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Abstract—In this article, we consider the problem of checking1

approximate conformance of closed-loop systems with the same2

plant but different neural network (NN) controllers. First, we3

introduce a notion of approximate conformance on NNs, which4

allows us to quantify semantically the deviations in closed-5

loop system behaviors with different NN controllers. Next, we6

consider the problem of computationally checking this notion of7

approximate conformance on two NNs. We reduce this problem to8

that of reachability analysis on a combined NN, thereby, enabling9

the use of existing NN verification tools for conformance checking.10

Our experimental results on an autonomous rocket landing11

system demonstrate the feasibility of checking approximate12

conformance on different NNs trained for the same dynamics,13

as well as the practical semantic closeness exhibited by the14

corresponding closed-loop systems.15

Index Terms—Closed-loop systems, conformance checking,16

neural network (NN) controller, reachability analysis.17

I. INTRODUCTION18

NEURAL networks are being increasingly deployed in19

safety critical applications for control, perception and20

decision making. On one hand, they enable the handling21

of uncertainty and dynamism in the environment through22

retraining as more and more data becomes available. On the23

other hand, this adds to the complexity of verification and24

their certification. One potential way to handle the evolving25

nature of neural network (NN) controllers is to provide a26

mechanism to transfer safety proofs established with one27

version to another. More precisely, consider a closed-loop28

system (D, N) where D is the system dynamics and N is a29

NN controller. Let us say that we have established the safety30

of (D, N), that is, the reachable states R of (D, N) do not31

intersect the unsafe set of states U. As more data becomes32

available N evolves into N′, and our objective is to establish33

that the closed-loop system is still correct. Instead of starting34
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the verification from scratch, we want to “reuse” or transfer 35

the safety proof of (D, N) to that of (D, N′). One approach 36

to tackle this would be to establish closeness of N′ to N, and 37

exploit that to establish the closeness of (the reachable sets 38

of) (D, N) and (D, N′) and use that to establish the safety 39

of the two systems. For instance, if we can conclude that 40

the Hausdorff distance between the reachable sets of (D, N) 41

and (D, N′) are within ζ , then we only need to check if the 42

already computed reachable set of (D, N), namely, R is at a 43

distance of at least ζ from the unsafe set U. In this article, 44

we consider a fundamental problem toward achieving this goal 45

by investigating the questions of proximity of NNs and how 46

this affects the reachable sets of closed-loop systems in which 47

they are employed. 48

First, let us consider the problem of closeness of two NNs. 49

The notion of ε-closeness between NNs has been explored 50

in the literature, wherein two NNs N1 and N2 are said to 51

be ε-close, if on the same input, their outputs are at most 52

ε apart. Several methods to check ε-closeness have been 53

explored, including ReluDiff [1], that proposes a symbolic 54

interval analysis technique, StarDiff [2] that explores a geo- 55

metric path enumeration-based technique, and an SMT-based 56

approach [3]. All these works focus on NNs in isolation, while 57

we concentrate on checking conformance between two closed- 58

loop systems. 59

It has been observed [4] that the notion of ε-closeness is not 60

conducive to providing a bound on the semantic closeness of 61

closed-loop systems. Consider two closed-loop systems each 62

with the same dynamics D and two different NNs N1 and N2 63

that are ε-close. Our objective is to bound the distance between 64

the states of the systems (D, N1) and (D, N2) after a certain 65

number of iterations assuming we start from the same state. 66

While the same input is fed to both NNs in the first iteration, 67

due to ε-closeness and resulting deviation in their outputs, the 68

inputs in the next iteration are not the same. Hence, we need a 69

notion of closeness that can account for the deviation in inputs. 70

We propose the notion of (L, ε)-conformance between two 71

NNs that stipulates that the outputs differ by at most Lδ + ε 72

when the inputs differ by at most δ. 73

Next, we wish to establish the distance between the reachable 74

sets of the closed-loop systems (D, N1) and (D, N2), when N1 75

and N2 are (L, ε)-close. Note that this distance is unbounded in 76

general; hence, we focus on a bounded number of steps, i, of the 77

executions of the system. The deviations in the states increase 78

according to a geometric progression; we use the bounds on 79
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geometric series to provide a bound on the distance between80

the states at the kth step of the closed-loop system.81

The remaining part of the framework is to consider the82

problem of establishing (L, ε)-conformance between N1 and83

N2. Next, we consider the problem of computationally check-84

ing whether the NNs N1 and N2 are (L, ε)-conformant. We85

construct a new NN N, which outputs pairs (δ, γ ), where δ86

captures the difference in inputs to the N1 and N2 and γ87

the corresponding difference in outputs. Hence, we reduce88

conformance checking problem to a reachability problem,89

wherein we check if Lδ + ε > γ for any pair (δ, γ )90

in the output set of the combined NN. This enables the91

use of existing NN verification tools [5], [6], [7], [8], [9],92

[10], [11], [12], [13], [14], [15] for conformance checking.93

Our experimental results on an autonomous rocket landing94

system demonstrate the feasibility of checking approximate95

conformance on different NNs trained for the same dynamics,96

as well as, the practical semantic closeness exhibited by the97

corresponding closed-loop systems.98

The main contributions of this work are as follows.99

1) We propose the notion of (L, ε)-conformance between100

two NNs, a notion of distance between two neural101

networks, that allows us to bound the distance in the102

reachable sets of the closed-loop systems in which they103

are deployed.104

2) We provide a theoretical bound on the distance between105

states in the kth step of execution of two closed-loop106

systems with the same plant but different NN controllers107

that are (L, ε)-conformant.108

3) We provide a method for checking (L, ε)-conformance109

between two neural networks, which includes a con-110

struction that merges the input networks into a single111

network and then reduces the (L, ε)-conformance to a112

reachability analysis.113

4) We provide an experimental evaluation of the (L, ε)-114

conformance checking method on a set of neural115

networks trained for an automatic rocket landing case116

study. We report how conformance checking time is117

affected by the size of the network, investigate how118

the amount of perturbation in the networks changes the119

values of ε for which the network pairs are (L, ε)-120

conformant, and compare the theoretical bound and the121

actual state deviation between systems after k steps of122

execution.123

II. PRELIMINARIES124

Let R denote the set of real numbers, and N denote the set of125

natural numbers. Given a non-negative integer k, let [k] denote126

the set {0, 1, . . . , k}, and (k] denote the set {1, . . . , k}. ReLU127

activation function is defined as ReLU(x) = max(0, x) ∀ x ∈128

R. For any set S, a valuation over S is a function v : S →129

R. We define Val(S) to be the set of all valuations over S.130

Let n ∈ N. For x ∈ R
n, let xi denote the projection of x131

onto ith component, that is, x = (x1, x2, . . . , xn). For x ∈132

R
n, the one norm on x is defined as ‖x‖ = ∑i=n

i=1 |xi|. For133

a matrix A ∈ R
n×n, ai,j represents the elements in the ith134

row and jth column, and the one norm is defined as ‖A‖ =135

Fig. 1. Closed-loop system.

