics, and Safety210

Criteria: A control design metric represents the control objec-211

tive while designing the controller. One such standard design212

metric is settling time, i.e., the time that the system takes to213

maintain a steady output within a fixed error margin around the214

desired reference value (e.g., within 2% error band). Hence,215

the controller has to be designed in such a way that the216

given settling time requirement is always met. We correlate217

the settling time requirement with the notion of exponential218

stability criteria by defining it as follows.219

Definition 1 (Globally Uniformly Exponentially Stable):220

The equilibrium x = 0 of the system in (2) is globally221

uniformly exponentially stable (GUES) if for any initial state222

x[k0] there exist M > 0, γ < 0 such that, ‖x[k]‖ ≤223

Meγ (k−k0)‖x[k0]‖ ∀k ≥ k0 (‖.‖ is vector norm).224

Given a settling time requirement of (k − k0)h (h is the225

sampling period), this definition mandates the system states226

must decay by a minimum factor of eγ at every sampling227

period so that the system output stays within a 2% error bound228

of the desired reference value within (k − k0)h time. On the229

other hand, the control performance is the measure of the230

quality of control, i.e., how efficiently the design requirement231

is met. We consider a linear quadratic regulator (LQR)-based232

cost function as the performance metric as given below233

J =
N−1∑

k=0

(x[k]− r[k])TQ(x[k]− r[k])+ uT[k]Ru[k])234

+ (x[N]− r[N])TS(x[N]− r[N]). (3)235

Equation (3) represents the control cost computed for 236

a system over a finite time-window. Here, the symmetric 237

weighing matrices Q, R 	 0 capture the relative importance 238

that the control designer can give to the state deviation and 239

control effort, respectively. S is the final state cost matrix. 240

Replacing u[k] with −Kx[k], we derive the optimal feedback 241

control gain K that minimizes the control cost J. We tune the 242

state cost matrix Q to design an LQR gain K, that promises to 243

achieve the desired exponential decay γ during the closed-loop 244

evolution, offering the minimum control cost. 245

The phase difference between the input and output can 246

cause unsafe transient behavior (e.g., overshoots, undershoots) 247

even in stable control loops bounded by a GUES criterion. 248

To overcome these, we consider that the bounded region for 249

GUES (see Definition 1) during the control design as an input 250

by the system designer such that a forward invariance is 251

maintained. This demands the system states to initialize and 252

always remain within this region. This region is defined as the 253

safe operating region Rsafe. Formally, the closed-loop system 254

states should always satisfy the following safety criteria: x(t) ∈ 255

Rsafe ⇒ ∀t′ ≥ t, x(t′) ∈ Rsafe. 256

2) Closed-Loop Under Sampling Period Change: We 257

intend to capture both the plant and controller states at each 258

discrete time step by defining an augmented state vector X = 259

[xT , x̂T]T . Replacing u with −Kx̂ and y with Cx [see (2)], the 260

evolution of the overall closed-loop is expressed as follows: 261

X[k + 1] = A1,hX[k], A1,h =
[

A BK
LC A− LC + BK

]
. (4) 262

For multiple sampling periods, hi, hj say, we denote the 263

discrete-time augmented system matrices as A1,hi , A1,hj . 264

Therefore, such a system that changes its sampling rates can 265

be represented as a switched LTI system, where it switches 266

between different combinations of {A1,hi , A1,hj}. 267

3) Closed-Loop Under Skipped Control Executions: 268

Because of the uncertain behavior of underlying comput- 269

ing/communication platforms (such as micro-architectural 270

faults, jitters, communication delays, etc.) in embedded control 271

systems, control execution skips may occur while periodically 272

executing control tasks. This causes the ideal periodic control 273

executions to become aperiodic, where the actuator on the 274

plant side does not receive any new control update within the 275

sampling interval [k, k+1) or the time interval [kh, kh+1) if a 276

control skips occur at kth time step. Therefore, the value of the 277

control input remains the same as it was in the last sampling 278

instance (last received control actuation at kth instance), i.e., 279

u[k+1] = u[k]. Leveraging the robustness available in control 280

loop design accounting for potential actuation misses, we 281

IE
EE P

ro
of

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 2. Closed-loop with skipped control.

