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Abstract—Micro-controller units (MCUs) implement the de1

facto interface between the physical and digital worlds. As2

a consequence, they appear in a variety of sensing/actuation3

applications from smart personal spaces to complex industrial4

control systems and safety-critical medical equipment. While5

many of these devices perform safety- and time-critical tasks,6

they often lack support for security features compatible with7

their importance to overall system functions. This lack of8

architectural support leaves them vulnerable to run-time attacks9

that can remotely alter their intended behavior, with potentially10

catastrophic consequences. In particular, we note that, MCU11

software often includes untrusted third-party libraries (some of12

them closed-source) that are blindly used within MCU programs,13

without proper isolation from the rest of the system. In turn, a14

single vulnerability (or intentional backdoor) in one such third-15

party software can often compromise the entire MCU software16

state. In this article, we tackle this problem by proposing,17

demonstrating security, and formally verifying the implementa-18

tion of UCCA: an Untrusted Code Compartment Architecture.19

UCCA provides flexible hardware-enforced isolation of untrusted20

code sections (e.g., third-party software modules) in resource-21

constrained and time-critical MCUs. To demonstrate UCCA’s22

practicality, we implement an open-source version of the design23

on a real resource-constrained MCU: the well-known TI MSP430.24

Our evaluation shows that UCCA incurs little overhead and is25

affordable even to lowest-end MCUs, requiring significantly less26

overhead and assumptions than the prior related work.27

Index Terms—Compartmentalization, embedded systems,28

hardware security, memory protection.29

I. INTRODUCTION30

EMBEDDED systems have become critical components31

of many applications, including cyber–physical systems32

(CPSs) and the Internet of Things (IoT). Normally, these33

devices feature one or more resource-constrained Micro-34

Controller Units (MCUs) responsible for interfacing with the35

physical world (i.e., sensing and actuation). MCUs are often36

designed to minimize cost, size, and energy consumption.37

As such, they usually run software in place (physically from38

program memory) and lack virtual memory and other forms39

of isolation commonly found in higher-end devices.40
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Due to their budgetary limitations, MCUs are often left 41

vulnerable to run-time exploits [1], [2], [3], [4], [5] (for 42

instance, triggered by buffer overflow vulnerabilities [6], [7]). 43

Run-time attacks allow an adversary to remotely alter the 44

intended behavior of a program during its execution. Without 45

proper isolation, a single run-time vulnerability could give an 46

adversary full control over the device [8], [9]. This can be 47

used to spoof sensor data, bypass safety checks, ignore remote 48

commands, and ignore scheduled task deadlines. For instance, 49

a compromised patient-monitoring system implemented using 50

MCUs could fail to alert medical personnel in case of an 51

emergency [10] or cause a denial of service [11]. Similarly, 52

vulnerable industrial control sensors could be used to run 53

machines at unsafe speeds and damage equipment (e.g., as in 54

the Stuxnet attack [12]). 55

Some MCUs (e.g., in the ARM Cortex-M family [13]) 56

support rudimentary isolation to mitigate run-time attacks. 57

Privilege levels [14], [15] allow the MCU to run software as 58

either privileged or unprivileged. The MCU also restricts how 59

the privileged code can be called. This enables the isolation 60

of privileged code from unprivileged code. Thus, unprivileged 61

run-time vulnerabilities cannot access the privileged function- 62

ality. While useful, this mitigation is limited as unprivileged 63

vulnerabilities can still compromise all unprivileged code. 64

Similarly, privileged vulnerabilities can reach all privileged 65

and unprivileged software. Thus, vulnerabilities within a priv- 66

ileged function still result in a full system compromise. 67

Memory Protection Units (MPUs) allow for isolation 68

between the privileged and unprivileged layers and further 69

restrictions within each layer, by enforcing read, write, and 70

execute permissions to a fixed number of memory segments. 71

This allows more restricted compartments within the unprivi- 72

leged layer, however, MPUs are configurable by the privileged 73

software. As such, they cannot restrict privileged code, as any 74

compromised privileged code could misconfigure the MPU. 75

To make matters worse, the privileged layer must implement 76

several low-level system functions, including all Interrupt 77

Service Routines (ISRs) and respective drivers [15], [16], 78

Direct Memory Access (DMA) management [17], real-time 79

task scheduling [18], and more. This contributes to a large and 80

complex Trusted Computing Base (TCB) that often relies on 81

multiple untrusted third-party software modules and libraries. 82

MPU-based protection often also requires disabling interrupts 83

for unprivileged software creating a conflict between real-time 84

requirements and security for the MCU software. 85

Motivated by this pressing issue, we propose, design, 86

implement, and formally verify UCCA: an Untrusted Code 87
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Compartment Architecture. UCCA is a lightweight hardware-88