max1≤j≤n(
∑i=n

i=1 |ai,j|). Given two sets S1 and S2, the operation 136

	 represents the ordered union of S1 and S2. For x ∈ R
n and 137

y ∈ R
m, x 
 y = (x1, . . . , xn, y1, . . . , ym) ∈ R

n+m. Given two 138

functions f : A → B and g : B → C, the composition of f and 139

g, g ◦ f : A → C is given by g ◦ f (a) = g(f (a)). 140

III. CLOSED-LOOP SYSTEMS 141

In this section, we give a brief overview of closed-loop 142

systems, and introduce a framework for conformance checking 143

of closed-loop systems. A traditional closed-loop system 144

consists of two components, namely, the plant that captures 145

the dynamics of the physical system being controlled, and 146

a controller that senses the state of the plant and computes 147

actuator inputs, as shown in Fig. 1. We consider discrete-time 148

systems, where the system evolves for one unit time in each 149

iteration of the loop. Next, we formalize this. 150

Definition 1: A closed-loop system is a pair S = (F, K), 151

where 1) F : Rn×R
m → R

n models the dynamics of the plant, 152

n ∈ N and m ∈ N represent the dimensions of the state and 153

the input vector, respectively, and 2) K : Rn → R
m represents 154

the controller. 155

The controller senses the current state of the plant and 156

outputs the control/actuation value to be input to the plant. 157

The plant function F takes the current state of the system and 158

the control input as its inputs, and outputs the state of the 159

plant at the end of one time unit. The system starts from a 160

given initial state x(0) = x0. The feedback controller K takes 161

the initial state of the system x0 and outputs an input value 162

u0 = K(x(0)) to the plant. The plant then takes the input and 163

evolves for a unit of time using the plant dynamics, reaching 164

the next state x1 = F(x0, u0). This process repeats with the 165

new state of the system, resulting in a sequence of states that 166

we refer to as an execution. 167

Let X0 ⊆ R
n be the sets of initial states, a sequence η = 168

x0, x1, x2, . . . , is called an execution of S from X0, if there 169

exists a sequence u0, u1, u2, . . . , such that the following holds: 170

1) x0 ∈ X0, u0 = K(x0) and 2) for each i ≥ 1, xi = 171

F(xi−1, ui−1), and ui = K(xi). 172

For an execution η, we use η[i] to denote its ith element, 173

that is, η[i] = xi, and thus the reachable set of the above 174

closed-loop is defined as follows. For each i ≥ 1, the set 175

ReachS(X0, i) = {η[i]:η is an execution of S from X0} 176

is called the reachable set of the system at the ith step starting 177

from the initial state X0. 178
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A. (L, ε)-Conformance of Closed-Loop Systems179

Our broad objective is to investigate whether two closed-180

loop systems are behaviorally equivalent in the presence of181

evolving controllers, which is often the case when neural182

networks are deployed for control. However, it is often restric-183

tive to assume that the controllers are behaviorally equivalent,184

and hence, we allow some deviations in the controllers. While185

equivalent controllers lead to exactly the same closed-loop186

behaviors, slight deviations in the controller behaviors can lead187

to nontrivial deviations in the closed-loop system behaviors.188

In this section, we aim to quantify this deviation and set the189

stage for applying it to NN controllers.190

The classical notion of closeness for NN controllers [1], [2],191

[3], [4] studies the notion of ε-conformance, that requires the192

outputs of two networks to be within ε when given the same193

input. Note that this notion of conformance does not suffice194

for controllers in a closed-loop, since the ε deviations in the195

outputs of the controllers are fed back to the controllers in196

the next iteration and we need to bound the outputs of the197

controllers in the presence of small deviations in the input.198

Hence, we need a notion of conformance, that states that if199

the inputs deviate by at most δ, then the outputs deviate by at200

most g(δ), for some function g.201

To obtain the form of g, we note that the controllers we202

consider are compositions of linear functions and activation203

functions. Let us consider the simple case where the two204

controllers are linear, that is, K1(x) = A1x + B1 and K2(x) =205

A2x + B2, where x ∈ R
n, A1, A2 ∈ R

m×n and B1, B2 ∈ R
m×1.206

Note that207

‖K1(x1) − K2(x2)‖ = ‖A1x1 + B1 − A2x2 − B2‖208

= ‖A1x1 + B1 − (A1 + D)x2 − B2‖209

≤ ‖A1(x1 − x2)‖ + ‖Dx2‖ + ‖B1 − B2‖210

≤ ‖A1‖‖x1 − x2‖ + ‖Dx2‖ + ‖B1 − B2‖.211

Assuming D is small (the deviation between A1 and A2), the212

output deviation can be some L times the input deviation plus213

an additive term ε. Inspired by this, we define the notion of214

(L, ε)-conformance, that stipulates that the outputs are within215

Lδ + ε, when inputs deviate by at most δ.216

Definition 2: Let K1, K2 : A → R
m, where A ⊆ R

n, be217

two functions representing the controllers. For given L > 0218

and ε > 0, K1 and K2 are said to be (L, ε)-conformant if219

‖K1(x1) − K2(x2)‖ ≤ L‖x1 − x2‖ + ε ∀ x1, x2 ∈ A.220

B. Quantifying Closed-Loop Behavior for221

(L, ε)-Conformance222

We quantify the behavior of two closed-loop systems with223

the same plant dynamics, but different controllers that are224

(L, ε)-conformant for some L, ε > 0. In order to do this, we225

consider, in particular, a discrete-time linear dynamical system226

for the plant S = (F, K) given by227

x(k + 1) = Ax(k) + Bu(k) x(0) ∈ X0 (1)228

where A ∈ R
n×n and B ∈ R

n×m are time invariant system229

matrices, and u(0) = K(x0). The following result gives a230

bound on the deviation of the kth elements of the executions231

Fig. 2. Example NN N1.

of the two closed-loop systems which evolve through the 232

above dynamics, have (L, ε)-conformance controllers, and 233

when initiated from the same initial values. 234

Theorem 1: Let S1 = (F, K1) and S2 = (F, K2) be two 235

closed-loop systems with state and input dimensions, n and 236

m, respectively, plant dynamics as described in (1), and the 237

controllers K1 and K2 that are (L, ε)-conformant for some 238

L, ε > 0. For each i ≥ 1, let η1[i] and η2[i] denote the ith 239

elements of the executions of S1 and S2, respectively, starting 240

from the state η1[0] = η2[0] = x0. Then the following holds 241

for all k ≥ 1: 242

‖η1[k] − η2[k]‖ ≤ ‖Bε‖
(
1 − (‖A‖ + ‖B‖L)k

)