consider that some such control task executions and resulting282

actuation can be intentionally skipped for possible benefit in283

terms of co-schedulability of control loops. Fig. 2 presents the284

real-time operation of such a control loop under intentional285

control execution skips. In the presence of a control execution286

skip at (k+1)th instance, the closed-loop system in (2) evolves287

as x[k + 1] = Ax[k] + Bu[k], x̂[k + 1] = Ix̂[k] + Ou[k] +288

Oy[k], u[k + 1] = Kx̂[k + 1] . I and O are identity and289

zero matrices with the same dimensions as A, B, respectively.290

Therefore, the augmented closed-loop system under control291

execution skip progresses like below292

X[k + 1] = A0,h X[k], A0,h =
[

A BK
O I

]
. (5)293

To assess the system performance under control execution294

skips, we need to model the system as a discrete-time system295

(sampling period h) switching between the closed-loop aug-296

mented characteristic matrices A1,h from (4) and A0,h from (5).297

An example is presented in Fig. 2. Here, after executing298

the control task at kth and (k + 1)th instance, we skip the299

control executions at (k+2)th and (k+3)th sampling instances,300

then the augmented closed-loop system state at (k + 4)th301

instance becomes X[k + 4] = A0,hA0,hA1,hA1,hX[k]. Here, we302

use the control input computed at t = (k+ 1)h for the next 3303

sampling instances, i.e., between the time t ∈ [kh, (k + 3)h).304

Again, the control input is computed at t = (k + 3)h and305

used up to the time t ∈ [(k + 3)h, (k + 4)h) (i.e., the next306

sampling interval). We express this switching control sequence307

as aperiodic control execution skipping sequence (ACESS).308

Definition 2 (ACESS): An l ∈ N length ACESS for a given309

control loop is a sequence ρ ∈ {0h1, 1h1, . . . , 0hM, 1hM}l. Here,310

{h1, h2, . . . , hM} are the sampling periods of its available set311

of feedback controllers; ∀h ∈ {h1, h2, . . . , hM}, 1h denotes312

a control execution when the augmented closed-loop system313

state X progresses for h time duration following (4), and 0h314

denotes a skipped execution when X progresses h duration315

following (5).316

Now, the aforementioned aperiodic control sequence can317

also be expressed as 1h1h0h0h, such that X[k + 4] =318

A0,hA0,hA1,hA1,hX[k] = A2
0,hA1,hA1,hX[k]. Here, the aug-319

mented state is periodically controlled at t = kh and (k+ 1)h320

and evolves in continuous time following (A0,h)
2 × A1,h until321

the system states are sampled for the next control execution.322

III. METHODOLOGY323

Our methodology employs periodic activation with suitable324

control gains (designed for different sampling rates) along325

with aperiodic activations to the control tasks depending on 326

their performance degradations. 327

A. Overview 328

A brief overview of the proposed methodology is illustrated 329

in Fig. 1. The 1,2,3 marked boxes denote the offline part 330

of the methodology, and box 4 denotes the online dynamic 331

scheduling algorithm. The red dotted (top) part inside box 4 332

shows how two control tasks corresponding to two different 333

control loops are scheduled with certain activation patterns in 334

a shared platform. The green dotted (bottom) part inside box 4 335

shows the updated activation patterns assigned to these control 336

tasks based on their control cost deviations. For this 2-task 337

setup, observe that control task 1 is scheduled with an ACESS 338

with two skips and control task 2 is scheduled with high- 339

frequency (i.e., small periodicity) periodic activations. Our 340

online algorithm updates their activation patterns following 341

the steps below. 1) It observes whether there is any deviation 342

w.r.t the performance metric, e.g., LQR control cost [see (3)] 343

of closed-loop 1 due to some external disturbance. If the 344

deviation goes beyond a tolerable cost margin (marked with 345

a red dotted line in the left side cost plot), an aperiodic 346

activation with fewer skipped executions is assigned (utilizes 347

more bandwidth than before). 2) If the processor utilization 348

goes beyond a fixed budget due to this higher-bandwidth 349

assignment, the algorithm deploys an activation pattern with 350

increased periodicity/lower frequency to control task 2, which 351

consumes a lower bandwidth than before. Doing these requires 352

the following two important components. 1) A library of 353

possible ACESS-s for every control loop so that each of them 354

is safe and performance-preserving. This should preferably be 355

given with a finitary representation for resource-constrained 356

implementation (box 3 in Fig. 1). 2) For this, we need a set 357

of switching constraints that ensure stable switching across 358

multirate controllers and ACESS-s (boxes 1 and 2 in Fig. 1). 359

As shown in Fig. 1, from such a library, represented in the 360

form of an automaton for each control loop, our methodology 361

chooses suitable ACESS as well as sampling periods while 362

satisfying the timing constraints. 363

B. Aperiodic Control Executions—Subsystem View 364

To generate a sequence of performance-preserving aperiodic 365

control activation for a periodic control task, we visualize 366

the control loop as a system, switching between multiple 367

subsystems. Each subsystem represents the control loop under 368

a certain number of consecutively skipped control executions. 369

We consider this evolution of an augmented closed-loop 370

discretized with a fixed sampling period, under aperiodic 371

control execution, as a control skipping subsequence (CSS). 372

The subsystems are chosen such that their time and frequency 373

domain characteristics always ensure safe transient behavior 374

(i.e., by confining system states within Rsafe). 375

Definition 3 (CSS): A CSS in an l-length ACESS ρ is an 376

i-length subsequence having the form 1h(0h)
i−1, i ≤ l. Like 377

ACESS, 1h signifies the execution of a controller designed 378

with the sampling period h and its augmented state progression 379

following (4). The following 0hs signify the actuation of the 380

IE
EE P

ro
of

ADHIKARY et al.: REVISITING DYNAMIC SCHEDULING OF CONTROL TASKS 5

last control input once in each of the next (i − 1) sampling381

instances (i.e., (i − 1)h time) such that the states evolve at382

every sampling instance following (5).383

Example 1: Consider an l = 7 length ACESS ρ =384

1hi1hi0hi0hi1hj0hj1hj that spans for 7 sampling instances, i.e.,385

during t ∈ [khi, (k + 4)hi + 3hj) it follows the CSSs, 1hi, at386

position ρ[0] signifying a control execution and state evolution387

using A1,hi, 1hi0hi0hi at positions ρ[1], ρ[2], ρ[3] signifying388

a control execution and state evolution using A100,hi =389

A2
0,hiA1,hi, 1hj0hj at ρ[4], ρ[5], signifying a control execution390

and state evolution using A10,hj = A1
0,hjA1,hj and 1hj at ρ[6]391

signifying a control execution and state evolution using A1,hj392

(see Fig. 2). Note, corresponding to each such i-length CSS,393

1h0i−1
h , the controller executes once followed by the continu-394

ous evolution of the plant over a time window of i×h instead395

of h, where the same control input is actuated once every h.396

Hence, X[7] = A1,hjA10,hjX[4] = A1,hjA10,hjA100,hiA1,hiX[0] =397

(A0,hj)
0A1,hj(A0,hj)

1A1,hj(A0,hi)
2A1,hi(A0,hi)

0A1,hiX[0].398

To generalize, for an l-length ACESS, ρ= 1h10i1−1
h1 1h1399

0i2−1
h1 1h20i3−1

h2 · · · 1hM0iN−1
hM , such that l = ∑N

q=1 iq400

(i.e., ρ contains total N CSSs), a closed-loop401

dynamical system, discretized with a set of sam-402

pling periods {h1, h2, . . . , hM}, behaves like a switched403

system having state evolution of the form: x[l] =404

(A0,hM)iN−1A1,hM . . . (A0,h1)
i2−1A1,h1(A0,h1)

i1−1A1,h1x[0].405

Note that each q-length CSS 1h0q−1
h in an ACESS (for any q ∈406

Z
+) is defined for a certain sampling period h. This essentially407

represents a closed loop that actuates the control input once408

in every h duration for qh duration and the control input is409

computed by a controller designed with h sampling period. We410

perceive this as a subsystem θq,h, for any q ∈ Z
+. For example,411

under the ACESS 1hi1hi0hi0hi1hj0hj1hj as demonstrated in412

Example 1, the closed-loop evolves according to the following413

subsystem switching sequence: θ1,hi → θ3,hi → θ2,hj → θ1,hj .414

C. Stability Analysis of ACESS-s as Switched Systems415

Let � = {θ1, θ2, . . .} be a set of subsystems where any qth416

subsystem θq = θi,h represents the dynamics of a closed-loop417

system with a sampling period h ∈ H and following a CSS418

10i−1, i ∈ N. Here, H, N are a set of chosen periodicities and419

lengths of CSSs, respectively. To enable switching between420

all possible combinations of sampling periods and CSSs, we421

define q = 〈i, h〉, i ∈ N, h ∈ H, such that all possible422

combinations from N × H are present in �. Each of these423

subsystems is linear in nature [follows (4) and (5)]. We present424

the detailed stability analysis for a switched system comprising425

subsystems in � in a discrete-time setting. We represent such426

a system as a switched linear system like the one below427

X[k + 1] = Aσ [k](X[k]), σ : k �→ N, k ≥ 0. (6)428

Here, σ is a switching signal. σ(k) = q signifies that at kth429

sampling instance the system is in qth subsystem θq, i.e., X430

evolves using a controller designed with the sampling period431

h and following a CSS 10i−1, when q = 〈i, h〉. We define432

Nσq(k
′, k) as the number of switching to θq within k′th and433

kth sampling instances. Thus434

Nσq(k
′, k) ≤ N0q + Tq(k

′, k)/τdq (7)435

where N0q is chattering bound for θq, Tq(k′, k) is the total 436

time spent in θq and τdq is a minimum time duration that the 437

switched system stays in the subsystem θq. Note that the mini- 438

mum time that the switched system dwells in every subsystem 439

is subsystem-specific. This minimum dwelling duration is 440

known as mode-dependent average dwell time (MDADT) [15]. 441

The MDADT for θq is denoted with τdq . For constraining 442

the MDADTs of a set of subsystems (e.g., �) to ensure a 443

desired performance bound while switching within them, we 444

use MLFs. 445

Let there exist a radially unbounded, continuously differen- 446

tiable, positive definite function, Vq(x(k)), such that Vq : Rn �→ 447

R for all θq ∈ �. If there exist class K∞ functions κ1, κ2, 448

and switching values σ(kp) = q, σ (k−p) = q′, where k−p < 449

kp, q �= q′, θq, θq′ ∈ � are two different subsystems, then 450

∀θq ∈ � the following holds: 451

κ1(||x(k)||) ≤ Vq(x(k)) ≤ κ2(||x(k)||) (8) 452

�Vq(x(k)) ≤ αq Vq(x(k)) s.t.αq �= 0 (9) 453

Vq(x(k)) ≤ μq Vq′
(
x(k−)

) ∀θq′ ∈ � for μq > 1. (10) 454

In simpler words, Vq-s are subsystem wise MLFs respect- 455

ing (8)–(10). In (9), for stable subsystems, 0 < 1+ αq < 1 456

and for unstable subsystems 1 + αq > 0, where αq is a 457

function of the minimum attainable exponential decay by 458

θq [15]. Extending the MDADT-based asymptotic stability 459

criteria from [15, Th. 2], we claim the following in order to 460

maintain the desired GUES while slowly switching between 461

subsystems in �. 462

Claim 1: For the switched system in (6) having subsystems 463

with MLF Vq(X[k]) satisfying (8)–(10), the following criteria 464

need to be satisfied in order to ensure a desired GUES 465

margin γ while slowly switching between a set of subsystems: 466

1) for every qth subsystem, there exists a lower bound 467

of the corresponding MDADT τdq ≥ (ln μq/[| ln (1+ αq)|]) 468

and 2) the switching should follow a minimum dwell time 469

ratio v = ([ln γ+ − ln γ]/[ln γ − ln γ−]) between the total 470

dwelling duration at stable and unstable subsystems, where 471

γ− = maxq∈�− [(1 + αq)μ
(1/τdq)

q] and γ+ = maxq∈�+ [(1 + 472

αq)μ
(1/τdq)

q]. 473

Proof: From (9) and (10), for k ∈ [kp, kp+1) we can write 474

Vσ(k)(x(k)) ≤
(
1+ ασ(kp)

