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Abstract—Federated learning (FL) as a promising distributed1

machine learning paradigm has been widely adopted in Artificial2

Intelligence of Things (AIoT) applications. However, the efficiency3

and inference capability of FL is seriously limited due to the4

presence of stragglers and data imbalance across massive AIoT5

devices, respectively. To address the above challenges, we present6

a novel asynchronous FL approach named CaBaFL, which7

includes a hierarchical cache-based aggregation mechanism and8

a feature balance-guided device selection strategy. CaBaFL9

maintains multiple intermediate models simultaneously for local10

training. The hierarchical cache-based aggregation mechanism11

enables each intermediate model to be trained on multiple devices12

to align the training time and mitigate the straggler issue. In13

specific, each intermediate model is stored in a low-level cache for14

local training and when it is trained by sufficient local devices, it15

will be stored in a high-level cache for aggregation. To address the16

problem of imbalanced data, the feature balance-guided device17

selection strategy in CaBaFL adopts the activation distribution18

as a metric, which enables each intermediate model to be19

trained across devices with totally balanced data distributions20

before aggregation. Experimental results show that compared to21

the state-of-the-art FL methods, CaBaFL achieves up to 9.26X22

training acceleration and 19.71% accuracy improvements.23

Index Terms—Artificial Intelligence of Things (AIoT), asyn-24

chronous federated learning (FL), data/device heterogeneity,25

feature balance.26

I. INTRODUCTION27

W ITH the prosperity of artificial intelligence (AI) and28

the Internet of Things (IoT), AI of Things (AIoT)29
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is becoming the mainstream paradigm for the design of 30

large-scale distributed systems [1], [2], [3], [4]. Federated 31

learning (FL) [5], [6], [7], [8], [9], [10] as an important 32

distributed machine learning paradigm has been widely used 33

in AIoT-based applications, e.g., mobile edge computing [11], 34

healthcare systems [12], and autonomous driving [13]. 35

Typically, AIoT-based FL consists of a central server and a 36

set of AIoT devices. The cloud server maintains a global 37

model and dispatches it to multiple AIoT devices for training. 38

Each AIoT device trains its received global model using its 39

local data and then uploads the local model to the server. 40

By aggregating all the local models, the server can achieve 41

collaboratively global model training without leaking the raw 42

data of any devices. 43

However, due to the heterogeneity of devices and data, 44

AIoT-based FL still encounters two main challenges. The 45

first challenge is the straggler problem. The heterogeneous 46

nature of AIoT devices (e.g., varying computing and wireless 47

network communication capacities), can result in significant 48

differences in the training time for each device [14], [15]. 49

Aggregating all the local models, including those from devices 50

with poor computation capabilities, can lead to longer training 51

time. The second challenge is that the data among AIoT 52

devices are not independent-and-identically distributed (non- 53

IID) [16]. Such a data imbalance issue among AIoT devices 54

can lead to the problem of “weight divergence” [17] and 55

results in the inference accuracy degradation of the global 56

model [18], [19]. To address the above challenges, the exist- 57

ing solutions can be mainly classified into three schemes, 58

i.e., synchronous [20], [21], [22], asynchronous [23], [24], 59

and semi-asynchronous [25], [26], [27]. In synchronous FL 60

methods [5], the cloud server generates the global model after 61

receiving all the local models. The non-IID problem could be 62

alleviated with some well-designed training and client selec- 63

tion strategies [20], [28], [29], while the straggler problems 64

cannot be well addressed. Asynchronous FL methods [23] 65

directly aggregate the uploaded local model to update the 66

global model without waiting for other local models. By 67

a timeout strategy, asynchronous FL methods could discard 68

stragglers, thereby avoiding the inefficient update in the global 69

model. However, non-IID scenarios still seriously limit the 70

performance of existing asynchronous FL methods. Semi- 71

asynchronous FL methods [25], [26] maintain a buffer to store 72

uploaded local models, when the stored models reach a certain 73

number, the server performs an aggregation operation and 74
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clears the buffer. Although semi-asynchronous FL methods75