1 − (‖A‖ + ‖B‖L)
. (2) 243

If ‖A‖ + ‖B‖L = 1, then ‖η1[k] − η2[k]‖ ≤ ‖Bε‖k 244

Proof: (See Appendix for proof.) 245

IV. NEURAL NETWORKS AS CONTROLLERS 246

Our objective is to consider controllers that are neural 247

networks. In this section, we provide preliminaries on neural 248

networks, including definitions and semantics. 249

Definition 3: A NN is a tuple N = (k, Act, {Si}i∈[k], 250

{Wi}i∈(k], {Bi}i∈(k], {σi}i∈(k]), where 1) k ∈ N represents the 251

number of layers (except the input layer); 2) Act is a set of 252

activation functions, and every f ∈ Act has R as its domain 253

and range; 3) ∀ i ∈ [k], Si is a set of neurons of layer i, and 254

∀ i �= j, Si ∩ Sj = ∅; 4) ∀ i ∈ (k], Wi : Si−1 × Si → R is the 255

weight function that captures the weights on the edges between 256

the neurons at layer i − 1 and i; 5) ∀ i ∈ (k], Bi : Si → R 257

is the bias function that associates a bias value with neurons 258

of layer i; and 6) ∀ i ∈ (k], σi : Si → Act is an activation 259

association function that associates an activation function with 260

each neuron of layer i. 261

The layers S0 and Sk are called the input and the output 262

layers, respectively; the other layers are said to be hidden. 263

We fix the following notations for the rest of this article. 264

Any NN denoted by N is the network N = (k, Act, {Si}i∈[k], 265

{Wi}i∈(k], {Bi}i∈(k], {σi}i∈(k]) and for any j ∈ N, Nj = (kj, 266

Act, {Sj
i}i∈[kj]

, {Wj
i }i∈(kj]

, {Bj
i}i∈(kj]

, {σ j
i }i∈(kj]

). For notational 267

convenience, we simplify the notation assuming the values that 268

i iterates over are clear from the context. For example, for any 269

j ∈ N, we will write a NN Nj with kj layers as Nj = (kj, Act, Sj
i, 270

Wj
i , Bj

i, σ
j
i ). 271

As an example, consider the NN N1 in Fig. 2; it consists 272

of an input layer with two neurons, three hidden layers with 273

three neurons each, and an output layer with two neurons. The 274
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weights on the edges are shown, the biases are zero, and the275

activation functions are all ReLU.276

Next, we define the executions of a NN as a sequence of277

valuations, each of which corresponds to values assigned to278

the neurons in a layer. Given a valuation v for a layer i − 1,279

�N�i(v) denotes the valuation obtained for the layer i according280

to the semantics of N, which is defined below.281

Definition 4 (Semantics of a Neural Network): Given a NN282

N, the semantics of the layer i, i �= 0, is the function �N�i:283

Val(Si−1) → Val(Si), where for any v ∈ Val(Si−1), �N�i(v) =284

v′, is given by285

∀s′ ∈ Si, v′(s′) = σi(s
′)

⎛

⎝

⎛

⎝
∑

s∈Si−1

Wi(s, s′)v(s)

⎞

⎠ + Bi(s
′)

⎞

⎠.286

We define the semantics of NN N by the function287

�N� : Val(S0) → Val(Sk) as a composition of functions288

corresponding to individual layers as �N� = �N�k◦�N�k−1 . . .◦289

�N�1.290

For the input valuation v(s0,1) = 1 and v(s0,2) = −1, the291

NN in Fig. 2 gives the output valuation as v(s4,1) = 8 and292

v(s4,1) = 24.293

Let us fix some more notations for the rest of this article. For294

a NN N, for each i ∈ [k], let Si = {si,1, si,2, . . . , si,ri}, and for295

a NN Nj, for each i ∈ [kj], let Sj
i = {sj

i,1, sj
i,2, . . . , sj

i,rij
}. Since296

any valuation v ∈ Val(Si) is a map v : Si → R, and we have297

defined the ordering of the nodes in every layer, from now on298

we consider v ∈ Val(Si) as an element of R|Si|. Also, since our299

aim is to compare the behavior of two closed-loop systems300

with the same plant dynamics, but different neural networks301

as their controllers, all the neural networks are assumed to302

have same number of nodes in their input and output layers. In303

particular, for neural networks N, N1, N2, |S0| = |S1
0| = |S2

0| =304

n and |Sk| = |S1
k1

| = |S2
k2

| = m. Hence, the semantic of a NN305

can be considered as the following function �N� : Rn → R
m.306

V. VERIFYING (L, ε)-CONFORMANCE OF NEURAL307

NETWORKS308

In this section, we present our approach to check (L, ε)-309

conformance between two neural networks. First, we formally310

define the (L, ε)-conformance problem for neural networks.311

Problem 1: Given two neural networks N1 and N2, two312

real numbers {L, ε} ⊆ R>0, and a set of inputs I ⊆ R
n,313

the (L, ε)-conformance problem involves verifying whether,314

for all v1, v2 ∈ I, the condition ‖�N1�(v1) − �N2�(v2)‖ <315

L‖v1 − v2‖ + ε holds.316

The broad idea to verify (L, ε)-conformance between two317

neural networks is to transform the problem into reachability318

analysis and utilize the existing reachability tools. Given two319

neural networks, N1 and N2, we construct a new NN N3 =320

merge(N1, N2) which takes as inputs the inputs of the two321

neural networks v1 and v2, respectively, and outputs pairs322

(δ, γ ), where δ is the norm of the difference in the inputs, that323

is, δ = ‖v1 − v2‖, and γ is the norm of the difference in the324

outputs, that is, γ = ‖�N1�(v1) − �N2�(v2)‖. We need to check325

if γ < Lδ + ε for every (δ, γ ) output by the new network.326

We check if the intersection of the constraint γ ≥ Lδ + ε327

Fig. 3. Identity gadget IG example.