)Tσ(kp)(kp,k)μσ(kp)Vσ
(
k−p

)
(

x(k−p)
)
. 475

(11) 476

Unwinding (11) over the switching interval [k0, k) will have 477

the parameters μq and αq repeated in the above equation as 478

many times as the qth subsystem θq will be switched into. 479

Hence, using the definition of MDADT in (7), and the total 480

number of subsystems in � as M, we can rewrite the above 481

equation as we get 482

Vσ(k)(x(k)) ≤ μ
Nσ(p)(kp,k)
σ(k)

(
1+ ασ(p)

)Tσ(p)(kp,k)μ
Nσp(kp−1,kp)
σ(kp)

483

(
1+ ασ(p−1)

)Tσ(p−1)(kp−1,kp) . . . μ
Nσ(0)(k0,k1)

σ (1) 484

(
1+ ασ(0)

)Tσ(0)(k0,k1)Vσ(k0)(x(k0))μ
Nσq (k0,k)
σ (k) 485

IE
EE P

ro
of

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

≤
M∏

q=1

(
μ

Nσq (k0,k)
q

(
1+ αq

)Tq(k0,k)
)

Vσ(k0)(x(k0))486

≤ e

{
∑M

q=1 N0q ln μq

}
∏

q∈�−

(
(1+ αi)μ

1
τdq
q

)Tq(k0,k)
487

∏

q∈�+

((
1+ αq

)
μ

1
τdq
q

)Tq(k0,k)
Vσ(k0)(x(k0)).488

If we set, K = e{
∑M

i=1 N0q ln μi} and489

T− =
∑

q∈�−
Ti(k0, k), γ− = max

q∈�−

[

ln

[
(
1+ αq

)
μ

1
τdq
q

]]

(12)490

T+ =
∑

q∈�+
Tq(k0, k), γ+ = max

q∈�+

[

ln

[
(
1+ αq

)
μ

1
τdq
q

]]

(13)491

Hence,
(

eγ−T− × eγ+T+
)
≤ eγ (k−k0), (14)492

⇒ Vσ(t)(x(t)) ≤ Ke(−γ−T−+γ+T+)Vσ(k0)(x(k0))493

≤ Ke[γ (k−k0)]Vσ(k0)(x(k0)). (15)494

Since γ− ≤ γ < 0 ∀q ∈ �− 1 > γ− > γ−2 ≥ (1+αq) > 0495

μ

1
τdq
q ≤ 1

(
1+ αq

) ⇒ τdq ≥
ln μq

| ln (
1+ αq

)| . (16)496

Since γ+ > 1 and ∀q ∈ �+, 0 < αq ⇒ 1 < (1+ αq)497

μ

1
τdq
q ≥ 1

(
1+ αq

) ⇒ τdq ≥ −
ln μq

ln
(
1+ αq

) . (17)498

Note that T− and T+ represent the total running time into499

the stable and unstable subsystems, respectively. Therefore,500

from (14), we have the dwell time ratio, v, between the501

stable and unstable subsystems as, v = (T−/T+) ≥502

([γ+ − γ]/[γ − γ−]). From (15) and the definition of503

GUES [6], we can conclude that Vσ(k)(x(k)) converges to zero504

with the desired margin of γ as sampling instance k → ∞,505

and consequently we get the lower bound of the MDADT τdq506

for q ∈ {1, 2, . . . ,M}.507

For arbitrary switching, the following must hold.508

Claim 2: A switched system in (6) that arbitrarily switches509

between subsystems should have a CLF for all its switch-510

able subsystems that satisfy (8)–(9) and Vq(x(k)) =511

Vq′(x(k−)) ∀θq, θ
′
q ∈ �clf s.t. �clf ⊆ � in order to maintain512

the desired GUES decay margin of γ while switching among513

them arbitrarily [12].514

Proof: The proof of this theorem can be established fol-515

lowing the previous proof, considering μq = 1 for all qth516

subsystem in �clf , which is a subset of all subsystems �517

(mandates a zero dwell time or arbitrary switching to and from518

each subsystem in �clf) [12].519

D. Computing Stable Switching Rules for Safe Subsystems520

Once we have chosen sets of periodicities for each control521

task such that their corresponding discrete-time closed loop522

systems are controllable, we can design stabilizable LQR523

controllers and Kalman gains. In each case, it must be ensured524

Fig. 3. Schematic of CSA.