can alleviate the straggler problems, they still encounter the76

problems of non-IID data. Due to adopting different train-77

ing mechanisms, synchronous methods are often difficult to78

combine directly with asynchronous methods. Therefore, how79

to ensure performance in scenarios of data imbalance while80

solving the straggler problem is a serious challenge.81

To address both the straggler and data imbalance challenges,82

this article presents a novel asynchronous FL approach named83

CaBaFL. It maintains a hierarchical cache structure to allow84

each intermediate model to be asynchronously trained by85

multiple clients before aggregation and uses a feature balance-86

guided client selection strategy to enable each model to87

eventually be trained by totally balanced data. To address88

the challenge of stragglers, we use a hierarchical cache-based89

aggregation mechanism to achieve asynchronous training.90

Specifically, we use multiple intermediate models for local91

training and to guarantee the number of activated devices,92

we enable each intermediate model participant in the aggre-93

gation after multiple times of local training. To facilitate the94

asynchronous aggregation, each intermediate model is stored95

in the low-level cache named L2 cache. When trained with96

sufficient devices, a model can be stored in the high-level97

cache named L1 cache. While a certain number of devices98

trains a model, it will be updated with the global model99

aggregated with all the models in the L1 cache. Based on our100

asynchronous mechanism, the feature balance-guided device101

selection strategy wisely selects a device for each intermediate102

model, aiming to make the total data used to train the103

model balanced before aggregation. However, gaining direct104

access to the data distribution of each device could potentially105

compromise users’ privacy. To address this concern, we are106

inspired by the observation that the middle-layer features107

strongly reflect the underlying data distributions and propose a108

method to select devices based on their middle-layer activation109

patterns. This article has three major contributions.110

1) We propose a novel asynchronous FL framework named111

CaBaFL, which enables multiple intermediate models112

for collaborative training asynchronously using a hierar-113

chical cache-based aggregation mechanism.114

2) We present a feature balance-guided device selection115

strategy to wisely select devices according to the acti-116

vation distribution to make each intermediate model be117

trained with totally balanced data, which alleviates the118

performance deterioration caused by data imbalance.119

3) We conduct comprehensive experiments on both well-120

known datasets and models to show the superiority of121

CaBaFL over state-of-the-art (SOTA) FL methods for122

both IID and non-IID scenarios.123

II. PRELIMINARY AND RELATED WORK124

A. Preliminary of Federated Learning125

In general, an FL system consists of one cloud server and126

multiple dispersed clients. In each round of training in FL, the127

cloud server first selects a subset of devices to distribute the128

global model. After receiving the model, the devices conduct129

local training and upload the model to the cloud server. Finally,130

the cloud server aggregates the received models and obtains a 131

new global model. The learning objective of FL is to minimize 132

the loss function over the collection of training data at N 133

clients, i.e., 134

min
w

F(w) =
N∑

k=1

|Dk|
|D| Fk(w) (1) 135

where N is the number of clients that participate in local 136

training, w is the global model parameters, Dk is the kth client, 137

|Dk| represents the training data size on Dk, and Fk(w) = 138

(1/|Dk|)∑j∈Dk
fj(w) is the loss empirical objective over the 139

data samples at client k. 140

B. Related Work 141

Asynchronous FL has a natural advantage in solving the 142

straggler effect, where the server can aggregate without wait- 143

ing for stragglers. Xie et al. [23] developed a FedAsync 144

algorithm, which combines a function of staleness with 145

asynchronous update protocol. In FedASync, whenever a 146

model is uploaded, the server directly aggregates it. Although 147

FedASync can solve the straggler problem, some stragglers 148

may become stale models, thereby reducing the accuracy of 149

the global model. In addition, the client in FedASync will 150

send a large number of models to the server, causing a lot 151

of communication overhead. In terms of reducing data trans- 152

mission, Wu et al. [25] proposed a SAFA protocol, in which 153

asynchronous clients continuously perform local updates until 154

the difference between the local update version and the global 155

model version reaches tolerance. Although SAFA considers 156

model staleness, the server needs to wait for the asynchronous 157

clients. Moreover, SAFA needs to maintain a bigger buffer 158

compared to FL, which can cause more memory costs and 159

thus lead to high complexity and low scalability. Similarly, 160

Ma et al. [26] set a model buffer for model aggregation to 161

achieve semi-asynchronous FL and dynamically adjust the 162

learning rate and local training epochs to mitigate the impact 163

of stragglers and data heterogeneity. However, none of the 164

above methods can solve the problem of data heterogeneity 165

well. 166

To address the data heterogeneity problem, Zhou et al. [30] 167

proposed the WKAFL protocol, which leverages the stale 168

models of stragglers by maintaining a globally unbiased gra- 169

dient and mitigates the impact of data heterogeneity through 170

gradient clipping. Hu et al. [31] used the semi-asynchronous 171

FL mechanism, which maintains a buffer in the cloud server 172

to store the local models. The server attempts to alleviate the 173

impact of data heterogeneity by minimizing the variance of 174

hard labels in the buffer. However, this method requires the 175

clients to send the hard labels to the server. Unfortunately, in 176

real-world scenarios, hard labels of data often contain sensitive 177

information and cannot be obtained by the server. As an alter- 178

native, FedAC [32] employs a momentum aggregation strategy 179

for updating the global model and incorporates fine-grained 180

correction to adjust client gradients, effectively mitigating the 181

challenges posed by data heterogeneity. FedLC [33] deals with 182

the non-IID problem by enabling local collaboration among 183

edge devices and solves the stale model problem through 184
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(a)

(b)

Fig. 1. Motivating example of our asynchronous FL method. (a) Conventional
synchronous FL. (b) Intuition of our asynchronous FL.