with the reachable set of this new network which captures all 328

such (δ, γ ) pairs, is unsatisfiable. The two networks are (L, ε)- 329

conformant if the above condition is unsatisfiable, otherwise, 330

they are not (L, ε)-conformant. 331

A. Identity and Difference Neural Networks 332

First, we define two kinds of gadgets that we use in the 333

construction of the merged network merge(N1, N2). 334

1) Identity Gadget (IG): One gadget we need is a NN 335

IG(n, r) with n input neurons that captures the identity relation 336

and is of length r, that is, we need the NN to output the same 337

values as its input. Fig. 3(a) shows a 1-layer NN with this 338

property for two input neurons. We can repeat this structure 339

r times to compute an r-layer NN with identity input-output 340

relation. We assume that the inputs are all positive, and use 341

ReLU functions as the activation function for all the nodes. 342

Note that this NN can be appended to any NN layer with 343

ReLU activation function without changing its input output 344

semantics. As an example, consider a one-layer NN IG(2, 1) 345

shown in Fig. 3(a) and a repetition length r = 3. The result 346

of 3 repetitions given by IG(2, 3) is depicted in Fig. 3(b). 347

2) Difference Gadget (DG): The next network we require 348

is one which takes as inputs x1 
 x2, where x1 and x2 have 349

the same dimension n, and outputs ‖x1 − x2‖. This is realized 350

by a 2-layer gadget with 2n input nodes, 2n nodes in hidden 351

layer and 1 output node. More generally, the network DG(n) 352

has as input layer with two sets of nodes S1 = {s1
1, . . . , s1

n} 353

that takes x1 as input and S2 = {s2
1, . . . , s2

n} that takes x2 as 354

input. The hidden layer corresponds to nodes which compute 355

the difference between the values of ith nodes from S1 and 356

S2. For each i, there are two nodes, one of which computes 357

v(s1
i )−v(s2

i ), and the other computes v(s2
i )−v(s1

i ). The output 358

layer corresponds to summing up the values of the nodes in 359

hidden layer. All of the activation functions are ReLU. So, 360

only one of the values among v(s1
i ) − v(s2

i ) and v(s2
i ) − v(s1

i ), 361

i.e., the positive one contributes to the summation, thereby 362

computing the 1-norm at the output. 363

Fig. 4 shows such a network for dimension n = 2. Here, 364

S1 = {s1, s2} and S2 = {s′
1, s′

2}. The nodes in the hidden 365

layer correspond v(s1)−v(s′
1), v(s′

1)−v(s1), v(s2)−v(s′
2), and 366

v(s′
2)−v(s2). The output corresponds to summing up the values 367

ReLU(v(s1) − v(s′
1)) + ReLU(v(s′

1) − v(s1)) + ReLU(v(s2) − 368

v(s′
2)) + ReLU(v(s′

2) − v(s2)). 369
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Fig. 4. Difference gadget (DG) example.

Fig. 5. Append example. (a) Neural network N2. (b) Appended network
append(N2, 1).

B. Merge Networks370

Now, we explain the construction of the merging of the two371

neural networks to obtain N3 = merge(N1, N2). The output372

network N3 has two nodes in the output layer, denoted by373

s′ and s, respectively, and the nodes in the input layer are374

the ordered union of the input nodes from the given input375

networks. Recall that for verifying the (L, ε)-conformance376

between N1 and N2, we aim to compute the values ‖v1 − v2‖377

and ‖�N1�(v1) − �N2�(v2)‖ for all v1, v2 ∈ I, where I ⊆378

R
n. We construct the output network N3 in such a way379

that the first output produces the value ‖v1 − v2‖, and the380

second output produces the value ‖�N1�(v1) − �N2�(v2)‖. In381

this construction, we utilize the previously defined gadgets.382

First, we ensure that both networks have the same number of383

layers by using an operation called append, facilitated by our384

IG gadget. The formal definition of this function can be seen385

in Appendix. For a given NN N and a positive integer r, the386

append function, denoted as append(N, r), produces another387

NN by appending IG(l, r) to the last hidden layer of N where388

l is the number of neurons in this layer. We assume that all the389

activation functions for the hidden layers are ReLU, in which390

case, inserting the IG(l, r) gadget preserves the semantics. As391

an example of the append function, Fig. 5(b) illustrates the392

NN resulting from append(N2, 1), where N2 refers to the NN393

shown in Fig. 5(a). In our construction of the merged network394

merge(N1, N2), we first perform append(N, r) on the NN N 395

with fewer number of layers among N1 and N2, where r is the 396

difference in the number of layers between the two networks. 397

Now, let’s explain the merge function at a high level using 398

an example illustrated in Fig. 6, where we combine networks 399

N1 (depicted in Fig. 2) and N2 [depicted in Fig. 5(b)] into a 400

single network, denoted as N3. The formal definition of this 401

function can be found in Appendix. 402

Let N1 and N2 each have n inputs and m outputs. We apply 403

our difference gadget DG(m) to the output layers of N1 and 404

N2 to compute the one norm of the difference of the outputs 405

of N1 and N2; let us call the node capturing the difference s. 406

Similarly, we apply our difference gadget DG(n) to the input 407

layers of N1 and N2 to compute the one norm of the difference 408

of the inputs to N1 and N2; let us call the node capturing the 409

difference to be t. Note that we want the values at t to be an 410

output along with s. Hence, we append IG(1, r) to t for an 411

appropriate r (the difference in the layer number of s and t). 412

As illustrated in Fig. 6, the first node, s′
2, in the third layer 413

of N3 outputs the one norm of the input differences. We utilize 414

the identity gadget IG to propagate the one norm of the input 415

differences to the output layer of the merged network. The 416

output node s′ produces the one norm of the input differences. 417

Similarly, to compute the one norm of the output differences, 418

DG is appended to the output nodes of the two networks. As 419

shown in Fig. 6, the node s in the output layer computes the 420

one norm of the output differences. 421

From the construction of the merged network, we can 422

easily see that the output node s′ computes ‖v1 − v2‖, while 423

the output node s computes the value ‖�N1�(v1) − �N2�(v2)‖, 424

where v1 and v2 are inputs given to N1 and N2, respectively. 425

Formally we have the following result. 426

Proposition 1: Given two neural networks, N1 and N2, let 427

merge(N1, N2) = N3. Then ∀ v1, v2 ∈ R
n, �N3�(v1 
 v2) = 428

(‖v1 − v2‖, ‖�N1�(v1) − �N2�(v2)‖). 429

C. Reachability-Based Approach for (L, ε)-Conformance 430

Verification 431

In this section, we explain our approach to check the (L, ε)- 432

conformance between two neural networks. This approach is 433

based on the reachability analysis of the merged network that 434

we constructed in the previous section. The reachable set of a 435

NN for a given set of input values is the set of output values 436

that we obtain through the network. We define the reachable 437

set formally as follows. 438

Definition 5: The reachable set of a NN N w.r.t a set I ⊆ 439

R
n is 440

RN(I) = {�N�(v)|v ∈ I}. 441

We use the merged network generated using the merge 442

procedure defined in the previous section to check the confor- 443

mance between networks. From the merge construction, we 444

can see that if N3 = merge(N1, N2), then for the input vector 445

(v1, v2), the output node s′ of N3 outputs ‖v1 − v2‖ while 446

the output node s computes the value ‖�N1�(v1) − �N2�(v2)‖. 447

So, the networks N1 and N2 satisfy the (L, ε)-conformance 448

property for a given input valuation if and only if the value 449
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Fig. 6. Merged network N3 = merge(N1, N2).