that the augmented states of these closed loops (i.e., actual and 525

estimated states) remain within a safe operating region Rsafe. 526

For each of the sampling periods for a system, we can find the 527

maximum bound of CSS length for which the safety property 528

is maintained. To achieve the desired decay rate of γ while 529

switching between multiple subsystems in �, we can calculate 530

required MDADT τdq , using (16), ∀q ∈ N×H such that X[k] ∈ 531

Rsafe ∀k, k0 ∈ Z
+, k ≥ k0, i.e., the augmented state always 532

remains confined within a common safe operating region for 533

a given control loop. We consider quadratic MLF candidates 534

for all subsystems, i.e., Vq = XTPqX, where Pq > 0. To 535

achieve this, in accordance with Claim 1, we need to estimate 536

a minimum possible μq > 1 such that the following linear 537

matrix inequalities (LMIs) have a positive definite solution 538

for Pq, given the values of αq = λ2
max,q − 1, ∀θq, θq′ ∈ 539

�. Here, λmax,q is the maximum Eigenvalue of discrete-time 540

subsystem θq 541

AT
q PqAq − Pq ≤ αqPq, Pq ≤ μqPq′ , Pq > 0. (18) 542

Therefore, if we switch between the subsystems respecting 543

the derived MDADT and the dwell time ratio (when there are 544

systems with a lower-decay rate than desired), it is guaranteed 545

to maintain the desired GUES. The sets of subsystems for 546

which there exists a valid P > 0 for solving the LMIs in (18) 547

with each μq = 1 (i.e., share a CLF) can switch between 548

themselves arbitrarily. Since each of the subsystems is chosen 549

such that they keep the system within a safe operating region, 550

the switching is also expected to maintain the desired safety. 551

E. Formalizing Stable Switching Rules as Automaton for 552

Safe and Stable ACESS Generation 553

Let, � = �clf ∪�mlf , where �clf is the set of subsystems 554

that have a CLF (supports Claim 2) and �mlf is the set 555

of subsystems that can only have MLFs (does not have a 556

CLF and supports Claim 1) given the GUES decay rate γ . 557

Note that some subsystem θq can belong to both in �clf and 558

�mlf since they may support fast switching within one set 559

of subsystems (∈ �clf) and slow switching between different 560

sets of subsystems (∈ �mlf) respecting the stability and safety 561

criteria (see Fig. 3). Solving the constraint satisfaction problem 562

explained in Section III-D (see (18)), we calculate the MDADT 563

τdq for each such subsystem θq ∈ �mlf (that we denote with 564

θq,mlf) and the dwell time ratio v. For θq ∈ �clf (that we 565

denote with θq,clf), the required minimum dwell time is the 566

same as the time span of the corresponding CSS, i.e., ih for 567

10i−1 if q = 〈i, h〉, where h is the sampling period for θq. 568

All possibilities of rule-based switching between subsys- 569

tems can be captured in the form of a finite state generator 570

IE
EE P

ro
of

ADHIKARY et al.: REVISITING DYNAMIC SCHEDULING OF CONTROL TASKS 7

automaton. The traces of this automation are essentially timed571

sequences of switching among subsystems or CSS switch-572

ing sequences that maintain the required decay by ensuring573

dwell time and dwell time ratio, respectively. Since such a574

CSS/subsystem switching sequence generates a safe and stable575

control execution skipping sequence, we term it CSA. In576

Fig. 3, we provide a schematic structure for this CSA T577

realized with m′ stabilizable locations in �clf and m locations578

in �mlf . By reusing the notations of the subsystems as the579

notations for the locations to represent their equivalence, we580

define the CSA as follows.581

Definition 4 (CSA): A CSA for a control loop is a finite582

state automaton T = 〈L, {θ0}, {θ0}, C, V, E, Inv〉 where as583

follows.584

1) L = � ∪ {θ0} is the finite set of locations that denotes585

the underlying subsystems.586

2) θ0 is the only member of the set of initial locations and587

the set of accepting locations. It is a dummy subsystem588

that contributes to the ACESS-s with 0 length and 0589

minimum dwell time and helps to synthesize ACESS-s590

starting from (ending at) any subsystem.591

3) C = {c, c′, p, p′}∈ R
+ are the set of real-valued variables592

that are used to keep track of real-time during system593

progression, termed as clocks. The clocks c, c′, p, p′594

are used to keep track of global time, local time at595

each location/subsystem, total dwelling time in stable596

subsystems, and in unstable subsystems, respectively.597

4) V = {a, b, s}∈ Z
+ is a set of variables other than clocks598

that are used to keep track of total ACESS length, the599

count of 0s, and whether the destination subsystem is600

stable (s = 0) or not (s = 1), respectively.601

5) Inv(θq) = 〈Invq
safety, Invq

len, Invq
dtr〉 is the invariant tuple602

at the qth location/subsystem. For Invq
safety and Invq

len,603

the subscripts refer to the rule it enforces at each θq ∈ L.604

Invdtr enforces a maximum dwell time ratio if θq is605

unstable such that a desired ACESS length is respected.606

All of them should hold true to stay in θq.607

6) E ⊆ {(L\�mlf)×G×R×(L\�mlf)}∪{(L\�clf)×G×608

R×(L\�clf)} is the set of transitions/edges. A transition609

from θq to θ ′q is denoted by, Eqq′ = (θq,Gqq′ ,Rqq′ , θq′) ∈610

E , where Gqq′ represents guard condition and Rqq′ is the611

reset map. Note that there exists no E00 ∈ E .612

7) The guard conditions are defined as613

Gqq′ =
{
Gqq′

len ∧ Gqq′
τd ∧ Gqq′

safe ∧ Gqq′
�+ when θq, θ

′
q ∈ L \�clf

Gqq′
len ∧ Gqq′

τd ∧ Gqq′
safe when θq, θ

′
q ∈ L \�mlf .

614

Here, Gqq′
len is true when the transition between two615

locations in �mlf ∪θ0 or between two locations in �clf ∪616

θ0 is possible, respecting the desired length and other617

requirements, i.e., MDADT of the destination and dwell618

time ratio. If the MDADT of θ ′q cannot be covered or619

the dwell time ratio cannot be maintained (in case of620

unstable θ ′q), for the desired length of ACCESS, Gqq′
len621

evaluates to false. A true value of Gqq′
τd denotes that622

the minimum dwell time required for θq,clf or θq,mlf is623

maintained during the transition from θq to θ ′q. Note that624

the minimum dwell time for a θq,clf is ih if θq = θi,h625

Fig. 4. ACESS with MDADT constraint: Trace 1 in Example 2.

(for θ0 it is 0). Gqq′
�+ is evaluated when the destination 626

location θ ′q is unstable. It evaluates to true if there is 627

enough length remaining to maintain the dwell time ratio 628

when there is a transition to an unstable subsystem. The 629

variables from V are used to evaluate the length, the 630

local clock c′ is used to maintain the MDADT related 631

guard, and dwell time ratio related guards use p, p′ ∈ C. 632

8) The reset maps are defined as, Rqq′ = Rqq′
len ∧ Rqq′

dtr ∧ 633

Rqq′
s ∧Rqq′

τd Here, Rqq′
len is used to update the a, b ∈ V 634

to count the length and number of zeros in the ACESS 635

during the current transition. Rqq′
s resets the indicator 636

variable s ∈ V if θq′ is stable or θ0 and sets it otherwise. 637

Finally, Rqq′
dtr , Rqq′

τd update p, p′ ∈ C and c, c′ ∈ C to 638

maintain current dwell time ratio and dwelling time of 639

θq during the current transition, respectively. 640

CSA fundamentally is an extended version of timed 641

automata that uses discrete variables along with real-valued 642

clocks [17]. From a language theoretic point of view, we 643

designate θ0 as the starting and accepting state of the automa- 644

ton by ensuring the guard G0q,Gq0 ∀θq ∈ � \ θ0. These 645

location invariants and transition guards are generated based 646

on the computations done for a closed loop control task in 647

Section III-D. Therefore, an ACESS satisfying the original 648

GUES requirement γ within a safe operating region Rsafe is 649

essentially created by concatenating the CSSs corresponding 650

to each subsystem transitioned through in any cyclic trace in 651

this control skipping extended timed automaton CSA starting 652

and ending at θ0. 653

Example 2: Consider a CSA with set of locations {θ0, 654

θ1,mlf , θ2,mlf , θ3,mlf , θ4,mlf , θ1,clf , θ2,clf , θ3,clf } ∈ L, where 655

θ1 = θ1,0.02, θ2 = θ2,0.02, θ3 = θ2,0.04 and θ4 = θ3,0.02. 656

Among these, the first three have a CLF for a GUES decay 657

rate. The MDADTs for θ1, θ2, θ3, θ4 are 0.06, 0.08, 0.08, 0.06 658

sec, respectively, while the dwell time ratio is 1.5 to maintain 659

the given GUES. 660

CSA Trace 1: A sample CSA trace of length 7, generated 661

by slowly switching among the subsystems/locations ∈ �mlf 662

along with its corresponding ACESS and task activations, are 663

shown in Fig. 4. The topmost plot in Fig. 4 denotes this control 664

task activation sequence of length 7 that is generated from this 665

slow switching. Note that the task instances arrive in every 666

0.02s interval, denoting a control execution with sampling 667

periodicity h = 0.02 s. At the last two arrival instances, the 668

executions are skipped, denoting the corresponding ACESS 669

to be “(10.02)
410.02(00.02)

2”. As shown in the middle plot of 670

Fig. 4 the system follows the CSS 1h−0.02 of length i = 1 for 671

IE
EE P

ro
of

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 5. ACESS with multirate + CLF constraint: Trace 2 in Example 2.

4 sampling iterations and follows the CSS 1h−0.02(0h−0.02)
2

672

of length i = 3 for the next 3 sampling iterations. This673

corresponds to the cyclic CSA trace (θ0, a, b, c, c′, p, p′, s =674

0)→ (θ1,mlf , c = 0.1, c′ = 0.1, a = 4, b = 0, p = 0.08,675

p′ = 0, s = 1) →(θ4,mlf , c = 0.16, c′ = 0.06, a = 7, b =676

2, p = 0.14, p′ = 0, s = 1) →(θ0, c = 0.16, c′ = 0, a =677

7, b = 2, p = 0.1, p′ = 0.06, s = 0). The bottom-most part678

of Fig. 4 shows this trace without the starting and ending θ0.679

Starting from θ0, the system spends c′ = 0.08 s in θ1, which680

evaluates to (10.2)
4. Following this, it enters subsystem �4,681

since 1) as per G14
len this does not violate the desired length,682

i.e., value(a)+ 3 ≤ 7 (remember θ4 = θ3,0.02 which evaluates683

to CSS 10.02(00.02)
2 of length i = 3); 2) as per the dwell time684

constraint G14
τd

, value(c′) = 0.08 > τd1 = 0.6; and 3) as per685

G14
safety, Inv4

safety, the augmented system states are within a safe686

operating region in that time window. Then, CSA transits to687

θ0 as value(a) == 7 (i.e., G40 = true) and we get the ACESS688

(10.02)
410.02(00.02)

2.689

CSA Trace 2: Another task execution sequence corre-690

sponding to an ACESS of length 8 is shown in Fig. 5.691

The ACESS is generated from the CSA by fast switching692

between subsystems ∈ �clf . Here, the closed-loop system693

switches between a controller with sampling period of 0.02694

s and a controller with sampling period of 0.04 s. For both,695

it deploys (1h=0.04)0h=0.04)
1 and then (1h=0.02)0h=0.02)