dynamic learning rates. However, these methods optimize the185

aggregation strategy without using a wise device selection186

strategy, which still seriously limits their performance.187

To the best of our knowledge, CaBaFL is the first attempt188

to employ collaborative training and feature balance-guided189

device selection strategy in asynchronous FL to improve both190

model accuracy and training stability.191

III. MOTIVATION192

A. Intuition of Our Asynchronous FL Mechanism193

Fig. 1 presents the intuition of our asynchronous FL mech-194

anism. Assume that one FL training involves the local training195

of three models. Fig. 1(a) presents a training snapshot of some196

conventional synchronous FL methods, where local models197

are aggregated after they finish training on one activated198

device. In this case, the FL method performs two aggregation199

operations without taking the straggler problem into account.200

From this subfigure, we can clearly observe that some models201

become idle in between two aggregations. Unlike conventional202

FL methods, our approach always pushes models to conduct203

local training synchronously in a balanced way. Specifically,204

our approach considers the straggler problem and allows a205

model to be trained on multiple devices before an aggregation206

operation. When an activated device finishes its local training,207

it will immediately forward its hosting model to another device208

with a balanced training overhead. As an example shown209

in Fig. 1(b), a model can traverse two devices before one210

aggregation operation, and all three models have similar total211

training time spent on their two traversed devices. In this212

way, the straggler problem can be mitigated, since a compact213

training scheme can not only enable stragglers to be chosen for214

local training more often in a fair manner but also accelerate215

the training convergence processes.216

B. Correlation Between Data and Activation Distributions217

To mitigate the challenge posed by data imbalance, our218

objective is to carefully choose devices for each intermediate219

model and ensure that the total data used for training the model220

is balanced before aggregation. Accomplishing this task neces-221

sitates having knowledge of the data distribution associated222

with each device. Due to the risk of privacy leakage, it is 223

difficult for the server to obtain the data distribution of each 224

device directly. Therefore, selecting an easily obtainable metric 225

that does not compromise privacy to guide device selection, 226

which ensures that each intermediate model is trained by 227

balanced data is a key challenge for our asynchronous FL 228

approach in dealing with the non-IID problem. We have made 229

the following important observations that demonstrate the 230

ability of middle-layer activation patterns to reflect the input 231

data distribution of each device. Moreover, we have found that 232

the activation distributions (i.e., feature distributions) of some 233

model middle-layer can provide a finer-grained representation 234

of input data distributions than the one relying solely on input 235

data labels. These observations motivate us to select devices 236

based on middle-layer activation distributions. 237

Observation 1: To explore the connection between the 238

activation distribution and the data distribution, we divide 239

CIFAR-10 into six subdatasets (i.e., D0–D5), in which the data 240

in D0 is balanced, i.e., IID, and the other five data are divided 241

according to the Diricht distribution [34] Dir(β), where a 242

small value of β indicates a more seriously data imbalance 243

among subdatasets. We select ResNet-18 for model training 244

and computing the activation distribution of a specific layer on 245

the whole CIFAR-10 dataset and six subdatasets, respectively. 246

Fig. 2(a)–(c) present the cosine similarities of the activation 247

distribution using the whole CIFAR-10 dataset with that using 248

six subdatasets, with β = 0.1, 0.5, and 1.0, respectively. We 249

can observe that the D0 achieves the highest-cosine similarity 250

and the subdatasets divided with a smaller β achieves lower- 251

cosine similarity. Therefore, if the data distribution of a 252

subdataset is more similar to that of the whole dataset, it 253

achieves a higher-cosine similarity of their activation dis- 254

tribution. Fig. 2(d)–(f) present the cosine similarities of the 255

activation distribution using the CIFAR-10 dataset with that 256

using the combinations of five imbalance subdatasets. Note 257

that since the data in CIFAR-10 dataset and D0 is balanced, 258

data of the combination of all the five imbalance subdatasets 259

is balanced. From Fig. 2(d)–(f), we can observe that with the 260

data distribution of the combination dataset close to the whole 261

dataset, the cosine similarity of their activation distribution 262

becomes higher. Because the activation amount is obtained 263

by counting the number of times the neuron is activated, the 264

activation amount of the combination dataset is equal to the 265

sum of that of all the combined datasets. 266

Observation 2: Due to the preference difference of devices, 267

even if they have the same data label, the features of their data 268

may be different. For example, for the “Dog” category, some 269

users prefer Husky dogs, and some users prefer Teddy dogs. 270

Therefore, the data category distribution sometimes ignores 271

the differences between the same category data. 272

To explore whether differences between the same category 273

data can lead to different activation distributions, we select 274

the CIFAR-100 dataset, which contains 100 fine-grained and 275

20 coarse-grained classifications. We divide the CIFAR-100 276

dataset into six subdatasets (i.e., D0–D5), in which the data 277

in D0 is balanced on fine-grained classifications and the other 278

five data are balanced on course-gained classifications but 279

imbalanced on fine-grained classifications. We conduct model 280
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Fig. 2. Cosine similarity comparison of activation distributions. (a) β = 0.1.
(b) β = 0.5. (c) β = 1.0. (d) Combination for (a). (e) Combination for (b).
(f) Combination for (c).