of the output node s is less than the result of multiplying the450

value of s′ by L and adding ε to it.451

Theorem 2: Given two neural networks N1 and N2, two real452

numbers L > 0 and ε > 0, and a set of inputs I ⊆ R
n,453

N1 and N2 satisfy (L, ε)-conformance property if and only if454

γ < Lδ + ε ∀(δ, γ ) ∈ RN3(I ′), where N3 = merge(N1, N2),455

I ′ = {v1 
 v2 | v1, v2 ∈ I}.456

We use the nnenum tool [5] to check the (L, ε)-457

conformance. The tool nnenum [5] is a star-set-based458

reachability analysis tool which incorporates abstraction459

refinement and optimization techniques to accelerate the reach460

set computation. The tool takes, as input, the merged network,461

interval values for each input node, and the property to be462

checked. The property to be checked is whether the value463

of the second output node, which is the one norm of the464

output differences of the networks for the given input values,465

is greater than or equal to the first output value multiplied by466

L, and then ε is added to it. The tool outputs either ‘sat’ or467

‘unsat’. If the output is ‘sat’, then there exists an input value468

that violates the (L, ε)-conformance property. If it is ‘unsat’,469

then the input networks satisfy the property for the values in470

the given input intervals.471

We can use any of the existing NN tools to check472

(L, ε)-conformance between two neural networks. Several473

NN verification methods have been explored in the lit-474

erature, including those based on SMT solving, such as475

Reluplex [8] and Marabou [6], those based on MILP, such476

as Sherlock [16] and alpha-beta-CROWN [11], and those477

based on abstract interpretation, such as AI2 [15] and 478

DeepPoly [17]. 479

VI. EXPERIMENTS 480

In this section, we describe our experimental setup, includ- 481

ing the autonomous rocket landing case study, the results 482

of evaluating our (L, ε)-conformance approach on a set of 483

neural networks trained for the case study, and the results of 484

comparison of the actual and the theoretical deviation of the 485

system states after k steps for different pairs of the networks. 486

All experiments were conducted on an Ubuntu machine with 487

an Intel Core i5-10210U 1.60 GHz CPU and 8GB RAM. 488

A. Case Study—Autonomous Rocket Landing System 489

We start by explaining our autonomous rocket landing case 490

study. In this system, the rocket’s internal control system hands 491

over the maneuver task to the automatic landing system at 492

a particular height from the ground. The automated landing 493

system aims to reduce the rocket’s velocity by applying thrust 494

and thereby, achieves a smooth landing on the ground. 495

1) System Dynamics: The system’s state is a 2-D real- 496

valued vector [p, v]T , representing the rocket’s position 497

(distance from the ground) and velocity. The NN controller 498

takes the system’s current state and outputs the amount of 499

thrust that should be applied to the system. The following 500

equation describes the dynamics of the plant: 501
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TABLE I
(L, ε)-CONFORMANCE VERIFICATION

x(k + 1) = Ax(k) + Bu(k) (3)502

where x(k) = [p, v]T represents the position and velocity at503

time k and u(k) is the output of the NN at step k. We are504

considering two systems with different system matrices. The505

first system has the following matrices:506

A =
[

1 −τ

0 1

]

, and B =
[

0
−100τ

]

(4)507

and the second system has the following matrices:508

A =
[

0.8 −τ

0 0.8

]

, and B =
[

0
−100τ

]

