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Abstract—Targeting a multiobject tracking (MOT) system with1

multiple MOT tasks, this article develops Batch-MOT, the first2

system design that achieves both (G1) timing guarantee and (G2)3

accuracy maximization, by utilizing batch execution that allows4

multiple deep neural network (DNN) executions to perform5

simultaneously in a single DNN inference resulting in significantly6

decreased execution time without accuracy loss. To this end, we7

propose an adaptable scheduling framework that allows run-8

time execution behaviors deviated from our base scheduling9

algorithm (i.e., nonpreemptive fixed-priority scheduling) without10

compromising G1. Based on the adaptable framework, we then11

develop 1) a run-time batching mechanism that finds and executes12

a batch set of MOT tasks and 2) a run-time idling mechanism13

that waits for the future releases of MOT tasks for batch14

execution. Both run-time mechanisms can achieve G1 and G215

without incurring high run-time overhead, as they systematically16

exploit the run-time execution behaviors allowed by the adaptive17

framework. Our evaluation conducted with a real-world data18

set demonstrates the effectiveness of Batch-MOT in improving19

tracking accuracy while providing a timing guarantee compared20

to the state-of-the-art real-time MOT system for multiple MOT21

tasks.22

Index Terms—Batch execution, multiobject tracking (MOT),23

real-time scheduling, timing guarantee.24

I. INTRODUCTION25

AS MODERN autonomous vehicles (AVs) are equipped26

with multiple cameras, they require performing multiple27

multiobject tracking (MOT) tasks under limited computing28

resources. Perception tasks, such as MOT are required to29
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complete their execution before specified deadlines because 30

AVs’ safety-related functions for path planning and vehicle 31

control heavily rely on the timely perception, e.g., deter- 32

mining the time-to-collision with pedestrians and cars ahead 33

as extensively discussed in the previous studies [1], [2], 34

[3], [4]. Additionally, it is widely acknowledged that low 35

accuracy in the perception tasks also compromises the safety 36

of AVs [2], [3]. Therefore, an MOT system with multiple 37

MOT tasks must achieve two goals simultaneously for every 38

MOT task: 1) (G1) timing guarantee and 2) (G2) accuracy 39

maximization. 40

The deep neural network (DNN)-based MOT approaches 41

are increasingly deployed in modern AVs [5], [6], [7], [8], [9]. 42

However, it is challenging to fully utilize them in order to 43

achieve G1 and G2 for an MOT system with multiple MOT 44

tasks due to the inherent tradeoff between G1 and G2. A 45

recent study developed a scheduling framework that provides 46

different execution options by efficiently utilizing the control 47

knob of processing either a full-size or a down-scaled input 48

image, which is the only existing study that addresses both 49

G1 and G2 for multiple MOT tasks [3]. However, this control 50

knob has its tradeoff; ensuring G1 might compromise G2 by 51

necessitating downscaled image processing. 52

To overcome the tradeoff between G1 and G2, we utilize 53

batch execution for multiple MOT tasks, which, supported 54

by modern DNN models, concurrently processes multiple 55

inputs in one DNN inference reducing execution time without 56

accuracy loss by optimizing GPU resources [4], [10], [11]. 57

As shown in Fig. 1(a) of the experiment results for a GPU 58

of Tesla V100 (comparable to the NVIDIA Orin system- 59

on-chip (SoC) providing similar GPU capability for Tensor 60

core operations [12]) with the state-of-the-art DNN model 61

(i.e., YOLOX [13]), 1.0 time unit taken for processing 12 62

full-size (size of 672 × 672) images individually (one by 63

one) decreases to 0.46 time unit with batch execution without 64

accuracy loss (maintaining 41%). Notably, this processing time 65

is even smaller than 0.74 time unit taken for processing 12 66

down-scaled (size of 256 × 256) images individually (one by 67

one) with accuracy drop to 17.7%. This is because it maintains 68

nearly the same DNN inference time (see ii. in Fig. 1(b) for 69

19–21 ms) until the GPU reaches resource saturation, which 70

occurs when processing more than ten input images for batch 71

execution. On the other hand, the execution times of the other 72

parts (to be detailed in Section II) linearly increase with the 73

number of input images in a batch. We conducted the same 74

experiments on a GPU-enabled embedded board (i.e., NVIDIA 75
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Fig. 1. Execution times for different number of input images of an
MOT system with YOLOX on a Tesla V100 GPU. (a) Total execution.
(b) Decomposition of batch execution.

Xavier SoC [14]) and observed that it can accommodate two76

input images (see Fig. 6(d) for 36–38 ms) for a batch execution77

before the resource saturation.78

Motivated by the shorter execution time by batch execution79

without accuracy loss, we target a set of MOT tasks, in which80

G1 is compromised by processing the original DNN workloads81

(i.e., full-size image) individually1 but is not compromised by82

processing the reduced DNN workloads (i.e., the down-scaled83

image that compromises G2) individually. Then, we consider84

the individual execution with the reduced DNN workloads in85

default and aim at performing batch execution with the original86

DNN workloads from multiple MOT tasks as frequently as87

possible at run-time, such that both G1 and G2 are achieved;88

this entails the following challenges.89

C1: To determine the batch set to execute, we require an90

online mechanism to find feasible batch sets, along with91

run-time information on active MOT tasks, which results92

in significant run-time overhead; thus, a new scheduling93

framework with the low run-time overhead is essential.94

C2: While batch execution can expedite overall processing,95

it may delay specific tasks due to factors like priority96

inversion (to be detailed in Fig. 4 in Section V), neces-97

sitating a runtime mechanism (based on the answer to98

C1) with a schedulability test to ensure the timely task99

execution.100

C3: Since, any work-conserving scheduling cannot yield any101

batch execution under a situation where there is only one102

active task, we need a run-time idling mechanism (based103

on the answer to C1) that accelerates the batch execution104

for the situation while ensuring the timely execution of105

every task (based on the answer to C2).106

In this article, we propose Batch-MOT, the first system107

design to achieve G1 and G2 by utilizing batch execution for108

multiple MOT tasks, which systematically tackles the chaining109

challenges C1–C3. Batch-MOT employs nonpreemptive fixed-110

priority scheduling ( NPFP) as a base scheduling algorithm,111

in which each MOT task is executed nonpreemptively and the112

task priority is predefined.113

To address C1, we analyse the offline schedulability test114

that provides timing guarantees under NPFP. Based on the115

analysis, we propose a new scheduling framework NPADAPT116

(the nonpreemptive ADAPTable scheduling framework) that117

1If not compromised, the computing resource is sufficient for achieving G1
and G2 without any advanced technique, which is not the scope of this article.

allows run-time execution behaviors to deviate from NPFP 118

without compromising timing guarantees achieved by the 119

offline schedulability test. 120

The strategy of NPADAPT to reduce runtime overhead 121

involves the offline identification of the amount of allowable 122

run-time execution behavior deviations (denoted by �k defined 123

in Section IV-B) from NPFP for each MOT task, providing 124

an interface for developing a runtime batching mechanism that 125

incurs low runtime overhead without compromising timing 126

guarantees. 127

As to C2, we develop a run-time batching mechanism 128

NPFPB ( NPFP with batch execution) based on NPADAPT. 129

It finds a set of MOT tasks with a low run-time overhead, 130

such that executing the set as a batch does not compro- 131

mise the timely execution of any task. This is achieved by 132

systematically exploiting the properties to be discussed in 133

Section III and the run-time execution behaviors allowed by 134

NPADAPT. 135

To address C3, we propose an advanced run-time batching 136

mechanism with an idling scheme NPFPBI (NPFPB with 137

idling), developed on top of NPFPB. NPFPBI further utilizes 138

the run-time execution behaviors allowed by NPADAPT and 139

determines the idling interval for each MOT task to wait for 140

the future release(s) of the other MOT tasks to be executed as 141

a batch, without incurring much run-time overhead. The rela- 142

tionship among NPADAPT, NPFPB, and NPFPBI is described 143

in Figure S.1 in the supplement [15]. 144

We implemented Batch-MOT and evaluated it using an 145

open MOT data set of the autonomous driving system. 146

Our evaluation demonstrates that Batch-MOT exhibits higher 147

tracking accuracy and lower run-time overhead without 148

compromising timing guarantee, compared to the only exist- 149

ing study addressing both G1 and G2 for multiple MOT 150

tasks [3]. 151

We clarify our novelty and contribution along with an 152

explanation of related work as follows. 153

1) To the best of our knowledge, Batch-MOT is the first 154

study providing a strict timing guarantee for batch DNN 155

execution of multiple (camera) tasks. Even extending 156

our interest to general DNN beyond MOT, the existing 157

studies address different problems from ours. That is, 158

[2], [3], [11], [16], [17] do not deal with a timing guaran- 159

tee for batch DNN execution; [4], [18] are designed for 160

single-camera (i.e., single-task) systems; and [10], [19] 161

aim at improving the overall FPS or minimizing the 162

deadline miss ratio, therefore not addressing strict timing 163

guarantees. 164

2) Batch-MOT enables the assurance of timing guaran- 165

tees through a simple online test with low scheduling 166

cost despite the complicated impact of batch DNN 167

execution (both with/without idling) on the timing 168

guarantee. This is achieved by a) the novel design 169

of the scheduling frameworks NPADAPT, NPFPB, 170

and NPFPBI (to be detailed in Sections IV–VI, 171

respectively) and b) the mathematical foundation of 172

their timely correctness, both of which are highly 173

challenging. 174
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Fig. 2. Overview of Batch-MOT