Fig. 3. Cosine similarity comparison on CIFAR-100 dataset.

training on the task of the coarse-grained classification and281

computing the activation distribution of a specific layer on the282

whole CIFAR-100 dataset and six subdatasets, respectively.283

Fig. 3 presents the cosine similarities of the activation284

distribution using CIFAR-100 with six subdatasets. We can285

observe that D0 achieves the highest-cosine similarity and the286

difference of data with the same category can decrease the287

similarity of activation distribution. Therefore, compared to288

the data distribution, the activation distribution can express the289

differences between data in a more fine-grained manner.290

The above observations indicate that the higher the cosine291

similarity between the activation distributions of training data292

and the global activation distribution, the more balanced the293

training data are. Therefore, selecting a device that enables294

high-cosine similarity can lead the training data distribution to295

be IID. In our approach, we use activation distributions as a296

metric to guide the server to select devices, ensuring that each297

intermediate model is trained using more balanced data.298

IV. OUR CABAFL APPROACH299

A. Overview300

Fig. 4 illustrates the framework and workflow of our CaBaFL301

approach, which consists of a central cloud server and multiple302

AIoT devices, i.e., D1 − DN , where the cloud server includes303

two crucial components, i.e., a hierarchical cache-based model304

aggregation controller and a feature balance-guided device305

selector, respectively. The hierarchical cache-based model306

aggregation controller performs the model aggregation and307

updating according to the number of training times. The feature308

balance-guided device selector chooses clients for local training 309

based on the cosine similarity between the model’s feature in 310

the L2 cache and the global feature. Note that, according to 311

the observations in Section III, we select the activation of a 312

specific layer as the metric to calculate the feature. Assume that 313

l is a layer of some model m. From the perspective of m, the 314

feature distribution of a device is the activation distribution of 315

l using raw device data as inputs of m. The feature distribution 316

of an intermediate model indicates the accumulative feature 317

distributions of l on all its traversed devices since the last 318

aggregation. For example, assume that an intermediate model 319

mk is continuously trained by devices Di and Dj, its feature 320

distribution can be calculated as fmk = fDi + fDj , where fDi and 321

fDj are the feature distribution on Di and Dj, respectively. Note 322

that, the global feature distribution is the sum of all the device 323

feature distributions. Assume there are N devices, the global 324

feature can be calculated with fg =∑N
i=1 fDi . 325

Inspired by the concept of cache in the computer archi- 326

tecture domain, we developed a novel two-level cache-like 327

data structure that is hosted in the memory. In CaBaFL, the 328

hierarchical cache-based model aggregation controller consists 329

of a 2-level cache data structure to store intermediate models 330

and a cache update controller to control model updating in 331

L1 cache. The feature balance-guided device selector consists 332

of a model feature distribution cache and a device feature 333

distribution cache, where the model feature distribution cache 334

records the feature distribution of each intermediate model and 335

the device feature distribution cache records the global feature 336

distribution and feature distributions of each device. When 337

an intermediate model completes a local training session, the 338

device selector updates its feature distribution by adding the 339

feature distribution of its latest dispatched device to its original 340

feature distribution. In addition, CaBaFL periodically broad- 341

casts the global model to all devices to collect their feature 342

distributions. Upon receiving the global model, each device 343

calculates the device feature distribution using its raw data. 344

After the feature distribution collection, the server updates the 345

device feature distribution cache and model feature distribution 346

cache. Note that the feature distribution collection process 347

operates asynchronously with the FL training process. As 348

shown in Fig. 4, the FL training process for each intermediate 349

model in CaBaFL includes five steps as follows. 350

1) Step 1 (Device Selection): For an intermediate model, 351

the device selector selects a device according to the 352

feature distribution and training time of the intermediate 353

model and the feature distributions of candidate devices. 354

2) Step 2 (Model Dispatching): The server dispatches 355

intermediate models to selected devices for local 356

training. 357

3) Step 3 (Model Uploading): The device uploads the 358

model to the cloud server after local training is com- 359

pleted. 360

4) Step 4 (Cache Update): The cache update controller 361

stores the received model in the L2 cache and decides 362

if it updates the model to the L1 cache according to its 363

training times and features. 364

5) Step 5 (Cache Aggregation): If an intermediate model 365

reaches the specified training times, the cloud server 366
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Fig. 4. Framework and workflow of CaBaFL.