based memory isolation method that enables the definition89

of arbitrary-sized memory segments for untrusted code (e.g.,90

third-party software) at device loading time (i.e., whenever91

physically programmed via USB, J-TAG, etc.). At run-time,92

UCCA monitors CPU signals to actively prevent malicious93

behavior within the untrusted sections from escalating to the94

remainder of the MCU.95

Unlike current bare-metal approaches (e.g., MPUs) that96

isolate trusted functionality from the rest of the software,97

UCCA instead isolates untrusted code. Since, run-time attacks98

typically originate from well-known code sections (e.g., I/O99

functions or third-party libraries), untrusted code sections can100

be identified predeployment. Through isolation, UCCA limits101

the reach of exploits to their own context. Attempts to102

obtain similar guarantees with existing hardware lead to large103

memory and run-time overheads, limits its applicability to104

unprivileged code only, and may require disabling interrupts105

preventing asynchronous event handling (see Section III-C for106

details). In contrast, UCCA can isolate untrusted privileged107

code (such as drivers) and does not require disabling interrupts108

to enforce isolation. UCCA also enables finer-grained isolation109

that can be used jointly with existing hardware to further110

isolate unprivileged applications from their own untrusted111

code sections and third-party libraries. UCCA is designed as112

a hardware monitor that runs independently and in parallel113

with the MCU core. Therefore, no software (including privi-114

leged code) can misconfigure UCCA’s protections at run-time.115

Furthermore, UCCA incurs little execution time overhead (for116

marshaling data into isolated compartments) and maintains117

support for interrupts. In sum, this article’s anticipated contri-118

butions are threefold:119

1) Proposal and design of a lightweight hardware-based120

architecture for isolation of untrusted code sections in121

resource-constrained MCUs. This prevents the escalation122

of run-time vulnerabilities to the entire system. UCCA123

includes support for the isolation of the untrusted inter-124

rupts and untrusted privileged code sections.125

2) Implementation and formal verification of UCCA atop an126

open-source version [19] of the well-known TI MSP430127

MCU. UCCA’s prototype is publicly available at [20].128

3) Evaluation of UCCA prototype and comparison to129

related approaches [21], [22], [23] in terms of hardware130

overhead. Along with UCCA’s open-source release, we131

implement sample attack programs, that show how their132

escalation is detected and prevented by UCCA.133

II. BACKGROUND134

A. Scope of MCUs135

This work focuses on resource-constrained embedded136

MCUs. These are single-core devices, executing instructions137

physically from program memory (i.e., at “bare metal”), and138

lacking a Memory Management Unit (MMU) to support vir-139

tual memory. We target these devices because an architecture140

that is simple and cost-effective enough for the lowest-cost141

MCUs is adaptable for higher-end devices with higher hard-142

ware budgets (whereas the reverse is often more challenging).143

In addition, the relative simplicity of these devices enables 144

us to reason about them formally and verify UCCA security 145

properties. With these premises in mind, we implement our 146

UCCA prototype atop the TI MSP430; a well-known low-end 147

MCU. This choice is also motivated by the availability of an 148

open-source version MSP430 hardware from OpenCores [19]. 149

Nevertheless, UCCA’s design and assumptions are generic and 150

should also apply to other MCUs. 151

B. Linear Temporal Logic and Formal Verification 152

Computer-aided formal verification typically involves three 153

steps. First, the system of interest (e.g., hardware, software, 154

and protocol) is described using a formal model, e.g., a 155

Finite State Machine (FSM). Second, properties that the model 156

should satisfy are formally specified. Third, the system model 157

is checked against these formally specified properties. This can 158

be done via Theorem Proving [24] or Model Checking [25]. 159

We use the latter to verify UCCA’s implementation. 160

We formally specify desired UCCA properties using Linear 161

Temporal Logic (LTL) and implement UCCA hardware as 162

FSMs using the Hardware Description Language (HDL) 163

Verilog [26]. Hence, UCCA’s hardware FSM is represented by 164

a triple: (σ, σ0,T), where σ is the finite set of states, σ0 ⊆ σ 165

is the set of possible initial states, and T ⊆ σ × σ is the 166

transition relation set, which describes the set of states that 167

can be reached in a single step from each state. 168

To verify the implemented hardware against the LTL speci- 169

fications we use the popular model checker NuSMV [27]. For 170

digital hardware described at Register Transfer Level (RTL) 171

(the case in this work) conversion from HDL to NuSMV 172

models is simple. Furthermore, it can be automated [28] as the 173

standard RTL design already relies on describing hardware as 174

FSMs. LTL specifications are useful for verifying sequential 175

systems. In addition to propositional connectives, conjunction 176

(∧), disjunction (∨), negation (¬), and implication (→), 177

LTL extends propositional logic with temporal quantifiers, 178

thus enabling sequential reasoning. Along with the standard 179

future quantifiers, UCCA’s verification also uses Past-Time 180

LTL [27], [29] to reason about past system states. Specifically, 181

UCCA formal specifications and respective verification rely on 182

the following LTL temporal quantifiers: 183

1) Xφ – neXt φ: holds if φ is true at the next system state. 184

2) Gφ – Globally φ: holds if for all future states φ is true. 185

3) ψWφ – ψ Weak Until φ: holds if ψ is true for at least 186

all states until φ becomes true or ψ is globally true if 187

φ never becomes true. 188

4) Yφ – Yesterday φ (a.k.a. previous φ): holds if φ was 189

true in the previous system state. 190

C. Run-Time Exploits and Software Isolation 191

Run-time software attacks allow an adversary (Adv) to 192

remotely alter the intended behavior of a program. The 193

majority of program instructions execute sequentially, how- 194

ever so-called branching instructions (e.g.,: function calls, 195

returns, if statements, and loops) can alter this sequence. 196

Thus, branching instructions define the program’s intended 197

control flow. If certain vulnerabilities are present, Adv can 198
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hijack these instructions and change the software’s intended199