(5)509

where τ = 0.001 is the sampling period. These two systems510

can have considerably different theoretical upper bounds on511

the state deviations given by Theorem 1. In the first system,512

we have ‖A‖ = 1.001 and ‖B‖ = 0.1. Since ‖A‖ > 1, no513

matter what value of L we take, ‖A‖ + ‖B‖L will always be514

greater than 1, which results in large theoretical upper bounds515

on the state deviation. Since we would also like to study the516

case where we have the possibility of ‖A‖ + ‖B‖L < 1 for517

some L, we consider another system with the system matrices518

shown in (5), where ‖A‖ = 0.801 and ‖B‖ = 0.1.519

2) Neural Network Controller: We use the deep deter-520

ministic policy gradient (DDPG) method [18] to train521

reinforcement-learning-based NN controllers. To generate522

training scenarios, we implement the rocket landing system523

as an environment in the OpenAI Gym toolkit [19]. The524

initial position and velocity of the rocket are randomly chosen525

from the intervals [50, 60] and [40, 55], respectively. The526

termination condition corresponds to either velocity being ≤ 0527

or position being ≤ 0. The reward function ρ(p, v) considered528

is given below529

ρ(p, v) = −(p + v) + I1(p, v) + I2(p, v)530

+r(safeLanding) + r(collision).531

Here, I1(p, v) returns a reward of 20 if p ∈ [3, 6] ∧ v ∈ [2, 5];532

returns a reward of 0 if p /∈ [3, 6] ∧ v /∈ [2, 5], otherwise it533

returns a reward of −100. Similarly, I2(p, v) returns a reward534

of 20 if p ∈ [1, 3) ∧ v ∈ [1, 2), returns a reward of 0 if535

p /∈ [1, 3) ∧ v /∈ [1, 2), otherwise it returns a reward of −100.536

r(safeLanding) returns a reward of 10 000 if p = 0∧v = 0, and537

r(collision) returns a reward of −500 if (p<0 ∧ v>0) ∨ (p >538

0 ∧ v <= 0).539

We train a total of five networks for 100 epochs each; details540

of the architecture of each of the networks are as follows: N_1541

(2, 500, 400, 300, 1), N_2 (2, 500, 400, 1), N_3 (2, 500, 400, 542

300, 200, 1), N_4 (2, 500, 400, 300, 200, 100, 1), and N_5 543

(2, 500, 400, 300, 200, 100, 100, 1), where the numbers in 544

parenthesis represent the number of nodes in each layer. 545

B. Experiments 1—(L, ε)-Conformance Checking 546

In our first set of experiments, we evaluate our (L, ε)- 547

conformance checking approach on each possible pair of 548

networks that we trained for our case study. We use the 549

nnenum tool [5], [20] to check the conformance condition 550

on the output of the merged NN. The tool takes the merged 551

network, an interval of values for each input node, and the 552

property for output nodes to check, and outputs whether the 553

network satisfies the property for the given input interval. 554

We assess our approach for different values of L and ε. 555

For the experiment, the input interval for the position is taken 556

to be [0, 60], and the input interval for velocity is taken to 557

be [0, 40] for both the networks. The property we check on 558

the output reach set is whether the second part of the output 559

corresponding to the norm of the difference between the NN 560

outputs is greater than or equal to L times the first part of the 561

output corresponding to the norm of the difference between 562

the NN inputs plus ε. If the property is unsatisfiable, then the 563

networks are (L, ε)-conformant as shown in Theorem 2. 564

Experimental results are shown in Table I. The first two 565

columns represent the names of the networks. Each subse- 566

quent column is divided into two subcolumns. For each main 567

column, we report the L and ε values. For example, the third 568

column corresponds to L = 1 and ε = 0.5. The subcolumn 569

titled “C?” indicates whether the network pairs satisfy the 570

conformance property (“Yes” means the network pairs satisfy 571

the property). The “Time” subcolumn provides the time taken 572

to check the property. 573

Now, we consider neural networks from the VCAS bench- 574

mark from ARCH-COMP AINNCS [21]. This benchmark 575

is a closed-loop variant of the aircraft collision avoidance 576

system ACAS X. The scenario involves two aircraft, the 577

ownship and the intruder, where the ownship is equipped 578

with a collision avoidance system. The network contains an 579

input layer with 3 nodes, five hidden layers with 20 nodes 580

each, and an output layer with 9 nodes (see [21] for more 581

details on this benchmark). In this experiment, we evaluate 582

our (L, ε)-conformance checking technique on eight pairs of 583

networks from this benchmark for some (L, ε) values. The 584

results are shown in Table II, where the first two columns are 585
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TABLE II
(L, ε)-CONFORMANCE VERIFICATION ARCH-COMP VCAS

BENCHMARK

network pairs, and the remaining columns show whether the586

network pairs are conformant (Yes) or nonconformant (No).587

From this experiment, we can see that our approach is able to588

check conformance within a second for all the network pairs589

considered.590

From Table I, we observe that in case that the network pairs591

are not conformant, the tool returns quickly, usually, within592

seconds. On the other hand, establishing conformance takes593

longer. Intuitively, to establish conformance, the tool needs594

to show that there are no satisfying assignments, while to595

show that they are not conformant, it just needs to find one596

(δ, γ ) pair that violates the constraint. On the other hand,597

in case of conformant networks, we note that the confor-598

mance checking time is not affected much when we vary L599

and ε.600

We now analyze how the values of L and ε depend on601

each other and how the theoretical bounds deviate for different602

pairs of L and ε. For this experiment, we consider a pair603

of networks (P01, P02) from the VCAS benchmark [21], and604

we determine different values of (L, ε) pairs for which the605

network pairs are conformant. Then we report the deviation606

of the systems with dynamics shown in (4) and (5) after607

100 steps of execution. Results are shown in Table III, where608

the first two columns are the L and ε values for which the609

network pair is checked for conformance, and the “Time”610

column shows the time taken to check the conformance. The611

last two columns show the theoretical upper bound on the612

state deviation after 100 execution steps using the expression613

given in Theorem 1 for systems with dynamics given by614

(4) and (5), respectively. Notice that the value of theoretical615

bound tends to increase with L, when ‖A‖ + ‖B‖L > 1,616

while the effect is minimal when ‖A‖ + ‖B‖L < 1. Hence,617

we choose an arbitrary L, say L = 1, in the rest of the618

experiment.619

We now investigate how the conformance checking time620

is affected by the size of the merged network. For this621

experiment, we train networks with two input nodes, one622

output node, and five hidden layers, each with varying numbers623

of nodes, using the same training settings explained above.624

Network N_5 has five nodes in each hidden layer, N_10 has 10625

nodes in each hidden layer, similarly, networks N_50, N_100,626

and N_500 have 50, 100, and 500 nodes in each hidden layer,627

respectively. We fix L = 1 and check conformance for different628

values of ε, where input intervals for the two input nodes629

are [0, 60] and [0, 40], respectively. The results are shown in630

Table IV, where the first two columns represent the names of631

TABLE III
L VERSUS ε , NETWORKS: P_01 AND P_02INPUT INTERVALS: [−133,

−129], [−22.5, −19.5], AND [24.5, 25,5]

TABLE IV
NETWORK SIZE VERSUS CONFORMANCE CHECKING TIME. INPUT

INTERVALS: [0,60] AND [0,40], L = 1

the networks, and the third column gives the number of nodes 632

in each layer of the merged network. The ε column represents 633

the values of ε that are checked for conformance, C? indicates 634

whether the network pairs are conformant for L = 1 and 635

the corresponding ε. The final column titled “Time” provides 636

the time taken to check conformance. From the results, we 637

can see that the time required to prove that the networks 638

are (L, ε)-conformant increases with the number of nodes in 639

the merged network. As explained in the earlier experimental 640

results, demonstrating that networks are nonconformant takes 641

very little time, and it is not significantly affected by the size 642

of the merged network. 643

In the next set of experiments, we investigate how the 644

amount of perturbation in the networks changes the values 645

of ε for which the network pairs are (L, ε)-conformant. For 646

these experiments, we manually create a NN with four layers, 647

each layer containing two nodes. Then, we create four more 648

networks by perturbing the original network with different 649

amounts of perturbation. The perturbation involves randomly 650

adding or subtracting a given value to each of the weights 651

and bias values of the original network. The results of these 652

experiments are shown in Table V, where the first column 653

displays the amount of perturbation, the second and third 654

columns represent the values of L and ε, respectively, for 655

which the conformance is checked, and the last column 656

indicates whether the network pairs (the original network and 657

the perturbed network) are conformant to each other or not. 658
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TABLE V
PERTURBATION VERSUS ε INPUT INTERVALS: [0,10] AND [0,10]