II. OVERVIEW OF BATCH-MOT175

As illustrated in Fig. 2, the core design features of Batch-176

MOT include the batch-enabled MOT execution pipeline and177

the batch-enabled scheduler to be detailed in this section.178

The MOT execution pipeline and scheduler are implemented179

as separate threads, and they communicate with each other180

by exchanging messages through the shared memory. The181

workflow of Batch-MOT is as follows. Each input frame of182

the MOT tasks is forwarded to a ready queue ( 1 in Fig. 2).183

Once the batch-enabled scheduler determines the idling time184

and batch size of MOT tasks ( 2 ), some MOT tasks in185

the ready queue are combined into a batch or no batch is186

constructed according to the idling and batch decision ( 3 ).187

Then, detection ( 4 ) and association ( 5 ) are conducted188

sequentially for either batch or individual execution.189

A. Batch-Enabled MOT Execution Pipeline190

In the batch-enabled MOT execution pipeline, the front-191

end DNN-based detector identifies the position and size of192

each object’s bounding box in the input frame and sends193

the detection information to the back-end tracker. The tracker194

then conducts an association to match each detected object195

with one of the existing objects in the previous frame (called196

tracklet) based on the intersection over union-based (IoU-197

based) matching and updates the tracking information for the198

matched tracklet.199

For the detector, Batch-MOT adopts any existing stand-200

alone DNN models (e.g., the YOLO series [13], [20]) that201

can accept variable input image sizes determining the tracking202

accuracy as shown in Fig. 1(a). The batch MOT execution203

pipeline supports two types of execution: 1) individual and204

2) batch execution. For an input image of the size of 672×672,205

the individual execution scale-downs the input image to the206

size of 256×256. Then, it conducts the detection of the MOT207

tasks and shows decreased execution time at the expense208

of sacrificing the tracking accuracy. In a batch execution,209

multiple input images with the original size of 672×672210

are combined in a batch for DNN inference, and it is211

transferred from the CPU to GPU memory [i. in Fig. 1(b)].212

Then, the DNN inference is conducted on the GPU to detect213

candidate objects [ii) in Fig. 1(b)], and the postprocessing,214

such as nonmaximum suppression (NMS) [20] is performed215

on the CPU to extract high-confident objects among detected216

candidates [iii) in Fig. 1(b)]. As the tracker uses IoU-based217

matching, it compares the position and size of tracklets with218

the objects detected in the current frame on a one-to-one219

basis and matches two objects whose size of overlapping 220

region is greater than a given threshold on the CPU. In 221

the case of batch execution, after detection is performed for 222

multiple MOT tasks, the associations for the batch are then 223

performed sequentially on the CPU [iv) in Fig. 1(b)]; however, 224

if the time cost for interprocess communication (IPC) on the 225

platform is relatively low compared to the execution time of 226

an association, the associations can be executed in parallel 227

across multiple CPUs using multiprocessing, which decreases 228

the overall execution time. 229

B. Batch-Enabled Scheduler 230

Batch-MOT supports a thread-level scheduler invoked when 231

an MOT task is released or completed. The proposed batch- 232

enabled scheduler operates as a background daemon and 233

communicates with the MOT execution pipeline through the 234

shared memory. To make Batch-MOT capable of addressing 235

C1–C3, the batch-enabled scheduler is designed as follows. 236

To tackle C1–C3, Batch-MOT needs to implement a run- 237

time batch decision mechanism that does not compromise 238

timing guarantees while maintaining the low run-time over- 239

head. This is challenging because batch execution affects the 240

behavior of multiple tasks, including i) the target task; ii) the 241

lower priority tasks; and iii) the higher priority tasks. In 242

other words, the batch execution of given B can change the 243

execution of i), ii), and/or iii), and the impact of one is different 244

from that of the others. Considering all the possible execution 245

variations of batch executions and their influences on the other 246

tasks at every scheduling decision may cause prohibitively 247

high run-time overhead, which has not been addressed in the 248

previous study [3]. 249

To overcome the challenge, we first analyse the underlying 250

principle of our base scheduling algorithm NPFP and its 251

schedulability analysis that judges the timing guarantee of the 252

given task τk by considering i), ii), and iii) to be detailed in 253

Section IV-A. We then develop a new scheduling framework, 254

NPADAPT, which enables the run-time execution behaviors of 255

i), ii), and iii) deviated from NPFP while preserving the 256

schedulability guaranteed under NPFP, by associating the 257

run-time execution behaviors with the schedulability test to 258

be detailed in Section IV-B. By using the run-time execution 259

behaviors with the properties to be discussed in Section III, 260

the scheduler finds and executes schedulable batch sets under 261

work-conserving scheduling (addressing C1 and C2 to be 262

detailed in Section V) and beyond work-conserving scheduling 263

(addressing C1 and C3, to be detailed in Section VI), with the 264

low run-time overhead. 265

III. SYSTEM MODEL 266

We consider an MOT system with multiple DNN-based 267

MOT tasks τ = {τi}ni=1 [3] on a platform equipped with 268

multiple CPUs and a single GPU. As an input video frame is 269

provided periodically, an MOT task τi is considered a periodic 270

real-time task with a timing constraint. That is, an MOT task 271

τi invokes a series of jobs Ji, each separated by exactly Ti 272

time units; once a job of τi is released at t, it should finish 273

its execution no later than its deadline t + Ti. The period of 274
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each task is not necessarily the same, which makes it possible275