behavior. For example, buffer overflows [6], [7] overrun a200

buffer’s allocated memory to corrupt adjacent stack memory201

and potentially the current function’s return address. As such,202

Adv can craft malicious oversized buffer inputs, overwrite203

return addresses, and force a jump to some Adv-defined204

address. Consequently, this leads to well-known attacks, such205

as control flow hijacking [30], [31], code injection [32], [33],206

and Return Oriented Programming (ROP) [2], [3], [4], [5].207

For an overview of run-time software vulnerabilities and their208

consequences see [1].209

The recurrence of run-time exploits has led to various210

mitigation (see Section VII). Among them, isolation tech-211

niques are the predominant method to prevent programs212

from interfering with each other. In particular, they aim213

to protect a given process from tampering by another214

malicious/compromised task executing on the same device.215

Higher-end devices (e.g., general-purpose computers and216

servers) rely on virtual memory to enforce interprocess iso-217

lation. On these devices, unprivileged processes (typically all218

processes but the Operating System (OS)) can only stipulate219

memory accesses via virtual addressing. An MMU in the CPU220

translates each virtual access to a physical address in real-221

time. These translations are only configurable by privileged222

software (typically the OS). Therefore, as long as the MMU223

is securely configured, unprivileged processes cannot interfere224

with each others’ control flow, code, or data. Notably, MMU-225

based isolation assumes the OS is vulnerability-free. This226

implies a large TCB, often including low-level code (i.e.,227

device drivers), and has led to numerous attacks on OS228

implementations [34], [35], [36].229

Regardless of their benefits or shortcomings, the hardware230

cost of virtual memory and MMU-based isolation is pro-231

hibitive for MCUs. Lower-end MCUs often have no support232

for isolation (e.g., TI MSP430 and AVR ATMega) whereas233

higher-end MCUs (e.g., some ARM Cortex-M MCUs) feature234

less expensive MPUs. MPUs are hardware monitors that con-235

figure physical memory regions with different read, write, and236

execute permissions for privileged and unprivileged software.237

MPUs can protect security-critical code against tampering by238

enforcing 1) read-only permissions for critical code sections239

and 2) data execution prevention for data segments. Similar240

to MMUs, MPUs are configured by privileged software (e.g.,241

an embedded OS, such as FreeRTOS [18]). Thus, MPUs must242

also trust the OS, as the OS can freely configure the MPU.243

Some higher-end MCUs are also equipped with TrustZone-244

M [37]. TrustZone is an architectural extension that divides245

MCU hardware, software, and data into a Secure and246

Nonsecure world. The Secure world is an isolated execution247

environment for security-critical software. The Secure world248

can only be called from the Nonsecure world through secure249

entry points called Nonsecure Callables (NSCs). To enable this250

separation, TrustZone adds new hardware extensions to the251

MCU. The Secure Attribution Unit (SAU) and Implementation252

Defined Attribution Unit (IDAU) [38] mark memory as Secure,253

Nonsecure, and Nonsecure Callable. This assigns the memory254

to the corresponding world and marks it as an NSC, respec-255

tively. The IDAU defines a base memory configuration that256

the SAU can overwrite to elevate their definitions. While257

the SAU and IDAU divide memory between two worlds, 258

they do not provide further separation within each world nor 259

prevent vulnerabilities in the Secure world from compromising 260

the Nonsecure world. As such, the SAU and IDAU enforce 261

configurations defined by an additional level of privilege. 262

We note that, the premise of the existing controls is that 263

security-critical sections can be determined a priori. UCCA 264

(this work) is rooted in the different and complementary 265

premise that untrusted code segments, i.e., those more likely 266

to contain software vulnerabilities can also be enumerated 267

a priori. We stress that this does not require that UCCA 268

pinpoints/identifies vulnerabilities themselves (a much harder 269

task) but rather allows for defining “less trusted” code sections. 270

As discussed earlier, run-time attacks typically originate from 271

well-known code sections, e.g., low-level I/O manipulation 272

exposed to malformed/malicious inputs and third-party (often 273

closed-source) code. Thus, these components are good can- 274

didates for compartmentalization in UCCA. Once untrusted 275

code segments are defined, UCCA prevents attacks in these 276

regions (if any) from escalating to the remainder of the system. 277

Therefore, UCCA can work in tandem with existing hardware 278

to not only protect security-critical code from the rest of the 279

MCU software but also ensure that likely vulnerable code 280

segments, if/when exploited, cannot escalate to the rest of the 281

system. Importantly, UCCA’s design allows isolation within 282

privileged software for increased protection even against priv- 283

ileged vulnerabilities. 284

III. UCCA OVERVIEW 285

UCCA is a hardware monitor that isolates untrusted code 286

compartments (UCCs) from the rest of the system. What 287

constitutes untrusted code varies with application domains 288

and developer-defined security policies. As such, UCCs are 289

flexible to allow for different isolation cases. UCCs contain 290

executables and are defined by their first and last addresses 291

in physical memory; namely UCCmin and UCCmax (recall 292

from Section II-A that MCUs execute instructions in-place, 293

physically from program memory). UCC locations in memory 294

are configurable and can have arbitrary size. All UCC defini- 295

tions ((UCCmin, UCCmax) pairs) are stored in a reserved and 296

protected part of physical memory denoted the “Configuration 297

Region” (CR). Their values are loaded to CR when the MCU 298

is physically programmed/flashed and UCCA prevents CR 299

from being overwritten at run-time. Thus, once defined, UCCs 300

cannot be changed or disabled by any software. 301

To isolate each UCC, UCCA monitors CPU signals to 302

enforce two properties, Return and Stack Integrity. Return 303

integrity prevents invalid returns (as well as any other mali- 304

cious jumps) from UCCs. Whenever execution enters a UCC, 305

UCCA saves a copy of the return address. Then, when UCC 306

finishes running, UCCA enforces that execution returns to this 307

previously saved value. This prevents any control flow attacks 308

within UCC from escalating to the rest of the system. Stack 309

integrity creates an isolated stack frame for each UCC. This 310

isolated frame allows code within UCC to write to the stack 311

and heap while preventing modifications to stack memory 312

belonging to functions external to UCC. Stack integrity also 313

ensures the stack pointer is properly set when returning from 314
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UCC. This stops attempts to corrupt data in use by other315

functions in the same device.316

Despite these restrictions, UCCs remain interruptable. If a317

UCC is interrupted, UCCA loosens return integrity to allow318

execution to jump to the associated ISR. Once outside the319

UCC, stack integrity is disabled allowing the interrupt to edit320

the stack as needed. While interrupted, UCCA maintains the321

saved return address and isolated stack frame. Then, when322

execution returns to UCC, return and stack integrity are re-323

enforced. A malicious interrupt could abuse this behavior to324

break UCCA’s protections. Nonetheless, UCCA allows any325

untrusted ISR to also be confined within a dedicated UCC326

thus preventing control flow and stack tampering that could327

otherwise originate from the malicious ISR. While isolated,328

these ISRs remain interruptable allowing for nested interrupts.329

If either of the aforementioned rules are violated, UCCA330

triggers an exception, preventing UCC execution from con-331

tinuing. Since, our prototype MCU, the MSP430, treats all332

exceptions with a device reset, we use the same mechanism.333

However, other types of (software-defined) exception handling334

are also possible. While resetting the device can impact335

availability, any Adv can already use run-time attacks to force336

device resets (e.g., by jumping to an invalid address among337

other exceptions). Thus, UCCA’s exception handling does not338

provide Adv with more capabilities than already available.339

A. Adversary (Adv) Model340

We assume an Adv that attempts to fully compromise341

the MCU software state. We assume that one or more UCC342

resident programs contain vulnerabilities that enable control343

flow hijacks, ROP, and code injection attacks. Code external344

to UCCs is assumed to be benign. We emphasize that being345

privileged does not imply being trusted. Thus, risky privileged346

code can be defined as untrusted in UCCA. Adv’s goal is347

to exploit UCC-resident and vulnerable code to compromise348

(otherwise benign) code outside UCCs, by tampering with349

its control flow, program memory, or data. In other words,350

Adv aims to escalate a UCC-resident vulnerability to com-351

promise the rest of the system. Physical/hardware tampering352

attacks are out of the scope of this article. In particular, we353

assume that Adv cannot modify/disable the physical hardware,354

induce hardware faults, or bypass UCCA formally verified355

hardware-enforced rules. Protection against physical Adv and356

hardware-invasive attacks is considered orthogonal and can357

be obtained via physical access control and standard tamper-358

resistance techniques [39].359

B. UCCA Architecture360

Fig. 1 depicts UCCA’s architecture. UCCA adds a new361

hardware monitor, denoted HW-Mod to the underlying MCU.362

UCCA also reserves a dedicated region in memory to store363

UCC configurations, i.e., CR. CR stores the address of each364

region’s first and last instruction. The size of CR varies365

with the number of simultaneous UCCs supported. HW-Mod366

monitors the values within CR to create isolated regions in367

memory. To detect violations, HW-Mod also monitors six368

additional signals from the MCU’s core:369

Fig. 1. UCCA hardware architecture illustrating one UCC.