1 as696

CSSs. Corresponding, cyclic timed trace of this CSA is697

(θ0, a, b, c, c′, p, p′, s = 0) →(θ1,clf , c, c′ = 0.08, a = 4, b =698

0, p = 0.08, p′ = 0, s = 0) →(θ3,clf , c = 0.2, c′ = 0.12,699

a = 8, b = 2, p = 0.12, p′ = 0, s = 0)→(θ0, c = 0.2, c′ =700

0, a = 8, b = 0, p = 0.2, p′ = 0, s = 0).701

In the following section, we present an algorithm that702

generates ACESS-s for each control task scheduled in a shared703

execution platform from their CSAs.704

F. Algorithmic Framework for Task-Wise ACESS Scheduling705

A CSA generates all possible safe and stable ACESS-s for706

a control task given with certain performance criteria and707

length requirements. Considering the subsystems/locations as708

vertices along with their transitioning edges, the CSA can be709

imagined as an almost complete graph with |�| nodes and710

|E | many edges (complete, since all vertices are connected711

but some edges may be infeasible based on guards). Hence,712

an algorithm designed to look for a valid trace (i.e., safe and713

stable ACESS) of such a finite state automaton using DFS714

takes O(|�|+|E |) ≈ O(n2
max) time. Here, nmax is the maximum715

possible subsystem count for a controller. To achieve a linear716

Algorithm 1 Performance-Aware Dynamic Task Scheduling

Input: Task set TS={T1, T2, · · · , TK}, M(j), {�
(j)
0 , ∀Tj ∈ TS}, task specs. Specs =

{spec(j)|spec(j) = 〈h(j), ρ(j), c(j), J(j), J(j)
ub , J(j)

lb 〉∀Tj ∈ TS}, utilization budget Ub
Output: Updated Specs with schedulable ACESS-s {〈h(j), ρ(j)〉∀Tj ∈ TS}
1: utils, newUtils← [], []
2: sort(TS, priority, descending)

3: for each j < K do
4: utils[j]← GETUTIL(Tj) � compute task wise Utils.
5: J(j) ← LQR cost for current states of τj following Eq. (3)

6: if J(j) ≥ J(j)
ub then

7: newUtils[j]← utils[j]× J(j)

J
(j)
ub

� util. increment for high cost

8: else newUtils[j]← utils[j]
9: end if

10: end for
11: if SUM(newUtils) ≥ Ub then � If utilisation beyond budget
12: j′ ← K � start from lower priority tasks
13: for each j′ > 0 do

14: if J(j′) ≤ J(j′)
lb then

15: newUtils[j′]← utils[j′]× J(j′)
J
(j′)
lb

� reduce util. if low cost

16: end if
17: end for
18: end if
19: if SUM(newUtils) ≥ Ub then � If util. still beyond budget
20: utilAdjFact← Ub/SUM(newUtils)
21: newUtils← utilAdjFact × newUtils � scale down task wise Util.
22: end if
23: for each Tj ∈ TS do

24: �0[j]← GETNEXTLOC(�
(j)
0 , ρ(j)) � next switchable subsystems

25: if newUtils[j] > utils[j] then
26: M[j]← GETACESSMIN(M(j), newUtils[j], �0[j],len(ρ(j)))
27: elseM[j]← GETACESSMAX(M(j), newUtils[j], �0[j],len(ρ(j)))
28: end if
29: end for
30: HP← findMinCommonHP(M) � find common HP for TS
31: for each Tj ∈ TS do
32: Specs[j].〈h(j), ρ(j)〉 ←M[j][HP][0] � deployable new ACESS-s
33: end for
34: return Specs

order implementation of this algorithm, we do the following 717

offline preprocessing. 718

1) Offline Preprocessing With Practical Assumptions: 719

1) For a control task Tj ∈ TS, we store the set of arbitrarily 720

switchable subsystems starting from a current subsystem 721

θ(h(j),n(j)) ∈ �clf following Claim 2 in �(h(j),n(j)). This collec- 722

tion of single step reachable subsystem set �(h(j),n(j)) ∀Tj ∈ 723

TS, is stored in a hash map �0, where the key is the current 724

subsystem and the value contains the set of subsystems. 725

�
(j)
0 = {〈(h(j), n(j)) : �(h(j),n(j))〉 · · · ∀n(j) ∈ N(j), h(j) ∈ H̃(j)}. 726

We define a method GETNEXTLOC(�
(j)
0 , ρj) that outputs the 727

set of subsystems from this hash map �
(j)
0 (input), that can 728

be arbitrarily switched into, starting from the last visited 729

subsystem of an ACESS ρj (input) in O(1). 730

2) There exist different ACESS length choices for each 731

Tj ∈ TS given a fixed hyperperiod choice, corresponding to the 732

sampling period choices of Tj. We can generate all possible 733

ACESS-s for each of these length choices from the CSA T (j)
734

given a hyper-period (HP) choice. We compute their processor 735

utilization and group them w.r.t their processor utilization. 736

Each group is then sorted in ascending order of their utiliza- 737

tions. We further group these ACESS-s w.r.t. their starting 738

subsystem (after θ0). Each group with the same utilization and 739

starting subsystem is again subgrouped w.r.t their HPs and 740

sorted by the ascending order of HP-duration. The resulting 741

data structure M(j) is a map of maps. The tuple containing 742

IE
EE P

ro
of

ADHIKARY et al.: REVISITING DYNAMIC SCHEDULING OF CONTROL TASKS 9

utilization (util) and starting subsystem in each ACESS-s (i.e.,743

after θ0 in CSA) is the key and another list of maps are744

values in the outer map. The inner map uses HPs as key, and745

the ACESS length (len), the corresponding set of ACESS-s746

as values like following: M(j) = {〈util ↓1, θstart〉 : {HP ↓2747

:{〈len ↓3, {ρ1, ρ2 · · · }〉, . . . , }, . . . , }, . . . , }. The outer list of748

maps M(j) is sorted in ascending order of util, denoted by ↓1.749

The inner list of maps is sorted in the ascending order of HP,750

denoted by ↓2. The values against each key in the inner maps751

are sorted w.r.t. the length of the ACESS, len, denoted by ↓3.752

We create method GETACESSMIN(M(j), utilmin, θstart,753

lenmin) to generate the list of all possible ACESS-s with754

a minimum utilization utilmin (input), starting from the755

subsystem θstart (input) and having a minimum length of lenmin756

(input), grouped by HPs from M(j) (input). Another method757

GETACESSMAX(M(j), utilmax, θstart, lenmax) generates the list758

of all possible ACESS-s with a maximum utilization utilmax759

(input), starting from the subsystem θstart (input) and having760

a maximum length lenmax (input) grouped by HPs from M(j)
761

(input). Considering that the maximum number of entries of762

utilization-keys in M(j) is mmax, both these methods take763

O(log(mmax)) time since the maps M(j)s are sorted w.r.t764

utilization. Note that we can fetch the ACESS-s corresponding765

to θstart or a HP key in O(1), resulting in an overall O(log(mmax))766

complexity. Now, we present an online algorithm to dynamically767

schedule ACESS-s to control tasks based on their performance768

degradations using these data structures.769

2) Performance-Aware Dynamic Scheduling: For a770

feedback-driven ACESS deployment from CSA for each of771

these control tasks, we propose Algorithm 1. Performance772

degradation caused by external disturbances increases the773

control cost of a task. In such scenarios, the controller needs an774

increased number of executions (i.e., higher frequency/more775

1’s in the corresponding ACESS-s) to reduce the performance776

degradation and, thereby, the control cost. Consequently,777

it demands a higher-processor utilization. To achieve this,778

Algorithm 1 takes the following inputs.779

1) The set of K control tasks TS = T1, T2, . . . , TK that are780

to be scheduled dynamically in a given platform.781

2) A list of ACESS-s M(j) for each Tj ∈ TS sorted in the782

order of utilization, length, etc.783

3) The list of arbitrarily switchable subsystems �
(j)
0 from784

any subsystems of each Tj. As mentioned earlier, the785

list of arbitrarily switchable locations for the last visited786

location of an input ACESS can be fetched from this787

list in polynomial time.788

4) Current task specifications Specs = {spec(j)|spec(j) =789

〈h(j), ρ(j), c(j), J(j), J(j)
ub , J(j)