aggregates all the models in the L1 cache to generate367

a new global model and update the intermediate model368

using the global model.369

Our approach repeats steps 1–5 until a given time threshold370

is reached. Throughout the training process, none of the371

intermediate models need to wait for other intermediate models,372

i.e., all the intermediate models are trained asynchronously.373

Algorithm 1 details the implementation of our CaBaFL374

approach. Assume that there are at most K activated clients375

participating in local training at the same time. Line 1376

initializes the 2-level caches and other parameters we need.377

Note that the size of the L1 and L2 cache is K intermediate378

models. Line 2 initializes the vector sims. Lines 3–28 present379

the FL training process of models in the 2-level cache, where380

the “for” loop is a parallel loop. Line 6 represents that the381

model mi is uploaded to the server after training on the382

device Dj. Line 7 represents the training times of mi plus one.383

Line 8 represents the server storing the model mi in the L2384

cache. In line 9, the server calculates the cosine similarity385

simi between the model feature distribution fmi and the global386

feature distribution fg as simi. After that, the server adds simi to387

sims and sorts sims (lines 10 and 11). In lines 12–16, the server388

updates mL1
i using the eligible mi. Line 13 represents that the389

server updates the model in the L2 cache to the corresponding390

L1 cache. In lines 15 and 16, the server updates the feature391

distribution fmL1
i

and the training data size for mL1
i after the392

L1 cache is updated. Lines 18–23 present the details of the393

model aggregation process. In line 18, model aggregation is394

triggered when ci, the training times of mi, achieves k. In line395

19, the server aggregates models in the L1 cache to obtain a396

new global model mglb. In lines 20–23, the server replaces mi397

and cache[1][i−1] with the mglb and resets the training times398

and model feature of mi. In line 25, DevSel() selects a device399

Dj for mi for model dispatching.400

B. CaBaFL Implementation401

1) Hierarchical Cache-Based Asynchronous Aggregation:402

Hierarchical Cache Updating: CaBaFL maintains a 2-level403

cache in the cloud server to screen models in the L2 cache.404

Algorithm 1 Implementation of CaBaFL
Input: i) fg, global feature distribution; ii) fD, feature distributions of
devices; iii) fm, feature distributions of models; iv) T , time threshold.
Output: mglb, the global model;
CaBaFL(fg,fD,fm,T)

1: Init(cache, c, DS, DSL1, S);
2: VecInit(sims);
3: while time threshold T is not reached do
4: /* Parallel for */
5: for i← 1, . . . , K do
6: mi ← ReceiveModel(i);
7: ci ← ci + 1;
8: cache[0][i− 1]← mi;
9: simi ← cossim(fg, fmi );

10: add(sims, simi);
11: sort(sims);
12: if ci > k

2 or index(simi)
len(sims) > γ then

13: cache[1][i− 1]← cache[0][i− 1];
14: mL1

i ← cache[1][i− 1];
15: fmL1

i
← fmi ;

16: DSL1
i ← DSi;

17: end if
18: if ci = k then
19: mglb ← Aggr(mL1, DSL1);
20: cache[1][i− 1]← mglb;
21: mi ← mglb;
22: ci ← 0;
23: fmi ← null;
24: end if
25: Dj ← DevSel(fg, fD, DS, S, ci, fmi );
26: end for
27: end while
28: return mglb;

When a model completes local training and is uploaded to the 405

cloud server, the cloud server first saves the model in the L2 406

cache. If the model meets certain conditions, the server updates 407

the model to the L1 cache. The server calculate the cosine 408

similarity simi between the model feature distribution fmi and 409

the global feature distribution fg as simi = cossim(fg, fmi) = 410

[(fg · fmi)/(‖fg‖‖fmi‖)]. If simi is low, aggregating these models 411

hurts the performance of the global model. To perform 412

effective model screening, the cloud server maintains a sorted 413

list sims, which records the similarity between the features 414

of all models trained and fg. The server adds simi to sims. 415
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mL1
i will be updated to mi, if ([index(simi)]/[len(sims)]) > γ ,416