TABLE I
UCCA NOTATION

1) The program counter (PC), containing the address of the 370

currently executing instruction. 371

2) The data address access signal (Daddr), containing the 372

memory address accessed by the current instruction (if 373

any). 374

3) The write enable bit (Wen), indicating if the current 375

memory access (if any), is a write access. 376

4) The stack pointer (SP), indicating the memory address 377

of the last data element added to the stack. 378

5) The interrupt jump bit (IRQjmp), indicating if a jump to 379

an ISR is occurring. 380

6) The operation return (OPret), containing the return 381

address saved when call, interrupt, or exec instructions 382

occur. 383

If a violation of UCCA properties occurs, a 1-bit reset output 384

signal is set. This signal resets the MCU core immediately, i.e., 385

before executing the following instruction. As noted earlier, we 386

treat violations with resets for simplicity but software-based 387

exception handling is also possible. HW-Mod runs in parallel 388

with the MCU core to monitor these values for each executed 389

instruction. Table I summarizes these signals and the notation 390

used in the remainder of this article. 391

HW-Mod is composed of multiple submodules that enforce 392

different UCCA properties. The CR Integrity submodule 393

protects CR (which stores UCC definitions) from being over- 394

written at run-time. The Return Integrity submodule enforces 395

correct returns from UCCs. The Stack Integrity submodule 396

prevents a UCC from corrupting the stack pointer or over- 397

writing external data in the MCU stack. Finally, the UCC 398

State submodule determines whether a UCC is executing. This 399

state is used by the Return and Stack Integrity submodules. 400



TYLER AND NUNES: UNTRUSTED CODE COMPARTMENTALIZATION FOR BARE METAL EMBEDDED DEVICES 5

A dedicated instance of the UCC State, Return Integrity, and401

Stack Integrity submodules is required for each isolated UCC.402

C. UCCA Versus Existing Hardware403

As discussed in Section I, some MCUs have MPU support404

to protect memory regions. Therefore, a natural path to obtain405

untrusted code compartmentalization is with this existing406

support. Current MPUs enable the configuration of read,407

write, and execute permissions for up to 16 physical memory408

regions [40]. These permissions are further split for privileged409

and unprivileged software, however, unprivileged code cannot410

have more permissions than privileged code [15], [40].411

To isolate untrusted code, the MPU must first separate the412

untrusted code from the rest of the program. This can be done413

by setting the untrusted code as unprivileged and the remainder414

of the binary as privileged. Then, the privileged code can be415

marked executable in privileged mode while the unprivileged416

(untrusted) code is executable in both contexts. This allows417

the application to freely call the untrusted code but prevents418

the untrusted code from jumping back into the rest of the419

binary. However, this does not prevent untrusted code from420

accessing other untrusted regions. As all untrusted code is421

unprivileged and executable by unprivileged code, independent422

untrusted segments can freely call each other, preventing423

isolation between untrusted regions. Similarly, the remainder424

of the application is now privileged. As privileged code can425

overwrite the MPU (and other system-level) configurations,426

this greatly increases the system’s TCB. Also as the MPU427

only supports two privilege levels, isolating untrusted code428

prevents the MPU from isolating security-critical system code429

from applications in general.430

While this model achieves isolation of untrusted code, it431

also prevents its execution outright. Since, untrusted code432

is unprivileged it cannot jump back into the now privileged433

application, thus execution cannot return from the untrusted434

region. Remedying this requires an “exit region” to handle435

these transitions. This privileged region needs to be executable436

to unprivileged (untrusted) code and all unprivileged return437

instructions must be instrumented to jump to the exit region.438

The exit region must also enforce return integrity. However, this439

requires saving the return address when calling untrusted code.440

As such, all branch instructions that could call untrusted code441

(including all dynamic branches) must also be instrumented.442

For stack integrity, the MPU must define another region443

around the current stack when entering an untrusted region444

and mark it as read-only to unprivileged code. Moreover, the445

MPU would also need to maintain a shadow stack [41], [42]446

of return addresses and protected stack definitions otherwise447

when untrusted regions call each other, the current return448

address and protected stack region would be overwritten, re-449

exposing the system to an attack.450

Due to these requirements, implementing a single MPU UCC451

would require at least four MPU regions. It also requires heavy452

binary instrumentation and dynamic MPU reconfiguration453

leading to increased run-time overheads. Isolating multiple454

regions further requires the implementation of a shadow stack.455

MPU-based UCCs would also require disabling interrupts when456

executing UCC-resident code. Otherwise, Adv could leverage 457

interrupts to break isolation as they are privileged [43]. Thus, 458

MPU-based untrusted code isolation results in large run-time 459

and storage overheads as well as precludes applications’ real- 460

time response to asynchronous events. 461

One could also attempt to port TrustZone controls into 462

an untrusted code isolation mechanism. However, similar to 463

the MPU case, this would also have many limitations. A 464

TrustZone-based implementation would require all untrusted 465

code to be in the Nonsecure world, while the rest of the 466

application would execute in the Secure world. This would 467

greatly increase the Secure world TCB. Similarly, this configu- 468

ration would prevent TrustZone from isolating security-critical 469

code from the rest of the application. Again similar to 470

MPU, TrustZone cannot mutually isolate different untrusted 471

code sections alone. Instead, TrustZone-equipped MCUs often 472

work alongside an MPU to provide further separation within 473

each world. However, this requires the MPU be reconfigured 474

between worlds, increasing the system’s run-time overhead. 475

Similarly, all calls to and returns from (including interrupts) 476

untrusted code will require execution to change worlds. This 477

requires a context switch where the Secure world’s state is 478

saved/restored and the MPU configuration is updated before 479

execution continues. Along with this, any Secure world data 480

passed to untrusted code must be marshaled (copied) to the 481

Nonsecure world and any results must be marshaled back. All 482

this saving, copying, and configuring greatly increases the run- 483

time overhead of the system. 484

IV. UCCA DETAILS: FORMAL SPECIFICATION AND 485

VERIFIED IMPLEMENTATION 486

We now discuss UCCA in detail. Our discussion focuses on 487

a single UCC as multiple UCCs are obtained by simply instan- 488

tiating multiple units of the same hardware modules (one per 489

additional UCC). To formally verify UCCA’s implementation, 490

we formalize each of UCCA’s security properties using LTL. We 491

then design FSMs to enforce these requirements. The individual 492

FSMs are implemented in Verilog HDL and combined into one 493

Verilog design for HW-Mod (as shown in Fig. 1). Finally, HW- 494

Mod and each submodule are automatically translated to the 495

SMV model checking language [44], using Verilog2SMV [28]. 496

The resulting SMV models are checked against all required 497

LTL specifications, using the NuSMV model checker [27], to 498

produce a proof of the correctness of UCCA’s implementation 499

with respect to the LTL. 500

UCCA modules are implemented as mealy FSMs (where 501

outputs change with the current state and current inputs). Each 502

FSM has one output: a local reset. UCCA’s output reset is 503

given by the disjunction (logic or) of the local reset-s of 504

all submodules. Thus, a violation detected by any submodule 505

causes UCCA to trigger an immediate MCU reset. To ease 506

presentation, we do not explicitly represent the value of the 507

reset output in our FSMs. Instead, we define the following 508

implicit representation: 509

1) reset is 1 whenever an FSM transitions to the Reset state; 510

2) reset remains 1 until transitioning out of the Reset state; 511

3) reset is 0 in all the other states. 512
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Fig. 2. Return integrity module LTL specifications.