to address the situation where the frame rate of each camera276

varies based on its intended use (e.g., side-facing cameras277

typically operate at lower rates while forward-facing cameras278

operate at higher rates [1]); of course, our task model also279

accommodates a set of tasks with the same period. A job is280

said to be active at t, if it has remaining execution at t. Let τ(t)281

denote a set of tasks, each of whose job is active at t. Let ri(t)282

denote the earliest job release time of τi after t. Since, each283

task is strictly periodic, it is possible to know ri(t) at t and284

indicate the earliest job deadline of τi after t. Let LP(τk) and285

HP(τk) denote a set of tasks whose priority is lower and higher286

than τk, respectively. Notations are summarized in Table S.1287

in the supplement.288

An MOT task set τ is said to be schedulable under a target289

scheduling framework if every job invoked by tasks in τ does290

not miss its deadline when the framework schedules τ . Since,291

there is at most one active job of τi ∈ τ at any time, we use a292

task τi and a job of τi (denoted by Ji) interchangeably when no293

ambiguity arises. As presented, we aim to achieve G1 and G2294

for every MOT task. Let Ci denote the worst-case execution295

time (WCET) of τi when each performs individual execution296

(as opposed to batch execution).297

To schedule a set of MOT tasks, we decide to apply the298

following two policies. First, we enforce nonpreemptiveness299

between the detection and association of each job; that is,300

once a job of τi starts its execution, it sequentially performs301

the execution of its detection and association subjobs without302

any preemption. Second, we disallow individual MOT tasks303

to be executed in parallel (if not a part of a batch), while304

the associations of MOT tasks in a batch can be performed305

simultaneously on multiple CPUs depending on the time cost306

of IPC mentioned in Section II. The two policies not only307

reduce the run-time scheduling overhead but also significantly308

lower the complexity of considering various run-time scenar-309

ios that incur different interference/blocking; therefore, the310

policies make it possible to ensure offline timing guarantees311

through a simple online test with low scheduling cost to be312

developed in Sections IV–VI.313

In this article, we process a down-scaled image (i.e.,314

256×256) as the individual execution of each job, while we315

do a full-size image (i.e., 672×672) as the batch execution316

of a group of jobs. Let B denote a set of tasks whose jobs317

will be executed as a batch, and let CB denote the WCET of318

B, where |B| ≥ 2. We take the measurement-based approach319

to derive the WCET of MOT tasks, using the experiment320

setup in Section VII, with an in-depth discussion provided in321

Section VIII.322

In this article, we use the following properties of batch323

execution.324

P1: CB ≥ maxτi∈B Ci;325

P2: CB ≤
∑

τi∈B Ci; and326

P3: CB ≤ CB′ , if B ⊂ B′.327

Batch execution of multiple MOT tasks dramatically short-328

ens total inference latency by reducing the number of GPU329

invocations. That is, individual execution requires as many330

invocations as the number of given MOT tasks, while batch331

execution performs inference with one invocation. Since, the332

inference latency through a single GPU invocation increases 333

monotonically according to the DNN workload of the invo- 334

cation, P1 holds generally. Likewise, since DNN workload of 335

B will be increased if we add more job(s) to B, P3 holds 336

generally. Apart from P1 and P3, which typically holds, 337

P2 holds under the following condition: the benefit of reducing 338

the number of GPU invocations outweighs the increasing 339

workload (from a smaller total DNN workload of multiple 340

individual executions to a larger DNN workload of a single 341

batch execution). To satisfy the condition, we need to deploy 342

a detector that offers high optimization of batch execution. In 343

this article, we target the state-of-the-art detectors optimized 344

for batch execution that ensure P2 is met (e.g., YOLOX [13] 345

illustrated in Fig. 1, YOLOv5 [20], Faster-RCNN [21], and 346

others with varying sizes for both the downscaled and full-size 347

input images). 348

IV. DEVELOPING ADAPTABLE SCHEDULING FRAMEWORK 349

A. Base Scheduling Algorithm NPFP 350

In this article, we employ NPFP [3], [22] as a base 351

scheduling algorithm. As explained in Section III, once a 352

job of τi starts its execution, it sequentially performs the 353

execution of its detection and association subjobs without any 354

preemption (by NP). Also, each task’s priority is predefined, 355

and each job inherits its invoking task’s priority (by FP). 356

Whenever there is at least one active job while the computing 357

system is idle, NPFP selects the highest-priority active job 358

and starts its execution. NPFP is work conserving, meaning 359

that the computing system cannot be idle if there is at least 360

one active job; also, the vanilla NPFP does not allow any 361

batch execution. 362

The schedulability of a set of MOT tasks under NPFP is 363

guaranteed by the next lemma [3], [23], which is a sufficient 364

but not necessary schedulability test. 365

Lemma 1 (From [3], [23]): An MOT task set τ is schedu- 366

lable by NPFP, if Rk ≤ Tk holds for every τk ∈ τ , where 367

Rk (i.e., the response time of τk) can be calculated as follows. 368

Rk(x+1) is calculated by (1) sequentially with x = 0, 1, 2, . . ., 369

starting from Rk(0) = Ck +∑
τh∈HP(τk)

Ch + maxτj∈LP(τk) Cj, 370

until Rk(x+1) = Rk(x) (implying Rk = Rk(x)) or Rk(x+1) > 371

Tk (implying no bounded Rk) 372

Rk(x+ 1) = Ck +
∑

τh∈HP(τk)

⌈
Rk(x)

Th

⌉

· Ch + max
τj∈LP(τk)

Cj. (1) 373

Proof: Here, we summarize the proof in [3] and [23]. 374

Consider the following situation. 375

1) The first job of τk and every first job of tasks whose 376

priority is higher than τk are released at t0. 377

2) A job of a task whose Ci is the largest among tasks 378

whose priority is lower than τk is released right before 379

t0. 380

3) The following jobs of τk and those of tasks whose 381

priority is higher than τk are released periodically. 382

It was proven that one of the jobs of τk released under the 383

situation (but not necessarily the first job of τk released at t0) 384

yields the largest response time of τk [22]. 385
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Then, it is trivial that the response time of the first job of τk386

under the situation is upper-bounded by Rk(x) that satisfies (1).387

The proof of [3, Lemma 1] proves that the response time of388

the (x+ 1)th job of τk cannot be larger than that of the xth job389

(where x ≥ 1), if Rk ≤ Tk holds with (1), meaning there is no390

self-pushing phenomenon issue [22] for τk if Rk ≤ Tk holds391

with (1).392

B. Adaptable Scheduling FrameworkNPADAPT393

Once Lemma 1 deems τ schedulable, we can guaran-394

tee timely execution of τ scheduled by NPFP. However,395

the accuracy of MOT tasks in τ scheduled by NPFP396

cannot be maximized, because every job under NPFP397

performs individual execution with a down-scaled image (as398

opposed to batch execution of multiple jobs with a full-size399

image). Therefore, targeting τ deemed schedulable under the400

vanilla NPFP (that does not employ batch execution), we401

want to maximize the MOT accuracy by performing batch402

execution as much as possible without compromising the403

schedulability.404

However, a batch execution of a set of multiple jobs easily405

compromises each job’s timely execution achieved by the406

individual execution of corresponding jobs. For example, if407

a higher-priority job of τi and a lower-priority job of τj are408

executed as a batch, the execution time of the batch could be409

larger than that of the job of τi solely (by P1), which may410

yield the deadline miss of the job of τi. Therefore, we need to411

identify which run-time execution behaviors (caused by batch412

execution) that deviate from NPFP do not compromise the413

schedulability.414

To establish boundaries of run-time execution behavior devi-415

ation (e.g., execution time increment due to batch execution,416

intentional idling for batch execution) without compromising417

the schedulability, we target a task set that satisfies Lemma 1418

and analyse how Lemma 1 guarantees the schedulability under419

NPFP. To this end, we focus on a job of τk that is released420

and finished at tr and tf , respectively. First, by the property421

of the nonpreemptiveness of NPFP, a lower-priority job can422

block the execution of a higher-priority job only when the423

former starts its execution before the release of the latter. As424

addressed by the third term of the RHS of (1), the following425

holds in [tr + maxτj∈LP(τk) Cj, tf ) under NPFP, illustrated in426

Fig. 3(a).427

O1: Except the execution of the job of τk and jobs with428

higher priority than τk, any other run-time behav-429

ior (e.g., other jobs’ execution, the system idling) is430

disallowed.431

Second, after the lower-priority blocking, the only possible432

execution behaviors that affect the schedulability of the job433

of τk are the execution of the job of τk itself and jobs with434

higher priority than τk. As addressed by the first two terms of 435

the RHS of (1), the following holds in [tr+maxτj∈LP(τk) Cj, tf ) 436

under NPFP if Lemma 1 holds. This is illustrated in 437

Fig. 3(a). 438

O2: The amount of execution of the job of τk and jobs 439

with higher priority than τk does not exceed Ck + 440∑
τh∈HP(τk)

�([tf − tr]/Th)	 · Ch. 441

Considering the two properties, we define a class of 442

the nonpreemptive scheduling algorithms with the minimum 443

requirements, which 1) allows run-time execution behavior 444

deviated from NPFP to be potentially utilized for batch 445

execution and 2) does not compromise the schedulability under 446

NPFP guaranteed by Lemma 1. 447

Definition 1: We define NPADAPT associated with given 448

{�k≥0}τk∈τ (the nonpreemptive ADAPTable scheduling 449

framework), as any nonpreemptive scheduling algorithm in 450

which every job of τk ∈ τ (that is released and finished at tr 451

and tf , respectively) satisfies the following features, which are 452

illustrated in Fig. 3(b). 453

F1: In [tr +�k, tf ), O1 holds. 454

F2: In [tr +�k, tf ), O2 holds. 455

Since, F1 and F2 are the only requirements, NPADAPT with 456

given {�k} can accommodate the following possible run-time 457

execution behaviors deviated from NPFP as long as F1 and 458

F2 hold. Recall that Ci for each τi is the WCET when its job 459

performs individual execution with a down-scaled image (as 460

opposed to batch execution of multiple jobs with a full-size 461

image). 462

1) In [tr + �k, tf ), (DV1) the job of τk may execute for 463

more than Ck. 464

2) In [tr+�k, tf ), (DV2) a job of τh ∈ HP(τk) may execute 465

for more than Ch. 466

3) In [tr, tr+�k), (DV3) a job of τj ∈ LP(τk) executes for 467

more than Cj. 468

4) In [tr, tr + �k), (DV4) the computing system becomes 469

idle even though there is an active job, meaning that 470

NPADAPT is not work conserving. 471

The above run-time execution behaviors will be used 472

for the run-time batching mechanism to be explained in 473

Sections V and VI. We would like to emphasize that 474

DV1–DV4 are run-time execution behaviors deviated from 475

NPFP, as NPFP does not allow them in the corresponding 476

intervals; in other words, NPFP disallows DV1 and DV2 477

in [tr + maxτj∈LP(τk) Cj, tf ), and DV3 and DV4 in [tr, tr + 478

maxτj∈LP(τk) Cj). 479

Considering that NPFP satisfies O1 and O2 in [tr + 480

maxτj∈LP(τk) Cj, tf ) if Lemma 1 holds, the following prop- 481

erty holds: for τ that is deemed schedulable by Lemma 1, 482

NPFP belongs to NPADAPT associated with {�k = 483

maxτj∈LP(τk) Cj}. From F1 and F2 for NPADAPT, we can easily 484

derive the schedulability analysis of NPADAPT, by replacing 485

maxτj∈LP(τk) Cj with �k in Lemma 1. 486

Theorem 1: An MOT task set τ is schedulable by NPADAPT 487

associated with given {�k}, if Rk ≤ Tk holds for every τk ∈ τ , 488

where Rk (i.e., the response time of τk) can be calculated as 489

follows. Rk(x + 1) is calculated by (2) sequentially with x = 490

0, 1, 2, . . . ,, starting from Rk(0) = Ck +∑
τh∈HP(τk)

Ch +�k, 491

until Rk(x+1) = Rk(x) (implying Rk = Rk(x)) or Rk(x+1) > 492
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Tk (implying no bounded Rk)493

Rk(x+ 1) = Ck +
∑

τh∈HP(τk)

⌈
Rk(x)

Th

⌉

· Ch +�k. (2)494

Proof: Suppose that, a job of τk whose release time is495

tr does not finish its execution until tr + Rk, although Rk496

satisfies (2). First, we consider that the amount of execution497

of τk and its higher-priority tasks in [tr +�k, tr + Rk) is not498

larger than Ck +∑
τh∈HP(τk)