where index(simi) represents the index of simi in sims and417

len(sims) represents the length of sims. In addition, if the418

number of model training times exceeds half of the specified419

times, i.e., ci > (k/2), the cloud server will also update mL1
i420

to mi because the model has learned enough knowledge to421

participate in model aggregation.422

Model Aggregation Strategy (Aggr(·)): In cache aggregation,423

our approach calculates a weight for the model in the L1 cache424

based on the training data size and the similarity between the425

model features and global features. The aggregation process426

is formulated as follows:427

Aggregation
(

mL1, DSL1
)
=

∑K
i=1mL1

i ×
(
DSL1

i

)α

1−CSi

∑K
i=1

(
DSL1

i

)α

1−CSi

(2)428

where mL1
i represents the model in L1 cache, DSL1

i represents429

the size of training data of mL1
i , CSi = cossim(fmL1

i
, fg) rep-430

resents the similarities between the feature distribution of the431

model in L1 cache fmL1
i

and the global feature distribution fg,432

K represents the size of the cache, and α is a hyperparameter433

that is less than 1.434

To calculate the weight, we first calculate the model weights435

based on the model’s training data size. Due to the possibility436

of different numbers of training times of the model in the L1437

cache, there may be significant differences in the training data438

size of the model. Therefore, if we directly use the training439

data size as the weight, it may harm the performance of440

the global model when data heterogeneity is high. Therefore,441

we use the hyperparameter α to mitigate this effect. After442

that, we calculate the weights based on the similarity CSi =443

cossim(fg, fmL1
i

). The higher the CSi, the more balanced the444

model feature distribution is, and the higher the weight is445

assigned to the model. Since the similarity between models is446

very close to 1, to achieve small differences between them,447

we use 1− CSi to amplify these differences.448

2) Feature Balance Guided Device Selection: Algorithm 2449

presents the device selection strategy of CaBaFL. When select-450

ing devices, greedily choosing the device with the greatest451

similarity between model features and global features can lead452

to fairness issues by causing some devices to be selected453

repeatedly while others are rarely selected. Therefore, CaBaFL454

sets a hyperparameter σ . When the variance of the number455

of times devices are selected exceeds σ , the server selects456

devices from those idle devices with the fewest selections;457

otherwise, the selection range is all idle devices (lines 1–4).458

Note that we normalize before calculating the variance. If the459

model has just started a new training round, i.e., ci = 0,460

the server randomly selects a device for the model to start461

a new training round (lines 6–9). Otherwise, for each device462

Dj, CaBaFL calculates the cosine similarity w1 between the463

model feature distribution when Dj is selected and the global464

feature distribution (line 11). CaBaFL also considers balancing465

the total training time of the models in the L2 cache when466

selecting devices. Since the training time of a device is often467

directly proportional to the size of its data, balancing the model468

training data size can indirectly balance training time between469

models in the L2 cache. More balanced training times between470

Algorithm 2 Device Selection Procedure
Input: i) fg, global feature distribution; ii) fD, feature distributions of
devices; iii) DS, data size of L2 cache; iv) S, selected times of devices;
v) ci, training times of mi; vi) fmi , feature distribution of mi.
Output: Dj, selected device.
DevSel(fg,fD,DS,S,ci,fmi )
1: sr← GetIdleDevice();
2: Sidle ← {SDi | Di ∈ sr}
3: if var(S) > σ then
4: sr← {Dj | Sidle

Dj
= min(Sidle)};

5: end if
6: if ci = 0 then
7: Dj ← RandomlySelect(sr);
8: return Dj
9: end if

10: for Dj ∈ sr do
11: w1 ← cossim(fg, fmi + fDj );
12: DS′ ← DS;
13: DS′i ← DS′i +

∣∣Dj
∣∣;

14: w2 ← var(DS′);
15: wDj ← w1 − w2;
16: end for
17: res← arg maxDj

wDj ;
18: Sres ← Sres + 1;
19: fmi ← fmi + fDres ;
20: DSi ← DSi + |Dres|;
21: return res

models can alleviate the stale model problem caused by the 471

stragglers and allow for faster training. Therefore, CaBaFL 472

calculates the variance of the training data size of the model 473

in the L2 cache when Dj is selected (lines 12–14), where |Dj| 474

represents the training data size on Dj. w1 is then subtracted 475

by the variance to obtain the weight of the device (line 15), 476

and the device with the highest weight is selected for model 477

dispatching (line 17). Finally, lines 18–20 update Sres, fmi and 478

DSi. 479

V. PERFORMANCE EVALUATION 480

A. Experimental Setup 481

To demonstrate the effectiveness of our approach, we 482

implemented CaBaFL using the PyTorch framework [35]. All 483

experimental results were obtained from a Ubuntu workstation 484

equipped with an Intel i9 CPU, 64GB of memory, and an 485

NVIDIA RTX 4090 GPU. 486

Settings of Baselines: We compared our approach with six 487

baselines, including the classical FedAvg [5] and five SOTA 488

FL methods (i.e., FedProx [20], FedAsync [23], SAFA [25], 489

FedSA [26], and WKAFL [30]), which aim to solve similar 490

problem. Note that FedAvg and FedProx are synchronous FL 491

methods, FedAsync is an asynchronous FL method, and the 492

other three are semi-asynchronous FL methods. For SAFA, 493

FedSA, and WKAFL, we set the model buffer size to K/2. To 494

ensure a fair comparison, we used an SGD optimizer with a 495

learning rate of 0.01 and a momentum of 0.5 for all baselines 496

and CaBaFL. Each client was trained locally for five epochs 497

with a batch size of 50. Note that all these experimental 498

settings are widely used in the evaluation of baselines. 499

Settings of Datasets and Models: Our experiments were 500

conducted on three well-known datasets, i.e., CIFAR-10, 501

CIFAR-100 [36], and FEMNIST [37], which are widely used 502

in evaluating the performance of the above baselines. To create 503
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TABLE I
COMPARISON OF TEST ACCURACY FOR BOTH IID AND NON-IID SCENARIOS