Note that, all FSMs remain in the Reset state until PC = 0,513

which signals that the MCU reset routine is finished.514

A. Defining Isolated UCCs515

Each UCC is defined by the first and last addresses of516

its code: UCCmin and UCCmax, respectively. They mark the517

untrusted executable’s location in memory. While UCC can518

have arbitrary size, the smallest unit of code UCCA can519

isolate is a single function, where UCCmin and UCCmax520

are the addresses of the first and last instruction in the521

function, respectively. Attempts to isolate smaller regions (i.e.,522

partial functions) would result in return integrity violations.523

Also, UCCs should not partially overlap, since each UCC is524

an independent code section. As such, partially overlapping525

regions would again cause return integrity violations. While526

partially overlapping UCCs are invalid, UCCA allows nested527

UCCs. Nested UCCs support different levels of distrust within528

an untrusted compartment, further constraining vulnerabilities529

within the inner UCC from spreading to the outer region.530

Similarly, each UCC must be self-contained, i.e., include531

the untrusted code and its dependencies (such as callback532

implementations it relies upon). All other/trusted code should533

remain outside UCC limiting its exposure to the potentially534

vulnerable code within UCC.535

B. Integrity of UCC Boundaries536

UCCmin and UCCmax can vary depending on the537

untrusted executable being compartmentalized. During cross-538

compilation/linking, appropriate UCC values are determined539

and stored in CR at load time. At run-time, UCCA uses the540

values stored in CR to monitor the execution of UCC-resident541

code. To prevent Adv from altering UCCmin and UCCmax at542

run-time (effectively disabling UCCA), UCCA’s CR integrity543

submodule ensures CR is immutable. CR integrity is defined544

in LTL specification 1 which states that at all times (G LTL545

quantifier) UCCA sets reset = 1 if an attempt to write to CR546

is detected. Attempts to write to CR are captured by checking547

if the Wen bit is set while the Daddr signal points to a location548

within CR reserved memory. This ensures that UCC definitions549

cannot be changed at run-time550

G : {[(Daddr ∈ CR) ∧ Wen] =⇒ reset}. (1)551

The CR integrity FSM is formally verified to adhere to552

LTL specification 1. Due to its relative simplicity, we do not553

visualize the FSM. The FSM has two states: Run and Reset.554

The Run state represents the MCU’s normal operation. If an555

attempt to write to CR is detected the state transitions to Reset.556

The FSM remains in this state until the reset process has been557

completed (indicated by having PC = 0) at which point the 558

FSM transitions back to the Run state. 559

C. Enforcing UCC Return Integrity 560

Return integrity prevents control flow attacks within UCC 561

from escalating to the rest of the system by ensuring that UCC 562

returns to the correct address (disallowing any jumps from 563

within UCC to an invalid external location). Since, UCC has 564

to isolate at least one function, execution must enter UCC 565

through a call or interrupt (irq) instruction and leave through 566

a return instruction. UCCA leverages this behavior to provide 567

return integrity, by saving the correct return address internally 568

(RETexp) when UCC is called. Then, when execution returns 569

from UCC, UCCA checks that the actual return address 570

matches RETexp. Fig. 2 depicts the LTL specifications defined 571

to enforce return integrity. 572

UCCA saves the return address rather than protecting its 573

value on the stack as return instructions assume that the 574

return address is at the top of the stack when called. In 575

benign circumstances, this holds as data on the stack is freed 576

(“popped”) before a return. However, as UCC is assumed to be 577

vulnerable, execution can jump directly to a return instruction 578

bypassing the required “pops.” Thus, protecting the return 579

address alone would not prevent this type of attack. 580

To check that UCC returns to the correct location, UCCA 581

must first save the correct return address. LTLs 2 and 3 specify 582

how RETexp is saved. Both statements stipulate that when 583

execution enters UCC, UCCA sets RETexp to the correct return 584

address (OPret) otherwise the device is in an invalid state 585

(reset). Whether the execution is entering UCC is determined 586

by the current and next PC values. The next value of PC 587

is represented using the LTL neXt operator X(PC). If the 588

current value of PC is outside UCC and X(PC) is within UCC, 589

execution is entering UCC. OPret is the correct return address 590

as OPret is the return address written to the stack by the 591

MCU core. Both statements are also conditioned on W(PC ∈ 592

UCC). This states that this RETexp saving behavior is true 593

until execution enters UCC (or always true should execution 594

never enter UCC). In other words, this behavior is only true 595

for the next execution of UCC. While both specifications 596

are similar, LTL 3 states that when UCC finishes executing, 597

the correct return address is saved the next time execution 598

enters UCC. Whether the execution of UCC is finished is 599

determined by the current and previous values of PC and 600

the previous value of IRQjmp. Previous values are represented 601

using the LTL Yesterday operator (i.e., Y(PC)). The IRQjmp 602

signal indicates if a jump to an ISR is occurring. If PC was 603

previously within UCC and is now outside UCC, execution 604

has left UCC. If execution left UCC (and this was not due to 605



TYLER AND NUNES: UNTRUSTED CODE COMPARTMENTALIZATION FOR BARE METAL EMBEDDED DEVICES 7

an interrupt: ¬Y(IRQjmp)), then UCC has finished executing.606

Since, this statement conditions the next execution of UCC607

on the previous iteration, it guarantees that the correct return608

address is saved every time UCC is called, except for its first609

execution. Instead, LTL 2 ensures the proper return address610

is saved for this initial execution. LTL 2 states that after a611

device reset, the next time execution enters UCC, OPret is612

saved to RETexp. UCCA always initializes in a reset condition.613

As such, at boot, this statement also applies. Taken together,614

LTL statements 2 and 3 ensure that RETexp stores the correct615

value whenever UCC is called.616

Once saved, RETexp must remain fixed until UCC finishes617

executing to ensure that return integrity only allows valid618

return addresses. Thus, RETexp is immutable while executing619

UCC. This property is defined in LTL 4. Entrance to UCC620

is again determined using the current and previous value of621

PC. If PC is currently within UCC and the previous value was622

outside UCC, then execution has just entered UCC. RETexp’s623

immutability is captured by checking that the current value624

of RETexp always matches the next (X(RETexp)) while within625

UCC (W(¬(PC ∈ UCC))). However, UCC is interruptable so626

to ensure that RETexp remains correct, RETexp must also be627

immutable across interrupts. LTL 5 describes this behavior and628

states that, when execution leaves UCC due to an interrupt and629

the device is not resetting (¬Y(reset)), RETexp is immutable630

until execution of UCC resumes, or until a device reset631

occurs. Added together these two specifications ensure that632

once execution of UCC begins, RETexp cannot change until it633

finishes or the device resets.634

Finally, return integrity is described in LTL 6. This speci-635

fication states that when execution exits UCC (not due to an636

interrupt), an exception (reset) is triggered unless the actual637

and saved return addresses match. Unlike specifications 3638

and 5, exiting a region is detected using the current and next639

value of PC. Specifically, execution is exiting the region if PC640

is currently in UCC and the X(PC) is outside UCC. Due to641

this, X(PC) is the actual value of the return address. Therefore,642

UCCA compares RETexp to X(PC) and sets reset = 1 if a643

violation is detected.644

Fig. 3 depicts the Verilog FSM implemented by the return645

integrity submodule and formally verified to simultaneously646

adhere to LTL specifications 2–6. The FSM defines four states:647

1) Out, 2) In, 3) IRQ, and 5) Reset. Out represents when PC is648

outside of UCC. Once execution enters UCC (PC ∈ UCC), the649

FSM transitions to In. While executing UCC, the FSM remains650

in the In state. If an interrupt occurs while within UCC, the651

FSM transitions to the IRQ state. If execution has just entered652

UCC when an interrupt occurs, it is also possible for Out to653

transition directly to the IRQ state. IRQ represents when UCC654

has been interrupted. While in IRQ, RETexp is maintained.655

IRQ transitions back to the In state once UCC resumes. When656

the execution leaves UCC (¬(PC ∈ UCC)) (not due to an657

interrupt), if execution returns to the expected memory address658

(PC = RETexp) it is a valid return and the FSM transitions659

to the Out state. Otherwise, a violation of return integrity has660

occurred and the FSM transitions to the Reset state. Once the661

reset routine is completed, the FSM transitions to the Out662

state. For synchronization, Out, In, and IRQ also transition663

Fig. 3. Verified FSM for return integrity.