lb 〉. Here, h(j), ρ(j), c(j) are the790

current sampling period, the current ACESS used, and791

the execution time for the task Tj. J(j), J(j)
ub , J(j)

lb are the792

current LQR cost, the upper bound and lower bounds793

for the LQR cost for Tj.794

5) The utilization budget Ub depending on the scheduling795

policy. Any violation of the upper bound of LQR cost796

directs Algorithm 1 to try and mitigate the violation with797

a suitable ACESS choice. In such cases, tasks which will798

be used for relinquishing bandwidth are ones with costs799

less than the lower bound.800

We start by initializing new arrays utils, newUtils to store 801

the current and desired utilisation of each task (line 1). The 802

task set is then sorted in descending order of their priorities in 803

the shared execution platform (line 2). Starting from the task 804

with the highest priority, for each task, we compute its LQR 805

cost following (3) and store in J(j) (line 5). The utilisation 806

of the jth task is computed using GETUTILS() and stored 807

in utils (see line 4). If the control cost of a higher-priority 808

task Tj is beyond its tolerable upper bound J(j)
ub (see line 6), 809

Algorithm 1 increases its utilisation by a certain factor. The 810

factor is calculated using the ratio between the actual cost 811

and its given upper bound. The scaled-up utilisation is stored 812

in newUtils (see line 7). Since the control cost of this task 813

is beyond the tolerable upper bound, the multiplying factor 814

is always > 1. This ensures the newly assigned utilisation 815

is higher than the current utilisation (both are naturally less 816

than Ub). If doing the above for all control tasks surpasses 817

the total utilisation budget, we do the opposite in the case of 818

the lower-priority tasks (i.e., (K − j)th task from the sorted 819

TS, see lines 11–18). If the LQR cost J(j) for a lower-priority 820

task Tj is below its allowable lower bound J(j)
lb , the utilisation 821

of the task is reduced by a factor of (J(j)/J(j)
lb) (see line 15). 822

Suppose the total utilisation of the newly assigned task, i.e., 823

SUM(newUtils), is still more than the utilisation budget Ub 824

(line 19). In that case, utilisation for each task is scaled down 825

by a factor of Ub/SUM(newUtils) (see line 21). 826

In lines 23–29, we derive possible sets of ACESS-s for each 827

task based on the assigned bandwidth utilisation. First, we 828

fetch the list of subsystems for each task, from which we can 829

start in the next HP. We use the GETNEXTLOC() method to 830

compute the arbitrarily switchable subsystems from the last 831

subsystem visited by ρ(j) and store them in �0[j] (line 24). We 832

fetch the ACESS-s for the tasks assigned with an increased 833

utilisation using the GETACESSMIN() method. As mentioned 834

earlier, given the set of curated ACESS-s for the control task 835

Tj (generated from its CSA) in the form of a list of maps 836

M(j), the GETACESSMIN() method gives us a set of ACESS-s 837

having a minimum utilisation newUtils[j], starting from �0[j], 838

and with a minimum length same as of ρ(j) (see line 26). They 839

are stored in M[j] as a map, having the HPs as keys and sorted 840

in ascending order. We fetch the ACESS-s for the tasks that are 841

assigned with reduced utilisation using the GETACESSMAX() 842

method and store them in M[j] in a similar format (line 27). 843

The lists of newly computed ACESS-s for each task can 844

have multiple possible HP choices. We find the intersections 845

of the sets of keys in M[j] ∀Tj ∈ TS using the method 846

FINDMINCOMMONHP() and store the minimum HP from this 847

common set in HP (see line 30). In lines 31–33, we find an 848

ACESS from M[j] stored against this common HP key. We 849

update the specification of each task specs(j) with this ACESS 850

and its corresponding sampling period in line 32 (remember, 851

we use ACESS-s having fixed sampling period in a single 852

HP) and finally return the updated task specifications Specs 853

(in line 34) for deployment in the next HP. 854

Complexity Analysis: Note that the task-wise utilizations 855

can be calculated using GETUTIL() in O(1). Therefore, 856

the lines 3–10 takes O(K) time. Lines 13–18 again takes 857

O(K) time. As discussed in Section III-F1, the function 858

IE
EE P

ro
of

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

GETNEXTLOC() (line 24) runs in O(1) time. Similarly, as859

discussed in Section III-F1, both GETACESS MIN() (line 26)860

and GETACESS MAX() (line 26) take O(log(mmax)) time861

considering a maximum of mmax utilisation entries among all862

M(j)s for each Tj ∈ TS. Now, consider the minimum and863

maximum lengths of M[j]s are mjmin , mjmax , i.e., the ACESS-s864

are grouped by minimum mjmin and maximum mjmax many HPs.865

Since they are sorted, the intersection computation method866

findMinCommonHP() among HP key values in M[j]s runs867

in O(mjmin log(mjmax)) time. Therefore, the overall runtime of868

Algorithm 1 is O(Kmjmin log(mjmax)), which is much less than869

O(Kn2
max) since mjmin ≤ mjmax ≤ nmax where nmax is the870

maximum possible subsystem count for each control task (see871

the complexity calculation in Section III-F1).872

IV. EXPERIMENTAL RESULTS873

Experimental Setup: We use two resource-constrained874

safety-critical CPSs, automotive and quadcopter, as our case875

studies. For both case studies, we use the LQR-based optimal876

control technique. The respective control tasks, along with877

several other tasks, are implemented in an ARM-based 32-bit878

Infineon Aurix TC-397 ECU running at 300 MHz. These tasks,879

along with Algorithm 1, are scheduled for execution in the880

same core of this ECU following a fixed-priority schedule.881

Algorithm 1 runs with the lowest priority once in every HP. It882

updates the control task schedules in the subsequent HPs. The883

running time of Algorithm 1 is found to be < 1ms in both case884

studies. We build a 500-Kb/s controller area network (CAN)885

setup that connects this ECU with an ETAS Labcar Real-time886

PC, where we emulate the physical system dynamics.887

Automotive Case Study: We implement four automotive888

control tasks in the electronic stability program (ECU): (ESP,889

maintains yaw stability), trajectory tracking control (TTC,890

regulates deviation from a desired longitudinal trajectory),891

cruise control (CC, maintains a desired vehicle speed), and892

suspension control (SC, manages vehicle suspension in dif-893

ferent road/driving conditions) [6], [18] (refer to Table I894

Col.1). The performance requirements for these controllers (as895

mentioned in Col. 5 of Table I) need to be achieved using896

the limited processing and communication bandwidths. This897

makes automotive embedded systems an ideal case study for898

our performance-aware bandwidth-sharing solution. Following899

the AUTOSAR mandates [19], we implement separate recep-900

tion tasks that filter and receive sensor IDs transmitted by901

the Labcar RTPC in CAN. On asynchronous updation of902

task-specific sensor data labels, the control tasks are run,903

followed by their corresponding transmission tasks to transmit904

the computed control data through CAN for plant actuation.905

CSA Synthesis: We start by deriving the switching parame-906

ters for each of the control loops as discussed in Section III-D907

to synthesize their CSAs for the desired GUES stability908

criteria as provided in Col.5 of Table I. We use a random909

simulation-based verification method to choose subsystems910

for each control loop that always keep the system outputs911

within a given safe operating region Rsafe as mentioned912

in Col.5. While choosing this set of controllable sampling913

periods and the maximum consecutive skips, we consider914

TABLE I
IMPLEMENTATION DETAILS AND PARAMETERS SYNTHESIZED

FOR CONTROL TASKS

a delay margin that arises during actuation as observed in 915

our setup. We use YALMIP with the Mosek optimization 916

engine to solve the LMIs given in (18) to find out the 917

switchable subset of subsystems with MLFs or CLFs. As a 918

result of these computations for every control loop, in Col.2 919

and Col.3, we provide the switchable subsystems in terms 920