�(Rk/Th)	 · Ch. From (2), Rk −499

�k = Ck +∑
τh∈HP(τk)

�(Rk/Th)	 · Ch holds. Therefore, if the500

amount of execution of τk and its higher-priority tasks in [tr+501

�k, tr + Rk) is not larger than Ck +∑
τh∈HP(τk)

�(Rk/Th)	 ·Ch,502

the supposition contradicts F1. Second, we consider that the503

amount of execution of τk and its higher-priority tasks in [tr+504

�k, tr+Rk) is larger than Ck+∑
τh∈HP(τk)

�(Rk/Th)	·Ch, which505

immediately contradicts F2. Therefore, the supposition always506

contradicts.507

Provided that �k ≥ maxτj∈LP(τk) Cj, no execution of τj508

can occur within the interval [tr + �k, tf ), where tr and tf509

represent the release and finishing times of τk, respectively.510

This condition ensures the sustainability property with respect511

to {Ci}.512

In the next section, we will develop a run-time batching513

mechanism by utilizing the capability of NPADAPT in achiev-514

ing the schedulability even in the presence of the run-time515

execution behavior deviated from NPFP (as long as F1 and516

F2 are satisfied). To this end, we will deploy the largest �k517

for NPADAPT to accommodate a longer blocking period due518

to batch execution or a longer idling for batch execution to519

be performed in the future. Let �∗k denote the largest �k that520

does not compromise the schedulability of τk in Theorem 1,521

and let R∗k denote Rk with �∗k . We can easily verify that if τ is522

deemed schedulable by Lemma 1, �∗k ≥ maxτj∈LP(τk) Cj holds523

for every τk ∈ τ .524

Offline Time-Complexity: We can find �∗k ∈ [0, Tk − Ck]525

using the binary search. Hence, the time complexity to find526

�∗k and R∗k for every τk ∈ τ using Theorem 1 is O(n2 · log(n) ·527

max(Tk)), which is affordable as it is performed offline.528

V. NPFPB : ENABLING RUN-TIME BATCHING529

As C1 and C2 in Section I indicate, utilizing batch execution530

necessitates a mechanism that efficiently finds a batch of jobs531

to be executed at run-time without compromising timing guar-532

antee. Therefore, this section develops a run-time mechanism533

that achieves the following goals to address C1 and C2 in534

Section I, respectively.535

1) Perform batch execution as frequently as possible536

(for high accuracy) while minimizing the run-time537

complexity.538

2) Do not compromise the schedulability of τ under539

NPFP, guaranteed by Lemma 1.540

To this end, we develop NPFPB ( NPFP with batch execu-541

tion) associated with given {�k}. We address the second goal542

by making NPFPB follow F1 and F2 (implying NPFPB with543

{�k} belongs to NPADAPT with {�k}). Then, the remaining544

step is how to design a run-time batching mechanism that545

addresses the first goal while satisfying F1 and F2.546

, , , , }
- +t-

Test (Algo. 2 Line 2-3)

- +t-

No test owing to P2, , , , }

Not happen owing to NPFPB principle

t - +-

, , , , }

(t) + +t

Test (Algo. 2 Line 4-5), , , }

(a)

(b)

(c)

(d)

Fig. 4. Four batch execution cases for a set of tasks {τ1, τ2, τ3(=τk), τ4, τ5};
the smaller index, the higher priority. (a) Case 1: τk ∈ τ(t) and τk ∈ B.
(b) Case 2: τk ∈ τ(t), τk /∈ B, and τh ∈ HP(τk). (c) Case 3: τk ∈ τ(t), τk /∈ B,
and τh ∈ LP(τk). (d) Case 4: τk /∈ τ(t) (and therefore τk /∈ B).

As a first step to develop NPFPB associated with given 547

{�k}, we investigate how each batch execution affects the 548

schedulability under NPFP guaranteed by Lemma 1. From 549

now on, we interpret a run-time execution behavior deviated 550

from NPFP due to batch execution as a change of WCET 551

(as well as the actual execution time) of the highest-priority 552

task in the batch; therefore, the priority of a batch execution 553

inherits the priority of the highest-priority task in the batch. 554

For example, if a higher-priority job of τi and a lower-priority 555

job of τj are executed as a batch, we regard this situation as 556

an increase of WCET of the job of τi from Ci to CB where 557

B = {τi, τj}. 558

Consider τ deemed schedulable by Lemma 1. Suppose 559

we schedule τ by NPFP until t, but we are going to 560

execute a set of jobs as a batch (denoted by B) at t. We 561

investigate how the schedulability of a job Jk of the task 562

τk ∈ τ is affected differently according to the following four 563

cases, which are illustrated in Fig. 4 with a task set τ = 564

{τ1, τ2, τ3(=τk), τ4, τ5}, in which a smaller task index implies 565

a higher priority. Let τh denote the highest-priority task among 566

tasks in B; recall that τ(t) is a set of tasks, each of whose job 567

is active at t, and rk(t) is the earliest job release time of τk 568

after t. 569

1) Case 1 of τk ∈ τ (t) and τk ∈ B: The WCET of Jk is 570

changed from Ck to CB, e.g., B = {τ1, τ2, τ3(=τk)} in 571

Fig. 4(a). 572

2) Case 2 of τk ∈ τ (t), τk /∈ B, and τh ∈ HP(τk): The 573

longest time for a job of τh to delay the execution of Jk is 574

changed from Ch to CB, e.g., B = {τ1, τ2} in Fig. 4(b). 575

3) Case 3 of τk ∈ τ (t), τk /∈ B, and τh ∈ LP(τk): Jk 576

experiences an additional delay from a lower-priority job 577

of τh for up to CB, which does not occur under NPFP, 578

e.g., B = {τ4, τ5} in Fig. 4(c). 579

4) Case 4 of τk /∈ τ (t) (therefore τk /∈ B): The longest time 580

for a job of τh to delay the execution of Jk (to be released 581

at rk(t) > t) is changed from max(0, t + Ch − rk(t)) to 582

max(0, t+CB−rk(t)), e.g., B = {τ1, τ2, τ4} in Fig. 4(d). 583
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To make NPFPB associated with given {�k} preserve584

schedulability even in the presence of batch execution for585

Cases 1–4, our basic design principle for the run-time mech-586

anism of NPFPB is as follows.587

We enforce the prioritization policy of FP on batch588

execution. To this end, we disallow the batch execution of589

B at t, if there is an active job of τk /∈ B whose priority is590

higher than the lowest-priority task in B. The principle has591

three distinct advantages as follows.592

DP1: To make the schedule under NPFPB as similar as593

possible to that under the base scheduling algorithm594

NPFP,595

DP2: To eliminate Case 3, which a) not only reduces a596

burden to check the schedulability affected by given597

batch execution b) but also helps to comply with F1598

by preventing a lower-priority job from executing in599

the interval of interest of F1 (i.e., [tr +�k, tf )).600

DP3: To narrow down the number of possible choices of601

the set of tasks to be executed as a batch, i.e., from602

2|τ(t)|−1 to |τ(t)−1|, which significantly reduces the603

run-time overhead for checking different batch can-604

didates as well as the offline measurement/analysis605

overhead for obtaining CB for different B.606

Under the design principle, we handle Cases 1–4 for a given607

batch execution. For each case, we either derive a condition608

for the batch execution not to compromise the schedulability609

(for Cases 1 and 4) or verify that the batch execution cannot610

compromise the schedulability (for Cases 2 and 3), both of611

which are achieved by satisfying F1 and F2.612

1) Case 1 of τk ∈ τ (t) and τk ∈ B: If t+CB ≤ rk(t)−Tk+Rk613

holds, F2 is satisfied and the job of τk active at t does614

not miss its deadline,2 as exemplified in Fig. 4(a).615

2) Case 2 of τk ∈ τ (t), τk /∈ B, and τh ∈ HP(τk): The616

longest time for jobs of tasks in B (at most one job per617

task) to be executed is decreased from
∑

τh∈B Ch (in the618 ∑
τh∈HP(τk)

�(Rk(x)/Th)	 · Ch term in the RHS of (1)) to619

CB by P2, which cannot compromise the schedulability620

of Jk that is active at t, as exemplified in Fig. 4(b).621

3) Case 3 of τk ∈ τ (t), τk /∈ B, and τh ∈ LP(τk): This622

case does not occur under the design principle DP2, as623

illustrated in Fig. 4(c).624

4) Case 4 of τk /∈ τ (t) (and Therefore τk /∈ B): If t +625

CB ≤ rk(t) + �k holds, the batch execution of B does626

not violate F1 and does not affect F2, as exemplified in627

Fig. 4(d).628

The formal proof of the conditions/statements in Cases 1–4629

will be in the proof of Theorem 2.630

Using Cases 1–4, Algorithm 2 presents NPFPB associated631

with {�k}, which is performed at t at which there is at least one632

active job while the computing system is ready to work. After633

defining B(n) as a set of the n highest-priority tasks among634

τ(t) in line 1, we check whether there are multiple active jobs635

(i.e., two or more tasks in τ(t)) in line 2. We find the largest x,636

such that B(x) does not compromise the schedulability of all637

the other jobs, by testing schedulability test for online batching638

2Recall that Rk is the response time of τk calculated by Theorem 1 for
given �k .