to Reset if a violation occurs in another module or UCC 664

(resetucca = 1). 665

D. UCC Entry and Exit Points 666

Despite being untrusted, UCCA allows execution to enter 667

and exit UCC at/from any instruction in the region. This is 668

because UCCA prevents attacks within UCC from escalating 669

to the remainder of the system. To that end, in terms of control 670

flow integrity (CFI), it suffices to ensure that the UCC caller 671

code resumes correctly. As UCC-resident code is untrusted 672

(e.g., third party libraries), UCCA does not enforce properties 673

regarding its internal behavior. By allowing arbitrary entry and 674

exit points, multiple functions can be isolated by a single UCC 675

and all remain directly callable by external code. 676

E. Protecting Stack Data Outside UCC’s Frame 677

Return integrity prevents escalation of attacks, such as 678

control flow hijacking and ROP. However, UCC-resident code 679

may still attempt to escalate data-flow attacks [45], [46], [47] 680

that overwrite data on the stack or create a malicious stack. 681

Editing the stack has no immediate effect on a program’s con- 682

trol flow. Therefore, return integrity is not violated. However, 683

as a program’s behavior depends on its variables, editing stack 684

data could still compromise execution integrity. 685

To prevent data-flow attacks, UCCA creates an isolated stack 686

frame for UCC. Stack frames are a memory management 687

technique that segments the stack into different sections cor- 688

responding to different function calls [6]. To define a frame, 689

UCCA stores the initial stack pointer (SP) of the previous 690

instruction when entering UCC. Since, execution enters UCC 691

through either a call or interrupt, UCCA saves SP before the 692

return address is pushed to the stack. We use this value for the 693

base of the UCC’s frame for multiple reasons. First, this value 694

separates non-UCC and UCC data. As no UCC-resident code 695

has been executed yet, all UCC data will be written above this 696

value. Second, this value is what SP should be when execution 697

returns from UCC. When exiting UCC, the return instruction 698

removes the return address from the stack. Thus, upon exit, SP 699

should be the same value as before the call to UCC. We refer 700

to the saved SP value as the base pointer (BP) in the remainder 701

of this article. To isolate UCC’s frame, UCCA blocks all the 702

write attempts performed by UCC-resident code to addresses 703

below BP and enforces the proper stack context (SP = BP) 704

when exiting UCC. 705
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Fig. 4. Stack integrity module LTL specifications.

Consequently, writes to stack variables passed by reference706

into UCC are also blocked as they result in writes below BP.707

Instead, as the heap is above the stack [48] (and thus BP)708

data passed by reference to UCC should first be copied to709

the heap. Then, when execution returns from UCC, the edited710

heap value can be copied back to the original. We emphasize711

that (contrary to writes) the stack is always readable from712

UCC. Thus, this marshaling is only necessary for pre-existing713

stack data that is meant to be written by code within a UCC.714

Global variables are also stored above the stack by default in715

the target architecture [48], [49] and thus writable by UCC-716

resident code. This is expected as the global variables are717

meant to be accessible to the whole program. Nonetheless, if718

desired, selected global data can be linked (at compile-time)719

to appear below the stack, preventing writes from UCC.720

Fig. 4 lists the LTL statements defined to enforce stack721

integrity. LTL 7 states that after a reset, whenever the executing722

instruction changes (¬(Y(PC) = PC)) BP contains the723

previous value of SP (BP = Y(SP)) until execution enters724

UCC. While BP saves the previous SP, this actually represents725

the initial SP for the current instruction. Thus, when UCC is726

called, BP holds the value of SP before the return address is727

pushed to the stack. By conditioning on a reset, this statement728

ensures that BP is correct when calling UCC for the first729

time. LTL 9 similarly states that when UCC finishes executing,730

BP stores the previous value of SP whenever the current731

instruction changes until execution re-enters UCC. This rule732

ensures the BP is also correct on all the subsequent executions733

of UCC. Once UCC is running, LTLs 10 and 11 ensure734

BP cannot be changed. LTL 10 states that when execution735

enters UCC, BP is immutable until execution leaves UCC.736

LTL 11 states that if UCC is interrupted, BP is immutable737

until UCC resumes or a reset occurs. Together these statements738

ensure that once in UCC, BP cannot be changed until the739

execution of UCC completes. However, the value of BP is740

ambiguous when execution enters UCC. At this instance,741

LTLs 7 and 9 do not hold, but, LTL 10 only holds from this742

point forward. Thus, to ensure BP is still correct LTL 8 states743

that when execution is entering UCC, BP does not change744

(X(BP) = BP). Combined with LTLs 7 and 9, these statements745

ensure that BP is properly set whenever execution enters UCC.746

UCCA’s stack frame isolation is defined in LTL specifica-747

tion 12. This specification states that, at all times, UCCA sets748

reset = 1 if execution is within UCC and attempts to write to749

the stack outside its stack frame. Writes outside the isolated750

frame are captured by the Wen bit being set while the Daddr751

signal points to a location below BP. Daddr is below BP if752

Fig. 5. Verified FSM for stack integrity.

Daddr ≥ BP as the stack grows toward 0. Hence, values below 753

BP have a larger address than BP. Stack isolation ensures that 754

the UCC-resident code cannot tamper with data memory in 755

use by the remainder of the system. 756

Finally, LTL 13 ensures that the stack pointer is properly 757

restored before execution leaves UCC. It states that, if the 758

device is not already resetting and execution is leaving UCC 759

(not due to an interrupt), the next SP should be BP (X(SP) = 760

BP). Since, BP represents the value of SP at the start of the 761

call to UCC, this check enforces that SP returns to the same 762

value as before executing UCC. This prevents an adversary 763

from corrupting SP such that malicious data written to the 764

stack by UCC resident code is used by non-UCC code. 765

Fig. 5 depicts the Verilog FSM implemented by the stack 766

integrity module and formally verified to adhere to LTL 767

specifications 7–13. The FSM defines four states: 1) Out, 768

2) In, 3) IRQ, and 4) Reset. The stack integrity FSM behaves 769

similarly to the return integrity FSM with a few exceptions. 770

First, when in the IRQ state, BP is maintained until the 771

execution of UCC is resumed rather than RETexp. Similarly, 772

when transitioning to Out, SP must equal to BP otherwise the 773

FSM transitions to the Reset state. Finally, while in UCC, any 774

write below BP will violate the stack isolation and cause the 775

FSM to transition to the Reset state. 776

V. SECURITY ANALYSIS 777

Recall from Section III-A that Adv aims to escalate vulner- 778

abilities located within UCCs to compromise the remainder of 779

the system with attacks, such as control flow hijacks, ROP, 780

data corruption, and code injection. In this section, we argue 781

that such attempts are unsuccessful due to UCCA guarantees. 782
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Adv may try to leverage vulnerabilities to alter the control783