of periodicity-CSS combinations. In Col.2, the subsystems 921

that are confined within an angle bracket have a CLF and 922

can be arbitrarily switched. On the other hand, in Col.3, the 923

subsystems confined within an angle bracket have MLFs and 924

can slowly switch between themselves by maintaining certain 925

MDADTs, as mentioned in Col.4. The MDADT corresponding 926

to a subsystem is given in the same order as the subsystem 927

appears in the tuple (angle brackets), and it is derived in 928

terms of the number of sampling periods. The dwell time 929

ratios corresponding to each control task are provided in Col.5; 930

however, the safe choice of the subsystems disallows any 931

unstable subsystems in the switchable set. 932

Using these subsystems and their corresponding parameters, 933

we can synthesize CSAs corresponding to each control loop 934

and optimally store switchable ACESS-s as mentioned in 935

Section III-F1. In Fig. 6, we demonstrate the behavior of such 936

safe subsystem choices for suspension control. Each subfigure 937

in Fig. 6 plots the car position (in meters) on the y-axis 938

and time (in terms of sampling period count) on the x-axis. 939

The blue plots denote output characteristics under different 940

periodic control executions and the red circled plots present 941

the system characteristics under skipped executions. Note that 942

as we increase the control execution frequency (from 20 ms 943

in the leftmost to 120 ms in the rightmost plot), the system 944

stabilizes faster. On the other hand, as we increase the number 945

of consecutively skipped executions after the actuation/control 946

execution at 20 ms, the system shows some undershoot but 947

remains within the safe region, i.e., [− 0.1, 0.1] (see Table I, 948

Col.5, Row.4). However, note that among these controllers 949

with multiple sampling periods, only the controllers with 950

20 ms, 40 ms and 60 ms and only the following CSSs, 951

10.02, 10.0200.02, 10.02(00.02)
2, 10.02(00.02)

3 have CLFs given 952

our performance criteria. 953

Dynamic Scheduling and Comparison With SOTA: We 954

demonstrate how Algorithm 1 operates for the automotive 955

control tasks, with an example scenario in Fig. 7. In all 956

four subfigures in Fig. 7, we plot system outputs in blue 957

(car position for SC and side slip for ESP) on the left y- 958

axis and the LQR control costs with dashed gray line on the 959

IE
EE P

ro
of

ADHIKARY et al.: REVISITING DYNAMIC SCHEDULING OF CONTROL TASKS 11

(a) (b) (c) (d) (e)

Fig. 6. CSSs and Periodicity changes for suspension control. (a) h = 0.02 and CSS = 1. (b) h = 0.04 and CSS = 10. (c) h = 0.08 and CSS = 100. (d)
h = 0.1 and CSS = 1000. (e) h = 0.12 and CSS = 10 000.

(a) (b)

(c) (d)

Fig. 7. Comparison between proposed method and SOTA. (a) SC under our
dynamic scheduling. (b) SC under skipped execution only. (c) ESP under our
dynamic schedule. (d) ESP under only periodicity change.

right y-axis, w.r.t time (in seconds) in the x-axis. In Fig. 7(a)960

and (c) (left subfigures), we demonstrate system outputs961

under the proposed dynamic scheduling and in Fig. 7(b) and962

(d) (right subfigures) we demonstrate the effect of SOTA,963

i.e., only multirate scheduling [16], [20] and only control964

execution skip-based scheduling [6], [21] approaches. For our965

experiments, we consider the nominal control cost observed966

during steady state as the cost lower bound for each control967

task. The cost observed during transient states is assumed as968

allowable upper bounds.969

At the start of the scenario, SC is running with the controller970

for a 40 ms sampling period and with ACESS 10101 (utili-971

sation = 3%). Due to bad road conditions, there is a sudden972

change in the car position, and normalized control cost for SC973

increases beyond the tolerable upper bound of 8 [marked with974

orange dashed lines in top subfigures, Fig. 7(a) and (b)]. In this975

situation, the online Algorithm 1 assigns more (4%) utilisation976

by deploying the 20 ms controller with ACESS 1011111101977

for SC, whereas the SOTA strategies that only rely on the978

skipped control executions (no periodicity change) assign 5%979

utilisation by deploying an ACESS-s (10.04)
5 (i.e., with the980

same sampling period of 40 ms). As can be seen, with our981

approach, the output settles faster [cf. the settling of the blue982

plot in Fig. 7(a) compared to Fig. 7(b)].983

The ESP task, on the other hand, runs with a controller984

of 20 ms sampling period and with ACESS 1010101010985

(utilisation 2.5%) till 0.02 ms following our strategy. Notice986

that its control cost is below the lower bound [orange dashed987

line at 0.1 on the right axis in Fig. 7(c) and (d)]. Hence, to988

provide more utilisation to SC, Algorithm 1 assigns ACESS989

1000110010 (utilisation 2%) to ESP and continues the same990

till 0.04 s, whereas under the SOTA strategies that solely991

rely on multirate scheduling (no control skips), ESP runs992

with a controller of 40 ms sampling period from the start 993

and cannot reduce the utilisation since there is no controller 994

with any higher-sampling period that is arbitrarily switchable 995

from the current 40 ms controller and still operates within 996

the safe region (see Table I Col.2, row.1). Due to sudden 997

arrival/discovery of an obstacle at 0.04 s, there is a sudden 998

deviation in side slip angle causing a high-control cost for 999

ESP beyond the tolerable upper bound of 2.5 (ref. the 1000

orange dashed lines in bottom subfigures). Our methodology 1001

deploys ACESS (10.02)
12 (i.e., 111111111111 ACESS under 1002

20 ms sampling period, with 5% utilisation), and the SOTA 1003

multirate strategy switches to 20 ms controller (as 40 ms 1004

and 20 ms controllers have CLF respecting given GUES, see 1005

Table I) assigning the same 5% utilisation. But as can be 1006

seen in Fig. 7(d), the switching of the periods causes a larger 1007

overshoot, in turn causing doubled control cost compared to 1008

our strategy [Fig. 7(c)]. 1009

Quadcopter Case Study: There are three control tasks in 1010

our quadcopter case study [22], namely, 1) altitude control 1011

(AltCon, maintains a desired height); 2) TTC (TTC, tracks a 1012

desired x-position); and 3) quadcopter stability control (QSC, 1013

tracks a desired y-position). They have higher frequencies than 1014

automotive control tasks from the previous case study and 1015

consume 50% of the overall processing bandwidth. Other tasks 1016

include transmission, reception, and dummy signal (image) 1017

processing tasks that consume 38% of the bandwidth. The 1018

desired GUES decay rate γ = −0.2 and safe operating regions 1019

Rsafe spanning [2, 20], [−2, 2], and [−5, 5] m around the 1020

references of AltCon, TTC and QSC, respectively, are input to 1021

our proposed methodology. The ACCESS-s generated from the 1022

synthesized CSAs for the provided inputs are task-wise stored 1023

offline. The implementations and test cases can be checked at 1024

https://github.com/SunandanAdhikary/DynamicSchedulingCSA/.1025

We evaluate our dynamic scheduling algorithm and SOTA 1026

methods in the following two scenarios of a flight trajectory 1027

spanning 70 s. Scenario 1: AltCon faces an external 1028

disturbance that deviates the quadcopter from its desired 1029

altitude 10 m during 15–18 s; Scenario 2: later, during 25–42 s 1030

QSC faces multiple obstacles in its path and changes its 1031

desired references from 15 to −20 m. Figs. 8 and 9 plot the 1032

plant responses (on the left axis in blue) and control costs 1033

(on the right axis in dashed gray) in these scenarios under 1034

the proposed methodology and SOTA multirate scheduling 1035

strategies, respectively. Initially AltCon, TTC, QSC follow 1036

ACESS-s that utilize 16%, 11%, and 20% of the processing 1037

bandwidth, respectively. 1038

During Scenario 1, SOTA control skipping policies deploy 1039

the same ACESS as Algorithm 1 does to AtlCon. This 1040

IE
EE P

ro
of

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

(a) (b)

Fig. 8. Dynamic scheduling in quadcopter with our approach. (a) Altitude
control: Under noise. (b) QSC: Avoiding obstacles.