Algorithm 1 STOB(t, τ (t),B)

1: for τk ∈ τ do
2: if τk ∈ τ(t) and τk ∈ B then
3: if t + CB > rk(t)− Tk + Rk then return unschedulable
4: else if τk /∈ τ(t) then
5: if t + CB > rk(t)+�k then return unschedulable
6: end if
7: end for
8: return schedulable

Algorithm 2 NPFPB Scheduling Algorithm
At t, at which a job is finished while there is at least one active job,
or at which at least one job is released while the system is idle,

1: Let B(n) denote {τi(t)}ni=1, where τn(t) denotes the nth

highest-priority task in the set of active tasks at t (i.e., τ(t)) for
1 ≤ n ≤ |τ(t)|.

2: if |τ(t)| ≥ 2 then
3: Find the largest batch set B(x) for 2 ≤ x ≤ |τ(t)| such that

STOB
(
t, τ (t),B(x)

)
in Algorithm 1 returns schedulable,

using binary search; if such B(x) exists, execute a set of
active jobs invoked by tasks in B(x) as a batch, and return.

4: end if
5: Execute the highest-priority active job, and return.

(STOB) (t, τ (t),B(x)) in Algorithm 1 (in Line 3); we will 639

detail Algorithm 1, including why it is possible to apply the 640

binary search. If such B(x) exists, execute a set of active jobs 641

invoked by tasks in B(x) as a batch (in line 3). Otherwise (or 642

there is only one active job at t), execute the highest-priority 643

job (in line 5), which is the same as NPFP. 644

For a given B, STOB in Algorithm 1 checks whether every 645

task τk satisfies the conditions in Cases 1 and 4. Lines 2 and 646

3 correspond Case 1, while lines 4 and 5 correspond Case 4. 647

Note that, by the statements of Cases 2 and 3, we do not need 648

to check the cases for schedulability. Now, we present why it 649

is possible to apply the binary search to find the largest B(x) 650

in line 3 of Algorithm 2. 651

Lemma 2: Recall B(x) in line 1 of Algorithm 2. If 652

STOB(t, τ (t),B(x+1)) in Algorithm 1 returns schedulable, 653

then STOB(t, τ (t),B(x)) also returns schedulable. 654

Proof: Since, B(x) ⊂ B(x+1) holds, CB(x) ≤ CB(x+1) holds 655

by P3 in Section III. This implies that the opposite conditions 656

in lines 3 and 5 of Algorithm 1, respectively, satisfy rk(t) − 657

Tk + Rk ≥ t + CB(x+1) ≥ t + CB(x) and rk(t) + �k ≥ t + 658

CB(x+1) ≥ t + CB(x). Therefore, the lemma holds. 659

As we designed, NPADAPT subsumes NPFPB as follows. 660

Theorem 2: For τ with {�k ≥ maxτj∈LP(τk) Cj} that is 661

deemed schedulable by Theorem 1, NPFPB associated with 662

{�k} belongs to NPADAPT associated with {�k}.3 663

Proof: Suppose that a job of τk (denoted by Jk) scheduled 664

by NPFPB associated with {�k} is released and finished at tr 665

and tf , respectively. We prove that Jk always satisfies F1 and 666

F2 of Definition 1, which proves the theorem. 667

First, we check whether F1 is satisfied. Since, NPFPB is 668

work conserving, it suffices to check (F1′) whether there is no 669

3Since Theorem 1 with �k = maxτj∈LP(τk) Cj is equivalent to Lemma 1, τ

deemed schedulable by Theorem 1 with �k ≥ maxτj∈LP(τk) Cj is also deemed
schedulable by Lemma 1 (i.e., NPFP-schedulable).
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execution of lower-priority jobs in [tr +�k, tf ). We consider670

four cases.671

(Case F1a): If a lower-priority job of τj starts its execution672

at t (< tr) as individual execution, it will finish its execution673

no later than t + Cj (< tr + Cj). Therefore, as long as �k ≥674

maxτj∈LP(τk) Cj holds, F1′ holds.675

(Case F1b): If a batch (denoted by B), including a lower-676

priority job of τj starts its execution at t (< tr), it will finish677

its execution no later than t + CB (< tr + CB). By line 5 of678

Algorithm 1, t+CB ≤ tr+�k holds, meaning that F1′ holds.679

(Case F1c): If a lower-priority job of τj starts its execution680

at t (≥ tr) although Jk is not finished until t, it violates line 5681

of Algorithm 2.682

(Case F1d): If a batch (denoted by B), including a lower-683

priority job of τj starts its execution at t (≥ tr), we consider684

two subcases: (i) B’s priority is lower than τk, and ii)685

otherwise. Recall that B has the priority of the highest-priority686

task in B; so, the entire execution of B has equal or higher687

priority than τk. Therefore, i) violates line 5 of Algorithm 2,688

and ii) does not violate F1 since it is regarded as an execution689

whose priority is not lower than τk.690

Second, we check whether F2 is satisfied with four cases.691

(Case F2a): We consider there is no batch execution in692

[tr, tf ). Similar to the proof of Lemma 1 for NPFP, the693

amount of execution of τk and its higher-priority tasks in [tr+694

�k, tf ) is maximized when all the jobs of τk and its higher-695

priority tasks are released at tr. In this worst-case situation,696

F2 trivially holds.697

(Case F2b): We consider a batch (denoted by B) starts its698

execution at t (< tr) (and therefore B cannot include τk). Then,699

the batch execution will finish its execution no later than t+CB700

(< tr + CB). By line 5 of Algorithm 1, t + CB ≤ tr + �k701

holds, meaning that the batch execution cannot contribute to702

higher-priority execution in [tr +�k, tf ).703

(Case F2c): We consider a batch (denoted by B) that does704

not include τk starts its execution at t (≥ tr). Then, the705

WCET of B is no larger than the sum of the corresponding706

individual WCET (i.e., CB ≤
∑

τh∈B Ch) by P2. This is707

equivalent to reducing the execution time of some tasks708

{τh ∈ B}, such that CB =
∑

τh∈B C′h, where C′h denotes the709

reduced execution time of τh. Therefore, the batch execution710

does not compromise the bounded higher-priority execution711

of Case F2a. Note that, the existence of τj belonging to both712

B and LP(τk) may compromise the bounded higher-priority713

execution due to additional interference contribution by a714

lower-priority task τj; however, NPFPB disallows to execute715

a batch that belongs to such τj.716

(Case F2d): We consider a batch (denoted by B) that717

includes τk starts its execution at t (≥ tr). Different from718

Case F2c, it is possible for a task whose priority is lower719

than τk to be included in B due to τk ∈ B. Recall that B has720

the priority of the highest-priority task in B; so, the entire721

execution of B has equal or higher priority than τk. Since722

NPFPB is work-conserving nonpreemptive scheduling, the723

execution of B finishes no later than t+CB, which is no later724

than rk(t)− Tk + Rk = tr + Rk by line 3 of Algorithm 1. We725

consider two cases: 1) tf = tr +Rk and 2) tf < tr +Rk. In the726

first case, if we apply F1, the amount of execution of the job 727

of τk and jobs of its higher-priority task (by either individual 728

execution or batch execution B) in [tr + �k, tf ) is upper- 729

bounded by Rk−�k. Therefore, violation of F2 contradicts (2) 730

in Theorem 1. In the second case, the amount should be strictly 731

less than Ck +∑
τh∈HP(τk)