TABLE VI
STATE DIFFERENCE, PLANT DYN = (4), AND INIT STATE

X0 = (60, 40), L = 1, ε = 2

For this experiment, we fix the value L = 1. From the results,659

we can observe that the value of ε for which the networks660

satisfy the (L, ε)-conformance increases drastically with the661

amount of perturbation applied to the network.662

C. Experiments 2—State Deviation Quantification663

In our second set of experiments, we compare the actual664

difference in the state of the two systems after k steps of665

execution in practice with the difference computed using our666

theoretical bound presented in Theorem 1. The systems have667

the same plant, but different NN controllers. Both systems start668

in a given initial state; in our experiments, we use 60 as the669

initial position and 40 as the initial velocity of our case study670

system. To compute the actual difference in state after k steps,671

we run the systems separately for k steps and then note the672

deviation in the state. We compute the theoretical deviation in673

state by using the expression given in Theorem 1.674

We use the same networks as before and the two variants675

of the plant dynamics given by (4) and (5). Results of676

the experiment are shown in Table VI for the system with677

dynamics given by (4), and Table VII for the system with678

dynamics given by (5). The first two columns in the tables679

show the names of the neural networks. Subsequent columns’680

titles show the number of steps after which we computed the681

actual state difference. The last row in the tables, starting682

with �k, displays the approximate theoretical deviations of683

the systems after k steps. For example, the result obtained by684

substituting values into (2) for our first case study is 3.20×100,685

as shown in the last row of Table VI. Similarly, for the second686

system, the theoretical deviation after 10 steps is 1.3079, as687

shown in the last row of Table VII.688

From these experiments, we observe that the actual devia-689

tion is consistently less than the theoretical bound computed690

using our formula in Theorem 1. However, the difference691

between actual deviation and theoretical deviation is less when692

TABLE VII
STATE DIFFERENCE, PLANT DYN = (5), AND INIT STATE

X0 = (60, 40), L = 1, ε = 2

TABLE VIII
L, ε AND STATE DEVIATION INPUT INTERVALS: [−10, 10] AND [−10, 10],

‖A‖ = 0.5, ‖B‖ = 0.4, AND INIT STATE X0 = (5, 5)

(‖A‖+‖B‖L) is less than 1 as compared to when it is greater 693

than 1. 694

In the next set of experiments, we aim to evaluate how 695

to choose the values of L and ε if the networks are (L, ε)- 696

conformant to different values of L and ε. For this experiment, 697

we fix two networks and determine different values of L 698

and ε for which the networks are conformant. Subsequently, 699

we analyze the practical and theoretical deviations in the 700

state after a certain number of execution steps. We use the 701

original network from Table V, and the network generated 702

from this network by perturbing weights and biases randomly 703

with values of either +0.0001 or −0.0001. The input intervals 704

for these experiments are [−10, 10] for both input nodes. We 705

consider a system with the following system matrices: 706

A =
[

0.3 −0.1
0.2 0.3

]

, and B =
[

0
−0.4

]

(6) 707

where ‖A‖ = 0.5 and ‖B‖ = 0.4. We choose different values 708

for L and determine values of ε such that the networks are 709

(L, ε)-conformant to each other. The experimental results are 710

shown in Table VIII, where the first two columns represent 711

L and ε values for which the networks are conformant. The 712

remaining columns display the theoretical bounds, given by 713

Theorem 1, on the state deviation after a specified number of 714

steps, as indicated in the column titles. The last row �k shows 715

the actual state deviation between systems after k execution 716

steps starting from a state (5, 5). This experiment indicates 717

that the tightest theoretical bound can be achieved in case the 718

value of L is chosen as small as possible. 719

We summarize the observations from the experiments as 720

follows. In the first set of experiments, we checked (L, ε)- 721

conformance of a set of networks using our approach and 722

found that the conformance checking procedure takes less 723

time when the networks are not conformant, while it takes 724
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more time when they are conformant, with the execution725