the heterogeneity of device data for CIFAR-10 and CIFAR-504

100, we employed the Dirichlet distribution Dir(β) [34],505

where smaller values of β indicate greater data heterogeneity.506

As FEMNIST already possesses a non-IID distribution, we507

did not require the use of the Dirichlet distribution. Moreover,508

to show the pervasiveness of our approach, we conducted509

experiments on three networks, i.e., CNN, ResNet-18, and510

VGG-16, which have different structures and depths.511

Settings of System Heterogeneity: To simulate system het-512

erogeneity, for the experiments on datasets CIFAR-10 and513

CIFAR-100, we assumed each of them involved 100 AIoT514

devices with varying computing power. However, for dataset515

FEMNIST, there are a total of 180 devices. First, we simulate516

different computing power based on the processing speed of517

true devices. Since the NVIDIA Jetson AGX Xavier device can518

be powered by different performance modes that can provide519

different computing power, we measured the processing speed520

under different performance modes and used it as the basis for521

simulating the computing power of our devices. To generate522

the simulated computing power, we used a Gaussian distri-523

bution with the mean and variance obtained from actual time524

consumption data of training models on Jetson AGX Xavier.525

Specifically, we assume that the training performance (i.e.,526

the training time of one data sample) of a device follows the527

Gaussian distribution N(0.03, 0.01), as measured in seconds.528

Second, we simulated a fixed network bandwidth for each529

device to calculate the communication time required with the530

cloud server. In addition, we assume only 10% of devices can531

participate in training at the same time.532

B. Performance Comparison533

1) Comparison of Accuracy: Table I compares the test534

accuracy between CaBaFL and all the baselines on three535

datasets with different non-IID and IID settings using ResNet-536

18, CNN, and VGG-16 models. From Table I, it can be537

TABLE II
COMPARISON OF COMMUNICATION OVERHEAD

observed that CaBaFL can achieve the highest-test accuracy 538

in all the scenarios regardless of model type, dataset type, 539

and data heterogeneity. For example, CaBaFL improves test 540

accuracy by 19.71% over WKAFL in CIFAR-100 dataset with 541

VGG-16 model when β = 0.1. Fig. 5 shows the learning 542

curves of CaBaFL and all baseline methods on CIFAR-10 and 543

ResNet-18. As an example of dataset CIFAR-10, when β = 0.1 544

and the target accuracy is 45%, CaBaFL outperforms SAFA 545

by 9.26X in terms of training time. Moreover, We can observe 546

that CaBaFL achieves the highest accuracy and exhibits good 547

stability in its learning curve. Furthermore, we can find that 548

our method can perform better than the baselines even in the 549

IID scenario. This is mainly because in CaBaFL, a model can 550

be trained on multiple devices before being aggregated, i.e., it 551

can perform more times of stochastic gradient descent. 552

2) Comparison of Communication Overhead: To evalu- 553

ate the communication overhead caused by CaBaFL, we 554

conducted experiments on the CIFAR-10 dataset using the 555

ResNet-18 model. Table II compares the communication over- 556

heads between CaBaFL and the baselines to achieve specified 557

inference accuracy for the global model. We can find CaBaFL 558

leads to the least communication overhead within six out of 559

the eight cases. For example, when the target accuracy is 65% 560

and β = 1.0, the communication overhead of FedASync is 561
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Fig. 5. Learning curves of training CIFAR-10 with ResNet-18. (a) β = 0.1.
(b) β = 0.5. (c) β = 1.0. (d) IID.

TABLE III
STABILITY COMPARISON USING THE STANDARD DEVIATION OF MA

5760, while our approach is 2279. Note that both FedProx and562

SAFA cannot achieve the target in this case.563

3) Comparison of Stability and Fairness: We conducted564

experiments to quantify the stability and fairness of models565

using the CIFAR-10 dataset and ResNet-18 model with β =566

0.5. For stability analysis, we used the standard deviation of567

the moving average (MA) to quantify model stability. We568

calculated the performance of our method and all baselines569

on this metric, and the results are shown in Table III. We570

can find that CaBaFL performs best. Meanwhile, our approach571

considers the fairness of device selection. By introducing the572

hyperparameter σ (see line 3 of Algorithm 2), our device573

selection strategy can ensure that all devices are selected with574

a similar number of times. We normalized the number of times575

a device is selected and used the variance of the normalized576

values of devices to quantify such fairness. We compared577

our device selection strategy with the classic random device578

selection strategy. We found that the fairness of using our579

device selection strategy is 8.7 × 10−7, while the fairness of580

using the random strategy is 1× 10−6, indicating the fairness581

of CaBaFL is similar to the one of FedAvg.582

C. Impacts of Different Configuration583

1) Impacts of Different Features: We investigated the584

impact of selecting features from different model layers on585

accuracy. Since ResNet-18 has 4 blocks, we performed pooling586

operations on the feature outputs of each block separately587

and used them as features when selecting the device. The588

feature dimensions of Blocks 1 to 4 are 64, 128, 256, and 512,589

respectively. Fig. 6 shows all experiment results conducted590

on CIFAR-10 with IID distribution and Dirichlet distribution591

where β = 0.5. We can observe that selecting the features592

from Block 4 performs the best. We can conclude that because593

Fig. 6. Impact of different features on test accuracy. (a) β = 0.5. (b) IID.

Fig. 7. Learning curves for different ratios of simultaneously training clients.
(a) 5%. (b) 10%. (c) 20%. (d) 50%.