flow of the binary and jump to an arbitrary location in memory.784

For this, Adv would need to exploit a branching instruction,785

such as a return, within a UCC. Adv would either need786

to overwrite a return/jump address on the stack or cause787

data on the stack to be misinterpreted as an address. Using788

vulnerabilities within UCC, Adv could attempt to hijack an789

intermediate instruction or the final return instruction to jump790

to an arbitrary address. However, this malicious jump would791

not match the saved return address (LTLs 2–5) and the attack792

would be stopped (LTL 6).793

Adv could also attempt to overwrite code in program794

memory or data on the stack. Both scenarios would allow Adv795

to alter program behavior outside UCCs. Program memory is796

located below the stack, thus always outside UCC’s isolated797

stack frame. Similarly, all non-UCC data falls below its798

frame’s BP, and is outside UCC’s isolated frame. As such,799

Adv cannot overwrite code in program memory and non-UCC800

data on the stack (LTLs 7–12). Adv could also attempt to801

write malicious data to the stack and corrupt SP such that the802

device uses the malicious stack once execution leaves UCC.803

However, this would require SP not be equal to BP when804

leaving UCC which is prevented by stack integrity (LTLs 7–11805

and 13). Finally, Adv could attempt to inject and execute code806

on the stack or heap, however UCCA prevents this as executing807

data memory requires execution to leave UCC violating return808

integrity (LTLs 2–6).809

Interrupts can bypass the isolation enforced by UCCA. As810

such, Adv may try to abuse this behavior and exploit an811

interrupt to escape UCCA’s restriction. However, similar to812

any untrusted code in UCCA, if an ISR is untrusted, it can also813

be defined as a UCC. As a consequence, since the untrusted814

interrupt is isolated, return and stack integrity prevent it from815

escalating to the remainder of the system (LTLs 2–13). Adv816

could also attempt to overwrite the address of an ISR in817

the Interrupt Vector Table (IVT). This would cause execution818

to jump to an Adv defined value, whenever the corrupted819

interrupt is triggered. Similar to program memory, IVT is820

stored below the stack. As such it is always outside UCC’s821

isolated stack frame and not writable by Adv (LTLs 7–12).822

Finally, Adv may attempt to disable UCCA and break823

isolation by overwriting UCC region definitions stored in CR.824

However, CR is immutable at run-time (LTL 1). The only way825

to overwrite CR is by physically reprogramming the MCU826

which contradicts the Adv model.827

VI. PROTOTYPE AND EVALUATION828

We implemented UCCA on the OpenMSP430 core [48].829

UCCA realizes the hardware architecture depicted in Fig. 1.830

Along with HW-Mod, we implement a simple peripheral mod-831

ule for CR. The peripheral module allows for UCC definitions832

to be stored and accessed by HW-Mod at a predefined fixed833

data memory location. We use Xilinx Vivado [50] to synthesize834

an RTL prototype of UCCA in real hardware. UCCA’s design835

was deployed on a Basys-3 prototyping board [51], that fea-836

tures an Artix-7 commodity FPGA [52]. Our implementation837

is available at [20].838

(a) (b)

Fig. 6. UCCA Evaluation: (a) HW cost comparison with 4 UCCs; (b) Added
HW by total UCCs.

A. UCCA Evaluation 839

TCB Size: To calculate UCCA’s TCB size we count the 840

amount of Verilog code needed to implement HW-Mod. Since, 841

UCCA was implemented in hardware and works independently 842

from the MCU core, UCCA’s TCB only consists of HW-Mod. 843

The UCCA prototype with support for one UCC was imple- 844

mented using 423 lines of Verilog code. Each additional UCC 845

supported by UCCA adds another 21 lines of Verilog to the 846

TCB, for instantiating the same modules repeatedly. 847

Hardware and Memory Overhead: The number of required 848

UCCs is application dependent. Due to this, we measure 849

UCCA considering support from one to eight UCCs and 850

estimate the cost for arbitrarily many UCCs. The additional 851

hardware cost is calculated by looking at the number of added 852

Look-Up Tables (LUTs) and Registers. The increase in the 853

number of LUTs is an estimate of the additional chip cost 854

and size required for combinatorial logic, while the number 855

of registers offers an estimate of the state overhead required 856

by the sequential logic in UCCA FSMs. A summary of the 857

hardware cost is shown in Fig. 6(b). To isolate a single UCC, 858

UCCA requires an additional 86 registers and 85 LUTs. This 859

constitutes a respective 12.4% and 4.7% increase in registers 860

and LUTs atop the unmodified OpenMSP430 core. In the 861

largest test, with 8 UCCs, UCCA added 331 registers and 520 862

LUTs to the underlying system. This equates to a 47.8% and 863

29% increase in registers and LUTs. 864

In general, UCCA can support arbitrarily many UCCs with 865

the only limiting factor being the additional hardware cost 866

per region. We can predict the overhead for any UCCA 867

configuration as the overhead grows linearly with the number 868

of UCCs. As previously stated, UCCA with one UCC adds 86 869

registers to the MCU. However, each subsequent UCC added 870

only requires an additional 35 registers. Similarly, UCCA with 871

one UCC adds an initial 85 LUTs to the MCU. Each additional 872

UCC adds on average 62 LUTs to the system (variance is due 873

to the synthesis tool heuristic). Thus, UCCA with support for 874

N UCCs can be estimated as 875

LUTs � 62 × (N − 1)+ 85 (14) 876

Registers = 35 × (N − 1)+ 86. (15) 877

UCCA also introduces a small storage overhead. Each 878

UCC’s UCCmin and UCCmax are stored in CR in the device’s 879

peripheral memory. Each address is 2 bytes long so each 880

UCC requires 4 bytes of data memory. On the OpenMSP430, 881

peripheral memory can be between 512B and 32KB long [48]. 882
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Thus, each UCC incurs between 0.01% and 0.78% memory883