�([tf − tr]/Th)	 · Ch; otherwise, (2) 732

should hold for a value (denoted by R′k = tf−tr) that is smaller 733

than Rk. 734

One may wonder whether the proof for Case F2d correctly 735

considers multiple jobs of τh ∈ B \ {τk} released after t. Since 736

B starts at t and finishes at tf , the job of a higher-priority 737

task τh released in (t, tf ) will start at tf or later, which does 738

not belong to [tr + �k, tf ), the interval of interest of F2. 739

Instead, the schedulability of the job of a higher-priority task 740

τh released in (t, tf ) will be checked by Algorithm 1 when 741

τk = τh; if deemed unschedulable, the corresponding B cannot 742

be scheduled. Therefore, the proof is correct. 743

As shown in line 5 of Algorithm 1, a larger �k implies 744

a higher chance for the algorithm to allow the execution of 745

given B. Therefore, we will use the largest {�∗k} associated 746

with Theorem 1; we already explained how to calculate {�∗k} 747

in Section IV-B. Finally, we present the schedulability analysis 748

of NPFPB in the following theorem. 749

Theorem 3: τ is schedulable by NPFPB associated with 750

{�∗k} (i.e., the largest {�k} that makes τ schedulable by 751

Theorem 1), if �∗k ≥ maxτj∈LP(τk) Cj holds for every τk ∈ τ . 752

Proof: The theorem holds by Theorems 1 and 2. 753

Run-Time Complexity: At each t, which Algorithm 2 754

focuses on, we test the O(log(|τ(t)|)) batch sets by STOB, 755

each of which requires O(|τ |) time-complexity. Therefore, the 756

total run-time complexity is O(|τ | · log(|τ(t)|), which is much 757

lower than O(|τ |2 · |τ(t)|), the complexity of the existing study 758

for scheduling multiple MOT tasks in [3]. 759

VI. NPFPBI : EXPLOITING IDLING FOR BATCHING 760

Although NPFPB efficiently finds and executes a set of 761

active jobs as a batch, it inherently cannot address the situation 762

where there is only one active job at t. Since, the situation 763

cannot be addressed by any work-conserving scheduling, we 764

need to develop a run-time idling mechanism that accelerates 765

batch execution to address C1 and C3 in Section I. To this 766

end, we develop NPFPBI (NPFPB with idling) with given 767

{�k}. Based on NPFPB, NPFPBI achieves the same goals: 768

1) maximizing the batch execution with minimum run-time 769

overhead, while 2) preserving the schedulability guaranteed by 770

Lemma 1. 771

Our design principles of the run-time idling mechanism of 772

NPFPBI are as follows. 773

1) To prevent idling from compromising F2, any idling 774

cannot be overlapped with any [tr +�i, tf ) for any job 775

of τi released and finished at tr and tf , respectively. 776

2) Between the execution of a batch set at t and that of 777

the same batch set at t′ (> t), the latter cannot help 778

any job’s timely execution. Therefore, we restrict time 779

instant candidates at which a batch set starts its execution 780

after idling, to the time instants at which any job (to be 781

executed as a batch) is released. 782
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Fig. 5. Example scenario of the idling mechanism of NPFPBI in Algorithm 3. (a) Initialization (line 1). (b) Finding candidate tasks (lines 2–5). (c) Finding
the largest schedulable batch set (lines 6 and 7).

Algorithm 3 Idling Mechanism of NPFPBI

1: Set t′ ← rk(t)− Tk +�k, and τ ′(t)← ∅
2: for τi ∈ τ \ {τk} sorted by ri(t) do
3: if ri(t) ≤ t′ then set τ ′(t)← τ ′(t) ∪ {τi}, and

t′ ← min
(
t′, ri(t)+�i

)

4: else Exit the loop.
5: end for
6: Let τ ′n(t) denote the task with the nth earliest next job release

time after t among tasks in τ ′(t); r′n(t) denote the next job
release time of τ ′n(t) after t; and B′(n) denote {τ ′i (t)}ni=1, where
1 ≤ n ≤ |τ ′(t)|.

7: Find the largest batch set B′(x) ∪ {τk} for 1 ≤ x ≤ |τ ′(t)| such
that STOB

(
r′x(t),B′(x) ∪ {τk},B′(x) ∪ {τk}

)
in Algorithm 1

returns schedulable, using the binary search; if such B′(x)
exists, set tIDLE

end ← r′x(t) where tIDLE
end denotes the latest idling

time instant, and return.
8: Execute the active job of τk at t, and return.

3) Once we determine to perform batch execution at t after783

idling, we include all the active jobs to the batch set to784

be executed, which eases the satisfaction of F1 and F2785

in the presence of idling.786

Algorithm 3 presents the run-time idling mechanism of787

NPFPBI at t, at which there is only one active job of τk788

while the computing system is ready to work. Lines 1–5 find789

τ ′(t) ⊂ τ , a set of candidate tasks to be executed with τk as790

a batch after idling. We aim at calculating t′(> t), which is,791

the latest time instant at which all of the next released jobs in792

τ ′(t) and the active job of τk can idle without violating F1. t′ is793

determined by the earlier time instant between rk(t)−Tk+�k794

and the earliest one among ri(t) + �i for every τi ∈ τ ′(t).795

Then, rk(t) − Tk + �k ≤ t′ and ri(t) + �i ≤ t′ hold for τk796

and every τi ∈ τ ′(t), respectively, which helps to achieve the797

first design principle by disallowing any job in the batch set798

to start its execution after the interval of interest of F2 for799

the job. In line 6, we define τ ′n(t) as the task with the nth
800

earliest next job release time after t among tasks in τ ′(t),801

r′n(t) as the next job release time of τ ′n(t) after t, and B′(n)802

as {τ ′i (t)}ni=1.4 In line 7, we find the largest x such that the803

execution of a batch set of B′(x) ∪ {τk} does not compromise804

the schedulability of all the other jobs. To this end, we test805

STOB(r′x(t),B′(x)∪{τk},B′(x)∪{τk}) in Algorithm 1, meaning806

that we check whether a batch set of B′(x)∪ {τk} can start its807

batch execution at r′x(t) at which jobs of B′(x) ∪ {τk} are the808

only active jobs; we will explain why it is possible to apply809

the binary search. If such B′(x) ∪ {τk} exists, we reserve that810

4For tasks with the same next job release time, a higher priority implies
an earlier next job release time.

a set of jobs invoked by tasks in B′(x)∪ {τk} will be executed 811

at r′x(t) by setting tIDLE
end ← r′x(t). Otherwise, we execute the 812

single active job at t immediately (in line 8), which is the same 813

as NPFP. 814

Fig. 5 presents an example scenario at the current time 815

instant t, at which an idling decision can be made with τk under 816

Algorithm 3. As an initialization, t′ and τ ′(t) are set to rk(t)− 817

Tk+�k and ∅, respectively, [line 1 of Algorithm 3, illustrated 818

in Fig. 5(a)]. Then, two tasks τa and τb will be released at t < 819

ra(t) and t < rb(t), and t′ and τ ′(t) are updated to ra(t)+�a 820

and τ ′(t) = {τa, τb}, respectively, [lines 2–5 of Algorithm 3, 821

illustrated in Fig. 5(b)]. Finally, B′(2) ∪ {τk} is determined 822

as a schedulable batch set according to STOB(r′2(t),B′(2) ∪ 823

{τk},B′(2) ∪ {τk}), and then tIDLE
end is set to r′2(t) [lines 6–7 of 824

Algorithm 3 illustrated in Fig. 5(c)]. 825

We present why it is possible to apply binary search in line 7 826

of Algorithm 3. 827

Lemma 3: Recall r′n(t) and B′(n) defined in line 6 of 828

Algorithm 3. If STOB(r′n+1(t),B′(n+1) ∪ {τk},B′(n+1) ∪ 829

{τk}) in Algorithm 1 returns schedulable, STOB(r′n(t),B′(n)∪ 830

{τk},B′(n) ∪ {τk}) also returns schedulable. 831

Proof: If we apply CB(n) ≤ CB(n+1) (from B(n) ⊂ B(n+1) 832

and P3 in Section III) and r′n(t) ≤ r′n+1(t) to the opposite 833

conditions in lines 3 and 5 of Algorithm 1, the proof is similar 834

to that of Lemma 2. 835

Including the idling mechanism in Algorithm 3, we present 836

the entire NPFPBI scheduling algorithm in Algorithm 4; note 837

that, tIDLE
end is set to −∞ when the system starts. In the case of 838

t < tIDLE
end (lines 1 and 2), there should not be any execution, 839

since the idling mechanism determines that all active jobs 840

will be executed at tIDLE
end , not at the current time instant t. 841

In the case of t = tIDLE
end (lines 3 and 4), we start to execute 842

all the active jobs as batch execution immediately, which is 843

determined by the idling mechanism. In the case of t > tIDLE
end 844

(lines 5 and 6), we consider two cases. First, if there is only 845

one active job when the computing system is ready to work, 846

we perform Algorithm 3. Second, if there is more than one 847

active job when the computing system is ready to work, we 848

perform Algorithm 2. 849

Then, we prove that NPADAPT subsumes NPFPBI as 850

follows. 851

Theorem 4: For τ with {�k ≥ maxτj∈LP(τk) Cj} that is 852

deemed schedulable by Theorem 1, NPFPBI associated with 853

{�k} belongs to NPADAPT associated with {�k}. 854

Proof: Suppose that, a job of τk scheduled by NPFPBI
855

associated with {�k} (denoted by Jk) is released and finished 856

at tr and tf , respectively. We prove that Jk always satisfies F1 857

and F2 of Definition 1, which proves the theorem. 858
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Algorithm 4 NPFPBI Scheduling Algorithm
At t, at which a job is finished while there is at least one active job,
or at which at least one job is released while the system is idle,