time being largely unaffected by L and ε. We also observed726

that conformance checking time increases with the size of727

the merged network. Additionally, the value of ε increases728

significantly with the amount of perturbation applied to the729

network. In the second set of experiments, we compared the730

state difference in closed-loop systems after k execution steps731

with the theoretical bound from Theorem 1 and found that the732

actual state deviation is considerably less than the theoretical733

value. Finally, we determined that the tightest theoretical734

bound is achieved by choosing the smallest possible values735

for L and ε.736

VII. RELATED WORKS737

Safety verification of neural networks has gained promi-738

nence in recent years resulting in several tools, including739

those based on symbolic state-space exploration [5], [15], [17],740

[22] and constraint solving-based approaches [6], [8], [11],741

[16]. Several works also explore the safety of closed-loop742

systems with NN controllers [14], [23], [24], [25]. Despite the743

progress, scalability of the verification techniques remains a744

challenge.745

Our focus here is on bounded safety verification of closed-746

loop systems with evolving neural networks. Our broad idea is747

to leverage the small changes in subsequent NN controllers by748

quantifying the change in terms of (L, ε)-conformance, using749

that to bound the distance between reach sets of corresponding750

closed-loop systems and transferring safety proofs to the751

newer versions. Notion of distance between systems has752

been extensively studied in the literature for different classes753

of systems. Classical notion of bisimulation [26] captures754

equivalence between processes. In the context of control and755

hybrid systems, this has been extended with approximate756

notions [27], [28] which ensure that the trajectories of two757

approximately bisimilar systems are within a bounded distance758

ε. The application of approximate bisimulation for reachability759

verification [29], [30], as well as algorithms for checking760

approximate bisimulation [27] have been explored.761

The notion of ε-conformance has been studied for neural762

networks, wherein the output is assumed to be within a bound763

ε given the same input [1], [2], [3], [4], [31]. However,764

in the context of closed-loop systems, the inputs to the765

neural networks are not identical in different iterations through766

the loop, and hence, one needs a more general notion that767

provides bounds on output when given slightly different inputs.768

This is captured by notion of (L, ε)-conformance proposed.769

We note that even with this notion of (L, ε)-conformance770

between neural networks N1 and N2, the trajectories of the771

corresponding closed-loop systems are not guaranteed to be772

within ε. Instead, the deviation accumulates over iterations.773

This is in contrast to the notion of approximate bisimulation774

where the trajectories are bounded by ε. The reason for the775

ε-boundedness of the trajectories in approximate bisimulation776

arises due to the fact that it requires two states that are777

bisimilar to be within distance ε and the property to also hold778

after one transition. However, such a requirement is too strong779

to be satisfied by two neural networks, which translates to780

requiring the outputs of neural networks to be within ε, when 781

given inputs that are within ε. 782

VIII. CONCLUSION 783

In this article, we explored the problem of approximate 784

conformance checking of closed-loop systems with different 785

neural networks controllers. We introduced the notion of 786

(L, ε)-conformance between two neural networks, and used 787

that to provide theoretical bounds on the closed-loop system 788

behaviors. Further, we provided a technique for checking 789

(L, ε)-conformance by reducing it to reachability analysis on a 790

transformed network. Our experimental analysis demonstrates 791

the feasibility of (L, ε)-conformance checking algorithm for 792

two neural networks and the closeness of the resulting closed- 793

loop system behaviors. 794

In this article, we assume the plant to be a discrete-time 795

linear system. In the future, we would like to explore more 796

complex and continuous time dynamics. Also, our experi- 797

mental results show a large gap between the theoretical and 798

practical deviations of the closed-loop system states, especially 799

for the case when (‖A‖ + ‖B‖L) is greater than 1. We would 800

like to explore tighter theoretical bounds as it will be a crucial 801

component of proof transfer using our (L, ε)-conformance 802

method. For instance, if we have established that the reachable 803

set of a system with a NN N up to k steps is at least α away 804

from the unsafe set, and that the newer version of the NN 805

N′ is (L, ε)-conformant with N, we only need to check that 806

the theoretical bound on the deviation between the closed- 807

loop systems for this (L, ε)-conformance and k is less than 808

α to deduce safety of the closed-loop system with N′ as the 809

controller. Hence. a tighter theoretical bound would be more 810

successful at establishing safety. 811

APPENDIX 812

A. Proof of Theorem 1 813

Let u0
1, u1

1, . . . , and u0
2, u1

2, . . . , be the sequences of control 814

inputs corresponding to the executions η1 and η2, respectively, 815

that is, for each i ≥ 0, ui
1 = K1(η1[i]) and ui

2 = K2(η2[i]). 816

Also, for each i ≥ 0, let �i = ‖η1[i] − η2[i]‖ and μi = 817

‖ui
1 − ui

2‖. Since K1 and K2 are (L, ε)-conformant, μi ≤ L�i+ 818

ε. Note that �0 = 0. Let h = ‖A‖ + ‖B‖L, and c = ‖B‖ε. 819

Then ∀ k ∈ N 820

�k = ‖η1[k] − η2[k]‖ 821

= ‖Aη[k − 1] + Buk−1
1 − Aη2[k − 1] − Buk−1

2 ‖ 822

(from system dynamics) 823

= ‖A(η1[k − 1] − η2[k − 1]) + B
(

uk−1
1 − uk−1

2

)
‖ 824

≤ ‖A‖�k−1 + ‖B‖μk−1 825

≤ ‖A‖�k−1 + ‖B‖(L�k−1 + ε) 826

since μk−1 ≤ L�k−1 + ε 827

= (‖A‖ + ‖B‖L)�k−1 + ‖B‖ε 828

= h�k−1 + ch = ‖A‖ + ‖B‖L, c = ‖B‖ε 829

≤ h(h�k−2 + c) + c 830

≤ hk�k−k + hk−1c + hk−2c + · · · + c 831
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= c
(

hk−1 + hk−2 + · · · + 1
)

since �0 = 0832

= c

(
1 − hk

)

1 − h
for h �= 1833

= ‖B‖ε
(
1 − (‖A‖ + ‖B‖L)k

)

1 − (‖A‖ + ‖B‖L)
.834

B. Formal Definition of the Append Function835

Here, we provide the formal definition of the append836

function, which we utilized in the construction of the merged837

network.838

Definition 6 (Append Hidden Layer): Given a NN N1 =839

(k1, Act, S1
i , W1

i , B1
i , σ 1

i ) and an append count r ∈ N, the840

append hidden layer function append(N1, r) returns a NN N2841

= (k2, Act, S2
i , W2

i , B2
i , σ 2

i ), where842

1) k2 = k1 + r;843

2) for each i ∈ [k1 − 1], S2
i = S1

i ,844

for each i ∈ [k1, k2 − 1], S2
i = S1

k1−1845

S2
k2

= S1
k1

;846

3) for each i ∈ (k1 − 1], the functions W2
i and W1

i are the847

same,848

for each i ∈ [k1, k2 − 1], W2
i (s2

i−1,l, s2
i,m) = 1 if l = m,849

and 0 otherwise.850

W2
k2

(s2
k2−1,i, s2

k2,j
) = W1

k1
(s1

k1−1,i, s1
k1,j

);851

4) for each i ∈ (k1 − 1], the functions B2
i and B1

i are the852

same,853

for each i ∈ [k1, k2 − 1], B2
i is a zero function,854

B2
k2

(s2
k2,j

) = B1
k1

(s1
k1,j

);855

5) all activation functions are ReLU.856

C. Formal Definition of the Merge Function857

Here, we provide the formal definition of the merge func-858

tion, which we utilized to construct a combined network to859

check the (L, ε)-conformance between two neural networks.860

We assume that the two neural networks have the same number861

of layers, otherwise, we use the append to preprocess them.862

Definition 7 (Merge Two Networks): Given two neural863

networks, N1 = (k1, Act, S1
i , W1

i , B1
i , σ 1

i ) and N2 = (k2, Act,864

S2
i , W2

i , B2
i , σ 2

i ), with k1 = k2, |S1
0| = |S2

0|, |S1
k1

| = |S2
k2

|. The865

merge operation merge(N1, N2) returns a new network N3 =866

(k3, Act, S3
i , W3

i , B3
i , σ 3

i ) where867

1) k3 = k1 + 2;868

2) S3
0 = S1

0 	 S2
0, and S3

1 = S′
1 	 S1

1 	 S2
1, where S′

1 =869

{s′
1,1, s′

1,2, . . . , s′
1,2r01

};870

for each i ∈ [2, k1], S3
i = S′

i 	 S1
i 	 S2

i , where S′
i = {s′

i};871

S3
k1+1 = {s′

k1+1, sk1+1,1, sk1+1,1, . . . , sk1+1,2rk11},872

S3
k1+2 = {s′, s}.873

3) We define the weight functions as follows. For all the874

edges that are present in one of the neural networks, the875

weights on those edges remain the same, for the ones876

that we do not mention below are given the weight 0877

W3
1

(
s1

0,i, s′
1,i

)
= 1; W3

1

(
s2

0,i, s′
1,r01+i

)
= 1;878

W3
1

(
s1

0,i, s′
1,r01+i

)
= −1; W3

1

(
s2

0,i, s′
1,i

)
= −1;879

W3
k1+2

(
s′

k1+1, s′) = 1; W3
k1+1

(
s1

k1,i, sk1+1,i

)
= 1;880

W3
k1+1

(
s2

k1,i, sk1+1,rk11+i

)
= 1; 881

W3
k1+1

(
s1

k1,i, sk1+1,rk11+i

)
= −1; 882

W3
k1+1

(
s2

k1,i, sk1+1,i

)
= −1 883

for each i ∈ (2r01], W3
2 (s′

1,i, s′
2) = 1; 884

for each i ∈ [3, k1 + 1], W3
i (s′

i−1, s′
i) = 1; and 885

for each i ∈ (2rk11], W3
k1+2(sk1+1,i, s) = 1; 886

4) We define the bias functions as follows: for all the nodes 887

present in one of the neural networks, their biases remain 888

the same. For all the newly added nodes, the bias value 889

is set to 0. 890

5) All activation functions are ReLU. 891
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