Fig. 9. QSC: Multirate.

deployed ACESS utilizes 20% of the total processing1041

bandwidth, which is more than AltCon’s initial bandwidth1042

assignment. As can be seen in Fig. 8(a), following the1043

deployed ACESS with higher utilisation, AltCon successfully1044

stabilizes the quadcopter at the desired altitude of 10 m1045

even in the presence of disturbance (before 20 s). To keep1046

the overall bandwidth within budget, Algorithm 1 releases1047

bandwidth from QSC as it has the lowest priority and its1048

cost deviation during Scenario 1 remains below the allowable1049

bound (marked with a dashed green line). It allocates an1050

ACESS with an increased periodicity, which only utilizes 9%1051

of the bandwidth, whereas the ACESS deployed by the SOTA1052

control skipping techniques for QSC during this Scenario 11053

consumes 13% (i.e., 4% more) processing bandwidth with the1054

same performance cost. This happens because Algorithm 11055

being less conservative than SOTA, discovers more ACESS1056

choices.1057

During Scenario 2, using SOTA multirate scheduling strat-1058

egy makes QSC unstable due to frequent switching between1059

multiple periodicities. Notice in Fig. 9 that the y-position1060

becomes unstable and leads to unsafe behavior, causing the1061

cost to increase beyond the allowable upper bound (red dashed1062

line). As can be seen in Fig. 8(b), in the same scenario,1063

Algorithm 1 deploys suitable ACESS with the same periodicity1064

having a 16% bandwidth utilisation to minimize this cost1065

deviation. This newly allocated bandwidth is higher than the1066

bandwidth allocated to QSC during Scenario 1 but respects1067

the utilisation budget. By using this ACESS with increased1068

utilisation, QSC successfully avoids obstacles and attains its1069

desired y-position before 42ms, minimizing its control cost.1070

V. CONCLUSION1071

We provide a framework for subsystem identification and1072

finitary representation of switching constraints by considering1073

under a common umbrella the existing paradigms of multirate1074

as well as weakly hard scheduling of control tasks. This is then1075

leveraged to efficiently schedule control loops on resource-1076

constrained shared platforms. In the future, we intend to use1077

this automata-theoretic representation for control-scheduling1078

co-designs in 1) nonlinear hybrid systems and 2) more com- 1079

plex multicore platform mappings. 1080

REFERENCES 1081

[1] A. Cervin, M. Velasco, P. Martí, and A. Camacho, “Optimal online 1082

sampling period assignment: Theory and experiments,” IEEE Trans. 1083

Control Syst. Technol., vol. 19, no. 4, pp. 902–910, Jul. 2010. 1084

[2] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time 1085

systems,” IEEE Trans. Comput., vol. 50, no. 4, pp. 308–321, Apr. 2001. 1086

[3] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment 1087

technique for streams with (m, k)-firm deadlines,” IEEE Trans. Comput., 1088

vol. 44, no. 12, pp. 1443–1451, Dec. 1995. 1089

[4] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC: 1090

Deadline-miss-aware control,” in Proc. 31st Euromicro Conf. Real-Time 1091

Syst., 2019, pp. 1–24. 1092

[5] S. Linsenmayer and F. Allgower, “Stabilization of networked control 1093

systems with weakly hard real-time dropout description,” in Proc. IEEE 1094

56th Annu. Conf. Decision Control (CDC), 2017, pp. 4765–4770. 1095

[6] S. Ghosh, S. Dutta, S. Dey, and P. Dasgupta, “A structured methodology 1096

for pattern based adaptive scheduling in embedded control,” ACM Trans. 1097

Embed. Comput. Syst., vol. 16, no. 5s, pp. 1–22, 2017. 1098

[7] H. Liang, Z. Wang, R. Jiao, and Q. Zhu, “Leveraging weakly-hard 1099

constraints for improving system fault tolerance with functional and 1100

timing guarantees,” in Proc. 39th Int. Conf. Comput.-Aided Design, 1101

2020, pp. 1–9. 1102

[8] S. Xu, B. Ghosh, C. Hobbs, P. Thiagarajan, and S. Chakraborty, “Safety- 1103

aware flexible schedule synthesis for cyber-physical systems using 1104

weakly-hard constraints,” in Proc. 28th Asia South Pacific Design Autom. 1105

Conf., 2023, pp. 46–51. 1106

[9] N. Vreman, P. Pazzaglia, V. Magron, J. Wang, and M. Maggio, “Stability 1107

of linear systems under extended weakly-hard constraints,” IEEE Control 1108

Syst. Lett., vol. 6, pp. 2900–2905, 2022. 1109

[10] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale, “Beyond 1110

the weakly hard model: Measuring the performance cost of deadline 1111

misses,” in Proc. 30th Euromicro Conf. Real-Time Syst. (ECRTS), 2018, 1112

pp. 1–22. 1113

[11] P. Pazzaglia, A. Hamann, D. Ziegenbein, and M. Maggio, “Adaptive 1114

design of real-time control systems subject to sporadic over- 1115

runs,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2021, 1116

pp. 1887–1892. 1117

[12] S. K. Ghosh, S. Dey, D. Goswami, D. Mueller-Gritschneder, and 1118

S. Chakraborty, “Design and validation of fault-tolerant embedded 1119

controllers,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 1120

2018, pp. 1283–1288. 1121

[13] S. Ghosh, S. Dey, and P. Dasgupta, “Performance-driven post-processing 1122

of control loop execution schedules,” ACM Trans. Design Autom. 1123

Electron. Syst. (TODAES), vol. 26, no. 2, pp. 1–27, 2020. 1124

[14] D. Soudbakhsh, L. T. Phan, O. Sokolsky, I. Lee, and A. Annaswamy, 1125

“Co-design of control and platform with dropped signals,” in Proc. 1126

ACM/IEEE 4th Int. Conf. Cyber-Phys. Syst., 2013, pp. 129–140. 1127

[15] X. Zhao, L. Zhang, P. Shi, and M. Liu, “Stability and Stabilization of 1128

switched linear systems with mode-dependent average dwell time,” IEEE 1129

Trans. Autom. Control, vol. 57, no. 7, pp. 1809–1815, Jul. 2012. 1130

[16] M. Schinkel, W.-H. Chen, and A. Rantzer, “Optimal control for systems 1131

with varying sampling rate,” in Proc. Amer. Control Conf., vol. 4, 2002, 1132

pp. 2979–2984. 1133

[17] X. Du, C. Ramakrishnan, and S. A. Smolka, “Tabled resolution+ 1134

constraints: A recipe for model checking real-time systems,” in Proc. 1135

21st IEEE Real-Time Syst. Symp., 2000, pp. 175–184. 1136

[18] S. Adhikary, I. Koley, S. Maity, and S. Dey, “Work-in-progress: Control 1137

skipping sequence synthesis to counter schedule-based attacks,” in Proc. 1138

IEEE Real-Time Syst. Symp. (RTSS), 2022, pp. 491–494. 1139

[19] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive 1140

benchmarks for free,” in Proc. 6th Int. Workshop Anal. Tools Methodol. 1141

Embed. Real-time Syst. (WATERS), vol. 130, 2015, pp. 1–6. 1142

[20] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes, “Optimal 1143

state feedback based resource allocation for resource-constrained con- 1144

trol tasks,” in Proc. 25th IEEE Int. Real-Time Syst. Symp., 2004, 1145

pp. 161–172. 1146

[21] M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein, “Control- 1147

system stability under consecutive deadline misses constraints,” in Proc. 1148

32nd Euromicro Conf. Real-Time Syst. (ECRTS), 2020, pp. 1–4. 1149

[22] P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao, “Dynamics modelling 1150

and linear control of quadcopter,” in Proc. Int. Conf. Adv. Mechatron. 1151

Syst. (ICAMechS), 2016, pp. 498–503. 1152

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