1: if t < tIDLE
end then

2: Any job cannot start its execution.
3: else if t = tIDLE

end then
4: Execute all the active jobs at t as a batch.
5: else if t > tIDLE

end then
6: if there is only one active job at t then Perform

Algorithm 3.
7: else Perform Algorithm 2.
8: end if

First, we check whether F1 is satisfied. Since, we add the859

run-time idling mechanism to NPFPB, we focus on proving860

that the idling mechanism does not compromise F1. By the861

selection of τ ′(t) (in lines 1–5 of Algorithm 3) and the862

selection of the time instant at which a batch execution starts863

after idling (in line 7 of Algorithm 3), any batch execution864

after idling cannot start its execution in [tr +�k, tf ]. Also, a865

batch execution after idling can be performed only if line 5866

of Algorithm 1 guarantees that the execution finishes before867

tr +�k. This proves the satisfaction of F1.868

Second, we check whether F2 is satisfied. Since, the idling869

mechanism complies with F1, we can check F2 when a870

batch execution starts. This is achieved by calling Algorithm 1871

by line 7 of Algorithm 3, which corresponds to line 3 of872

Algorithm 2 for NPFPB. Therefore, the remaining proof is873

similar to that for NPFPB in Theorem 2.874

Finally, we present the schedulability analysis of NPFPBI
875

in the following theorem.876

Theorem 5: τ is schedulable by NPFPBI associated with877

{�∗k} (i.e., the largest {�k} that makes τ schedulable by878

Theorem 1), if �∗k ≥ maxτj∈LP(τk) Cj holds for every τk ∈ τ .879

Proof: The theorem holds by Theorems 1 and 4.880

Run Time-Complexity: At each t, which Algorithm 3881

focuses on lines 1–5 check at most |τ | tasks, and lines 6–8882

test the O(log(|τ(t)|)) batch sets by STOB, each of which883

requires O(|τ |) time complexity; hence, the total run-time884

complexity of Algorithm 3 is O(|τ | · log(|τ(t)|). By the run-885

time complexity of Algorithms 2 and 3, that of Algorithm 4 is886

also O(|τ |·log(|τ(t)|), which is much lower than O(|τ |2 ·|τ(t)|)887

for the existing study [3].888

VII. EVALUATION889

A. Experiment Setup890

We consider four different computing systems. The first one891

is equipped with Intel Xeon Silver 4215R CPUs @ 3.20 GHz,892

251.5 GB RAM, and a Tesla V100 GPU. We also consider893

three GPU-enabled embedded boards: 1) NVIDIA Jetson TX2;894

2) Xavier; and 3) Orin. The MOT execution pipeline and895

scheduler run on Python and Pytorch, and the model precision896

is set to FP16; on the same experiment setting in Fig. 1, we897

observed nearly the same tracking accuracy with FP32 owing898

to the mixed precision training. As the object detector, we899

consider the YOLO series [13], [20] trained with the COCO900

Dataset [24]. We use SORT [6] as the object tracker of the901

two-stage methods. The performance was evaluated using the902

Waymo Open Dataset [25], the autonomous driving data set 903

collected by autonomous driving cars. For the evaluation, we 904

use the measured WCETs in Fig. 8. 905

B. Experiment Results 906

In this section, we demonstrate the effectiveness of the 907

proposed run-time batching and idling mechanisms in improv- 908

ing the tracking accuracy by comparing the following three 909

approaches that operate on the architecture of Batch-MOT. 910

Note that, we apply the rate monotonic (RM) [26] to FP, for 911

all the approaches in this section. 912

1) NPFP in Section IV-A, in which all the MOT tasks 913

perform individual execution with down-scaled images. 914

2) NPFPB in Section V, in which down-scaled and full- 915

size images are processed for the individual and batch 916

execution, respectively. 917

3) NPFPBI in Section VI, in which down-scaled and full- 918

size images are processed for the individual and batch 919

execution, respectively. 920

We also compare our approaches with the only existing 921

study that addresses G1 and G2 for multiple MOT tasks as 922

follows. 923

1) RT-MOT, a flexible MOT execution scheduling frame- 924

work on the architecture proposed in [3] with the YOLO 925

series and DeepSORT [5] as its detector and tracker. 926

For all the target approaches, we provide a run-time option 927

called the individual full-size execution policy (IFP). Under 928

IFP, each target approach performs a full-size execution at t 929

only if: i) an MOT task τi is active alone at t; ii) the full-size 930

execution (even with its WCET) of the only active task at t 931

can be completed by tnext (the earliest future release of any 932

task later than t), i.e., t+ Cfull
i ≤ tnext, where Cfull

i is the 933

WCET for the full-size execution of the task; and iii) if the 934

target approach is NPFPBI , the system is not idle at t under 935

NPFPBI , i.e., t < tIDLE
end in Algorithm 3. Conditions i) and ii) 936

ensure IFP improves accuracy through the full-size execution 937

without compromising timing guarantees of the other tasks. 938

Condition iii) ensures IFP can be incorporated into NPFPBI
939

without conflicting with its idling mechanism. Note that, RT- 940

MOT inherently employs IFP. 941

While the existing DNN-based MOD techniques 942

(e.g., [2], [10], and [11]) could be considered for comparison, 943

adapting them for the MOT systems would require new 944

contributions. For example, extending DNN-SAM [2] would 945

need alignment in tracking algorithm, ROI identification, and 946

other features of RT-MOT for fairness. Although DNN-SAM 947

is optimized for accuracy within the ROI, it requires two 948

separate DNN inferences: one for the ROI and another for 949

outside areas, hindering high overall accuracy. Executing two 950

DNN inferences not only doubles the computational tasks of 951

pre/postprocessing [as shown in i) and iii) of Fig. 1], but also 952

limits the benefits of increased GPU utilization from batch 953

execution. 954

Since, the approaches share the same offline schedulability 955

test in Lemma 1, we compare their tracking accuracy of the 956

task sets whose schedulability is guaranteed by the test. We 957

use multiple object tracking accuracy (MOTA) [27], a primary 958

metric to evaluate the tracking accuracy; tracking accuracy 959
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Fig. 6. Comparison of different approaches on YOLOX (a), (b), and (c), and different DNN models (d).

under MOTA is derived by counting miss detection, false960

detection, and miss tracking; we obtained similar experimental961

results using IDF-1 [27], another widely recognized metric for962

the tracking accuracy. In addition, to evaluate the effectiveness963

of resource utilization of each approach, we measure the ratio964

of the number of full-size image executions to the total number965

of the MOT executions (referred to as the full-size execution966

ratio).967

Fig. 6(a) and (b) compare the tracking accuracy and full-size968

execution ratio of the four approaches using YOLOX on the969

Tesla V100 and Jetson Xavier. Similar results were observed970

for the Jetson TX2 and Orin (also with YOLOv5 [20]). We971

consider four sets of MOT tasks [periods shown on the x-972

axis in Fig. 6(a) and (b)] that pass the test in Lemma 1, but973

schedulability is not guaranteed when all the tasks use full-size974

input images. Note that, the two computing systems provide975

different WCETs, resulting in different task periods in each set.976

The bar and line in each graph represent the average MOTA977

score and full-size execution ratio, respectively. The red dotted978

line indicates the maximum achievable tracking accuracy.979

As shown in Fig. 6(a) and (b), a higher full-size execution980

ratio leads to higher accuracy. The accuracy of RT-MOT shows981

a significant decrease when the full-size execution ratio is982

low as observed in the third and fourth task sets of Fig. 6(a)983

and (b). This decline is attributed to the unique approach of984

RT-MOT, where it detects objects only in a partial region985

(i.e., the region of interest) of the input image when the full-986

size execution cannot be performed. In contrast, NPFPB and987

NPFPBI consider the down-scaled entire region, making them988

more resilient to a low full-size execution ratio. As the number989

of tasks increases, the accuracy of RT-MOT dramatically990

decreases for both the computing systems. However, NPFPB
991

and NPFPBI maintain high accuracy by securing the chance992

of batch execution. In the case of a set of tasks with equal993

periods (e.g., the fourth task set), NPFPB and NPFPBI
994

achieve maximum accuracy owing to the high chance of995

batch execution. The IFP approach contributes significantly to996

improving accuracy in both the computing systems.997

Fig. 6(c) presents the run-time overhead of the schedul-998

ing algorithm for NPFPBI and RT-MOT. As discussed in999

Section VI, the run-time complexity of NPFPBI is O(|τ | ·1000

log(|τ(t)|), which is much lower than O(|τ |2 · |τ(t)|), the com-1001

plexity of RT-MOT. As the number of MOT tasks increases,1002

the difference between the run-time scheduling overhead of1003

NPFPBI and RT-MOT becomes larger. For example, the1004

run-time scheduling overhead of RT-MOT is about 12 times1005

(2.4/0.2) and 9.6 times (6.7/0.7) larger than that of NPFPBI
1006
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Fig. 7. CPU/GPU parallel execution example. (a) Varying WCET with the
different number of objects on Jetson Orin. (b) Varying association WCET.

for a set of 12 MOT tasks on the two considered systems, 1007

respectively. 1008

Fig. 6(d) shows the variation in average DNN inference 1009

time (excluding pre/post processing) based on the number of 1010

input images for batch execution, using different DNN models 1011

and computing systems. YOLOX demonstrates GPU resource 1012

saturation with more than the ten input images on Tesla V100 1013

and two on Jetson Xavier, highlighting the effectiveness of 1014

batch execution in reducing inference time; similar trends 1015

were observed for YOLOv5. In contrast, Faster-RCNN [21] 1016

saturates with a single input image due to its two-stage design, 1017

which splits computation into region proposal and classifica- 1018

tion, resulting in higher serialization during classification as 1019

noted in [4]. 1020

VIII. DISCUSSION 1021

CPU/GPU Parallelism: Contrary to Batch-MOT’s assump- 1022

tion, consider CPU/GPU parallel execution where, at time t, 1023

four associations of B(4) are executed in parallel on multiple 1024

CPUs, while the another task τk is performed individually 1025

on the GPU as shown in Fig. 7(a). If the WCET of B(4)’s 1026

association (e.g., 12.9 ms) is less than the best case execution 1027

time (BCET) of τk (e.g., 34.8 ms), then τk’s association can 1028

be executed nonpreemptively, consistent with Batch-MOT’s 1029

assumption. Our experiments confirmed that this condition 1030

always holds. Then, we conducted the accuracy evaluation, 1031

including CPU/GPU parallel execution on Jetson Orin without 1032

modifying the Batch-MOT’s offline tests. The experiments 1033

demonstrated that the CPU/GPU parallel execution did not 1034

incur any deadline misses and resulted in a marginal accuracy 1035

improvement (up to 0.81%) compared to the case without 1036

CPU/GPU parallel execution (see Figure S.4(a) in supple- 1037

ment). The reason for the marginal improvement is that, 1038

as shown in Figure S.4(a), the average case execution time 1039

(ACET) of the association (e.g., 9.7 ms) is much smaller than 1040

that of detection, so the reduction in response time achieved 1041

by CPU/GPU parallel execution is minimal. 1042



12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

1 1 3 5

Ex
ec

ut
io

n 
tim

e 
(m

s)