overhead depending on the size of peripheral memory.884

Energy Overhead: To evaluate the energy consump-885

tion caused by UCCA added hardware, similar to prior886

work [22], [53], [54], we use the Vivado synthesis tool [50]887

to estimate UCCA’s power consumption on our FPGA proto-888

type. We consider UCCA with support for 8 UCCs. In this889

configuration, the MCU consumes 69 mW of static power890

with UCCA accounting for 1 mW (1.45%) of the total static891

consumption. The dynamic power consumption depends on892

how frequently UCCA’s internal registers are updated. We893

evaluate UCCA on an application that loops through multiple894

function calls that modify the stack. We consider this a worst-895

case as it causes each UCCs’ internal RETexp and BP to update896

constantly. Running this application resulted in a total dynamic897

draw of 113 mW where UCCA accounted for 1 mW (0.88%)898

of this consumption. Doubling the number of UCCs to 16899

increased the total dynamic draw to 114 mW. Thus, each UCC900

introduces ≈ 0.125 mW of dynamic power draw.901

Run-Time Overhead: UCCA does not modify the MCU902

core or Instruction Set Architecture (ISA). HW-Mod per-903

forms UCC-related checks in parallel with the MCU core.904

These checks incur no extra run-time cycles to the software905

execution and do not interfere with the MCU’s ability to906

respond to real-time events. As HW-Mod accesses memory907

through a dedicated physical channel, separate from the normal908

MCU core access channels, it does not cause interference or909

contention.910

The only source of run-time overhead in UCCA is due911

to marshaling data inputs to be modified by UCC-resident912

code. In these cases, the data must be first copied to the913

designated heap region before calling UCC-resident code.914

While the copying is done before UCC execution, it affects915

the overall system run-time. The associated run-time depends916

on the amount of data to be copied. In our prototype (based917

on MSP430), copying a “word” (2 Bytes, in this 16-bit918

architecture) requires one execution cycle of the absolute MOV919

instruction. This number scales linearly with the amount of920

data to be copied, i.e., an additional MOV instruction cycle is921

required for each pair of Bytes to be copied.922

Formal Verification: We verified UCCA on an Ubuntu923

20.04 machine running at 3.70 GHz. Total verification time924

was about 11.5 min with maximum memory allocation of 125925

MB, which is within the resources of commodity computers.926

Test Applications: To demonstrate UCCA protections, we927

implemented multiple test applications which are also avail-928

able and discussed in more detail in our public UCCA929

release [20].930

B. Comparative Evaluation931

We compare UCCA’s overhead with three related schemes:932

1) Sancus [22], 2) TrustLite [21], and 3) CompartOS [23].933

Sancus provides memory isolation and attestation for shared934

remote embedded systems. Sancus introduces the protect935

and unprotect hardware instructions to create (and destroy)936

isolated software modules. Isolation is enforced by defining937

a fixed entry point for each module and using the program938

counter to restrict access to a module’s data to module resident 939

code only. Sancus also enables key storage for each module 940

to allow for remote attestation [55], [56] of the region. 941

TrustLite is another isolation architecture that isolates 942

individual software tasks or trustlets. Trustlet definitions are 943

recorded in the Trustlet Table in protected memory. For access 944

control, TrustLite uses an execution aware MPU (EA-MPU) 945

which extends the read, write, and execute permissions with 946

the current value of the program counter. This allows the EA- 947

MPU to restrict trustlet access to a predefined set of entry 948

points and prevent access to trustlet data from outside the 949

trustlet. The trustlets, Trustlet Table, and EA-MPU are all 950

configured by a privileged process named the SecureLoader 951

when the MCU boots. 952

CompartOS provides automatic software compartmentaliza- 953

tion for high-end embedded systems. CompartOS uses the 954

CHERI [57] hardware capability system for memory isolation. 955

CHERI adds the capability data type and capability-aware 956

instructions to the device’s ISA. Capabilities extend integer 957

pointers with metadata, including bounds, permissions, and 958

a validity bit to assign explicit permissions to the code they 959

reference. Capabilities can also be “sealed” to link code 960

and data capabilities together and prevent their modifica- 961

tion. CompartOS uses capabilities to define compartments 962

and seals/unseals them to context switch between different 963

compartments. 964

We note that, while these approaches use hardware to isolate 965

MCU memory, they are not directly comparable to UCCA. 966

None of the prior work focuses on isolating untrusted code 967

sections, a feature unique to UCCA. Both CompartOS and 968

TrustLite target larger devices than UCCA. UCCA is more 969

comparable to Sancus as both were implemented on the 970

OpenMSP430 architecture. However, Sancus performs remote 971

attestation in addition to isolation. Despite these differences, 972

we believe that such systems are the most closely related to 973

UCCA. In our comparison, we consider default support for 974

four isolated regions. The comparison is displayed in Fig. 6(a). 975

UCCA presents lower overhead. With support for four 976

UCCs, it requires 13.9% of the registers and 12.1% of the 977

LUTs required by Sancus for the same number of isolated 978

regions. With support for eight UCCs, UCCA still only incurs 979

about a fourth of the overhead (24.2% registers and 22% 980

LUTs). UCCA performs similarly when compared to TrustLite. 981

UCCA uses 25.7% of the registers and 23.1% of the LUTs 982

TrustLite uses. At eight UCCs, UCCA still only uses 44.6% 983

of registers and 45.4% of LUTs used by TrustLite. 984

When compared to CompartOS, UCCA uses 87.9% fewer 985

registers and 97.5% fewer LUTs to isolate four compartments. 986

However, unlike Sancus and TrustLite, whose overhead scales 987

with the number of isolated regions, CompartOS has the 988

same hardware overhead, regardless of how many regions it 989

supports. As UCCA continues to isolate more regions, UCCA’s 990

overhead will eventually surpass CompartOS’s. However, 991

these larger configurations are unlikely in low-end MCUs. 992

Similarly, CompartOS uses 229% more registers and 598% 993

more LUTs than the OpenMSP430 core itself. This over- 994

head shows that CompartOS is impractical for such low-end 995

MCUs. 996



TYLER AND NUNES: UNTRUSTED CODE COMPARTMENTALIZATION FOR BARE METAL EMBEDDED DEVICES 11

VII. EXTENDED RELATED WORK997

Aside from the techniques mentioned in Section I, there are998

several attempts to mitigate run-time vulnerabilities on MCUs.999

CFI is a class of techniques that limit the destination of1000

any control flow transfer to a set of valid addresses [33], [58],1001

[59], [60]. We also include randomization techniques in this1002

discussion [61], [62]. These approaches often use a control1003

flow graph (CFG) or a directed graph of nodes representing1004

atomic sections of a binary [63]. CFGs enable the enumeration1005

of all paths through a program, however, as programs get1006

more complex the enumeration becomes undecidable. Due to1007

this, many schemes use imprecise approximations prone to1008

false positives [1]. Other approaches focus solely on returns1009

(notably, shadow stacks [42]) removing the need for path1010

enumeration but incurring large hardware and/or software1011

overheads [1].1012

MPU-based Compartmentalization segments a binary into1013

separate regions of memory and enforces isolation between1014

them. Many schemes, such as ACES [15] simply use1015

existing MPU operations to provide stronger isolation by1016

segmenting code and enforcing well defined entry points1017

between them [14], [15], [64], [65], [66]. Other techniques1018

extend MPU functionality by providing new isolation crite-1019

ria [17], [21], [67]. For example, Toubkal [68] adds a new1020

hardware monitor to restrict regions to specific hardware1021

controllers.1022

ISA-based Compartmentalization adds new functionality1023

to the MCU core itself rather than relying on hardware1024

monitors [16], [22], [23], [69]. These controls introduce1025

new hardware instructions to enable isolation [69], use the1026

instruction pointer to validate memory accesses [22], and1027

add new data types to the core [57]. ISA-based isolation1028

requires access to the source code to recompile the binary1029

with ISA-specific instructions. It also requires the CPU core1030

and compiler to be trusted, increasing the system TCB and1031

typically the hardware overhead.1032

VIII. TRADEOFFS AND LIMITATIONS1033

Fixed UCC Definitions and Total Number of UCCs: UCCA1034

implements UCC definitions that are immutable at run-time.1035

This enables UCCs within privileged code and ensures UCCA1036

guarantees can not be disabled by any code at run-time.1037

However, the total number of UCCs can be limiting in larger1038

systems with more untrusted code sections to isolate. In these1039

systems, either untrusted code must share regions or not all the1040

untrusted code can be isolated. A tradeoff would be allowing1041

UCC definitions to be configurable at run-time. This would1042

allow for more flexibility and for UCCs to be reused by1043

different code sections. However, it would introduce additional1044

attack vectors and run-time overhead for switching the context1045

between the UCCs. Alternatively, the future work could further1046

optimize the per-UCC hardware cost in UCCA, so that more1047

UCCs can be supported at the same cost.1048

Protecting Heap Data: By default, UCCA does not prevent1049

UCC-resident code from accessing heap data. This design1050

decision is based on the premise that many simple MCU appli-1051

cations avoid dynamic memory allocation for performance1052

reasons. Nonetheless, in applications that require heap alloca- 1053

tion, discretionary protection of heap data against UCC-code 1054

can be achieved by linking a portion of the heap to allocate 1055

below the stack. This new portion would be protected from the 1056

UCC modifications (similar to how global variables are treated 1057

in UCCA). A second unprotected portion of the heap could 1058

remain above the stack (where the modifications can be made 1059

by UCCs) and be used to share/marshal data into UCCs. This 1060

approach allows selected heap data to be writable to UCCs 1061

while protecting the remainder of the heap and the stack. It 1062

also requires no changes to the UCCA hardware architecture. 1063

IX. CONCLUSION 1064

We proposed UCCA: an architecture leveraging a formally 1065

verified hardware monitor to isolate untrusted code com- 1066

partments (UCCs) and limit the scale of run-time attacks 1067

on MCUs. UCCs are configurable and have variable size, 1068

making UCCA compatible with different programs. Isolation 1069

of UCCs is enforced in hardware and cannot be disabled 1070

by compromised software. In addition, UCCA does not incur 1071

run-time overhead in terms of added CPU instructions/cycles. 1072

Similarly, UCCs remain interruptable maintaining support for 1073

real-time operations. UCCA’s security analysis demonstrates 1074

that, by enforcing return and stack integrity for UCCs, UCCA 1075

constrains software exploits to their origin. Our evaluation, 1076

based on an open-source and formally verified UCCA proto- 1077

type, shows that UCCA incurs small hardware overhead. 1078
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