672256

Batch size

= image size

Q1
Q3

Q1-1.5 (Q1-Q3)

Q3+1.5 (Q1-Q3)

Outlier: WCET

1 1 3 5
Batch size

672256 = image size

1 1 3 5

Ex
ec

ut
io

n 
tim

e 
(m

s)

672256

Batch size

= image size

1 1 2

Ex
ec

ut
io

n 
tim

e 
( m

s)

672256

Batch size

= image size

For real driving scenarios

Measured WCET
considering all
sensors and actuators

(a) (b) (c) (d)

Fig. 8. Execution time measurements on Waymo Dataset (a)–(c) and our
real-world driving scenarios (d).

Flexible WCET: Association compares objects detected in1043

the t-th frame with those in the (t−1)th frame, associating the1044

most similar pairs. Therefore, the WCET of association in the1045

t-th frame depends strictly on the number of detected objects1046

as shown in Fig. 7(b). If Batch-MOT splits an MOT task1047

into detection and association subtasks and allows scheduling1048

decisions between them, the WCET of the association subtask1049

(measured offline based on the number of objects) can be1050

dynamically determined by the number of objects detected in1051

the detection subtask. This approach would require additional1052

alters to the Batch-MOT’s current schedulability tests.1053

WCET Measurement: Fig. 8 shows the execution time1054

for the down-scaled (256×256) images and batch execution1055

of full-size (672×672) images for up to five MOT tasks1056

using YOLOX on the four computing systems evaluated in1057

Section VII. Measurements are with 1000 iterations to obtain1058

WCET [e.g., Outlier: WCET in Fig. 8(a)]; more details are1059

in Figure S.2 and Table S.2 in the supplement. The Waymo1060

Dataset was used for Tesla V100, Jetson Xavier, and Orin,1061

while real driving scenario videos were used for Jetson1062

TX2. Fig. 8(d) considers all the communication overheads,1063

including sensors (e.g., camera and LiDAR) and actuators.1064

Note that, Batch-MOT does not predict execution time at run-1065

time but uses offline WCET. Recent studies on offline WCET1066

of DNN execution [2], [3], [4], [11], [18] are widely accepted.1067

It is generally reasonable to assume an upper bound with1068

high confidence through intensive measurement plus a safety1069

margin.1070

IX. CONCLUSION1071

In this article, we proposed a novel system design, Batch-1072

MOT, that enables batch execution of multiple MOT tasks to1073

maximize the tracking accuracy while providing timing guar-1074

antees. Using a new scheduling framework, NPADAPT, which1075

allows run-time execution deviations with timing guarantees,1076

we developed a run-time batching mechanism, NPFPB, and1077

a run-time idling mechanism, NPFPBI . These mechanisms1078

efficiently find and execute MOT tasks as a batch without1079

compromising timely execution. Experiments demonstrated1080

that Batch-MOT improves the tracking accuracy over the1081

state-of-the-art real-time MOT systems while ensuring timing1082

guarantees.1083

REFERENCES1084

[1] M. Yang et al., “Re-thinking CNN frameworks for time-sensitive1085

autonomous-driving applications: Addressing an industrial challenge,”1086

in Proc. IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2019,1087

pp. 305–317.1088

[2] W. Kang et al., “DNN-SAM: Split-and-merge DNN execution for real- 1089

time object detection,” in Proc. 28th IEEE Real-Time Embed. Technol. 1090

Appl. Symp. (RTAS), 2022, pp. 160–172. 1091

[3] D. Kang et al., “RT-MOT: Confidence-aware real-time scheduling 1092

framework for multi-object tracking tasks,” in Proc. IEEE Real-Time 1093

Syst. Symp. (RTSS), 2022, pp. 318–330. 1094

[4] S. Liu et al., “Self-cueing real-time attention scheduling in criticality- 1095

aware visual machine perception,” in Proc. IEEE Real Time Technol. 1096

Appl. Symp. (RTAS), 2022, pp. 173–186. 1097

[5] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime 1098

tracking with a deep association metric,” in Proc. IEEE Int. Conf. Image 1099

Process. (ICIP), 2017, pp. 3645–3649. 1100

[6] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online 1101

and realtime tracking,” in Proc. IEEE Int. Conf. Image Process. (ICIP), 1102

2016, pp. 3464–3468. 1103

[7] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the 1104

fairness of detection and re-identification in multiple object tracking,” 1105

Int. J. Comput. Vis., vol. 129, no. 11, pp. 3069–3087, 2021. 1106

[8] P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “TransMOT: 1107

Spatial-temporal graph transformer for multiple object tracking,” 2021, 1108

arXiv:2104.00194. 1109

[9] J. Pang et al., “Quasi-dense similarity learning for multiple object 1110

tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 1111

(CVPR), 2021, pp. 164–173. 1112

[10] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming 1113

and scheduling for GPU-accelerated real-time DNN workloads,” in 1114

Proc. IEEE Real-Time Embed. Technol. Appl. Symp. (RTAS), 2018, 1115

pp. 190–201. 1116

[11] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for 1117

multi-DNN real-time inference,” in Proc. IEEE Real-Time Syst. Symp. 1118

(RTSS), 2019, pp. 392–405. 1119

[12] “NVIDIA Orin developer kit.” Accessed: Mar. 27, 2023. [Online]. 1120

Available: https://www.nvidia.com/ko-kr/autonomous-machines/ 1121

embedded-systems/jetson-orin/ 1122

[13] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO 1123

series in 2021,” 2021, arXiv:2107.08430. 1124

[14] “NVIDIA xavier developer kit.” Accessed: Jul. 9, 2018. [Online]. 1125

Available: https://www.nvidia.com/en-us/autonomous-machines/ 1126

embedded-systems/jetson-agx-xavier 1127

[15] “Supplement.” Accessed: Feb. 8, 2024. [Online]. Available: https:// 1128

www.bit.ly/24EMSOFT-Batch-MOT-supplement 1129

[16] A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware 3D 1130

object detection,” in Proc. IEEE Int. Conf. Embed. Real-Time Comput. 1131

Syst. Appl. (RTCSA), 2022, pp. 31–40. 1132

[17] S. Heo, S. Jeong, and H. Kim, “RTScale: Sensitivity-aware adaptive 1133

image scaling for real-time object detection,” in Proc. Leibniz Int. Proc. 1134

Inform. (LIPIcs), vol. 231, 2022, pp. 1–22. 1135

[18] S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph strategy 1136

toward real-time DNN inference and training,” in Proc. IEEE Real-Time 1137

Embed. Technol. Appl. Symp. (RTAS), 2020, pp. 15–29. 1138

[19] S. Liu et al., “On removing algorithmic priority inversion from mission- 1139

critical machine inference pipelines,” in Proc. IEEE Real-Time Syst. 1140

Symp. (RTSS), 2020, pp. 319–332. 1141

[20] “YOLOv5.” Accessed: Nov. 23, 2022. [Online]. Available: [Online]. 1142

Available: https://github.com/ultralytics/yolov5 1143

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real- 1144

time object detection with region proposal networks,” in Proc. Adv. 1145

Neural Inf. Process. Syst., vol. 28, 2015, pp. 1–9. 1146

[22] L. George, N. Rivierre, and M. Spuri, “Preemptive and 1147

non-preemptive real-time uniprocessor scheduling,” INRIA, 1148

Paris, France, Rep. RR-2966, 1996. [Online]. Available: 1149

https://who.rocq.inria.fr/Laurent.George/#Publication 1150

[23] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under fixed 1151

priority scheduling with fixed preemption points,” in Proc. IEEE Int. 1152

Conf. Embed. Real-Time Comput. Syst. Appl. (RTCSA), 2010, pp. 71–80. 1153

[24] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in 1154

Proc. 13th Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 740–755. 1155

[25] P. Sun et al., “Scalability in perception for autonomous driving: Waymo 1156

open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 1157

(CVPR), 2020, pp. 2446–2454. 1158

[26] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling 1159

algorithm: Exact characterization and average case behavior,” in Proc. 1160

IEEE Real-Time Syst. Symp. (RTSS), 1989, pp. 166–171. 1161

[27] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance 1162

measures and a data set for multi-target, multi-camera tracking,” in Proc. 1163

Eur. Conf. Comput. Vis. Workshops (ECCVW), 2016, pp. 17–35. 1164



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