of the highest dimensionality of Block 4, the features from 594

Block 4 can represent data distribution in a more fine-grained 595

manner, thus achieving the highest accuracy. 596

2) Impacts of Different Number of Simultaneously Training 597

Devices: By default, we assumed that 10% of devices were 598

selected to participate in the training simultaneously. To 599

investigate the impact of different numbers of devices trained 600

simultaneously, we also considered four different ratios (i.e., 601

5%, 10%, 20%, and 50%) for simultaneously training devices, 602

and conducted experiments using ResNet-18 on CIFAR-10 603

with β = 0.5. Note that in the experiments, we did not 604

specify the percentages of stragglers using the above ratios. 605

Instead, we assumed that the performance of devices within 606

an experiment follows some Gaussian distribution, where 607

stragglers only denote weak devices with low-training speed. 608

From Fig. 7, we can find that more selected devices will lead 609

to more stable training convergence. This is because more 610

selected devices lead to more training data, thus alleviating the 611

weight divergence problem during the global model training. 612

3) Impacts of Different Device Performance: We conducted 613

an experiment to assess the generalization ability of CaBaFL. 614

Our experiment considered the impact of network conditions 615

on delay and the varying computing capabilities of devices on 616

local training time. To facilitate the evaluation, we combined 617

the delay and local training time, assuming that their combina- 618

tions adhere to Gaussian distributions. We consider five kinds 619

of device conditions, i.e., excellent, high, medium, low, and 620

critical, as illustrated in Table IV. 621
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TABLE IV
TRAINING PERFORMANCE FOR DEVICES

TABLE V
CONFIGURATIONS OF DIFFERENT DEVICE COMPOSITIONS

TABLE VI
TEST ACCURACY COMPARISON FOR DIFFERENT DEVICE

CONFIGURATIONS

Based on Table IV, we considered four configurations as622

shown in Table V that have different device compositions to623

evaluate the generalization ability of CaBaFL.624

We conducted our experiments using the ResNet-18 model625

on the CIFAR-10 dataset with β = 0.1. Table VI compares626

the accuracy between CaBaFL and all baselines.627

From this table, we can find that CaBaFL can achieve the628

highest and stablest accuracy in all four cases. Meanwhile,629

we can observe that the accuracy of baselines decreases630

significantly when the numbers of stragglers increase, while631

the accuracy differences of our approach are small. This632

is mainly because both synchronous and semi-asynchronous633

methods must wait for a certain number of models before634

aggregating. Therefore, their accuracy is affected by stragglers.635

Moreover, the number of stale models increased due to the636

increase in the number of stragglers, leading to a decrease in637

accuracy.638

4) Impacts of Different Model Training Times: To inves-639

tigate the impact of model training times k, we set up five640

different model training times, respectively, 10, 15, 20, 25,641

and 30, and conducted experiments using ResNet-18 model642

on CIFAR-10 dataset with IID distribution. Fig. 8 exhibits the643

experiment result. We can find that as the model training times644

k increase, the accuracy of the global model improves, but too645

high a number of model training times leads to a decrease in646

global model accuracy and instability of the learning curve.647

5) Impacts of Task Types: To evaluate the generalization648

ability of our approach to different types of tasks, we649

conducted experiments on two well-known nonimage-based650

datasets, i.e., the text type dataset Shakespeare [37] and the651

table type dataset Activity [38], using the LSTM model and652

MLP model, respectively. From Table VII, we can find that653

CaBaFL can achieve the best results in all two cases, indicating654

the generalization ability of CaBaFL on different tasks.655

Fig. 8. Impact of training times on test accuracy.

Fig. 9. Impact of the feature collection cycle. (a) β = 0.1. (b) IID.

6) Impacts of Feature Collection Cycles: We assumed that 656

feature collection is performed after every m cache aggrega- 657

tion. We set m to be 1, 10, 20, 50, and 100, respectively, and 658

conduct experiments on the CIFAR-10 dataset and ResNet- 659

18 model with both the IID distribution and the Dirichlet 660

distribution (with β = 0.1). Fig. 9 exhibits the experiment 661

results. From the results, we can find that both too-fast and 662

too-slow feature collection cycles result in lower-global model 663

accuracy. In addition, a feature collection cycle that is too fast 664

will significantly increase the communication overhead, since 665

the server needs to frequently send the global model to all 666

devices for feature collection. 667

D. Ablation Study 668

1) Key Components of CaBaFL: To demonstrate the effec- 669

tiveness of CaBaFL, we investigated five variants of CaBaFL: 670

1) Conf1 represents selecting devices-based only on the sim- 671

ilarity between model feature and global feature; 2) Conf2 672

denotes selecting devices-based only on data size; 3) Conf3 673

indicates randomly selecting devices; 4) Conf4 represents 674

aggregating models in the L2 Cache, which means only 675

L2 Cache is available in the server; and 5) Conf5 denotes 676

averaging aggregation during model aggregation. 677

We conducted experiments using the ResNet-18 model on 678

CIFAR-10 with both non-IID and IID settings, and the results 679

are presented in Table VIII. Table VIII shows that CaBaFL 680

achieves the highest-test accuracy among all six designs. By 681

comparing the performance of Conf4 and CaBaFL, we can 682

observe that our 2-level cache structure significantly improves 683

the stability of model training and enhances model accuracy in 684

scenarios with high levels of data heterogeneity. By comparing 685

the performance of Conf5 and CaBaFL, we observed that our 686

cache aggregation strategy significantly improves the model 687

accuracy. Furthermore, by comparing the performance of 688

Conf1 to Conf3 with that of CaBaFL, we observed that our 689

feature balance-guided device selection strategy is effective 690
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TABLE VII
TEST ACCURACY COMPARISON FOR DIFFERENT TASK TYPES

TABLE VIII
COMPARISON OF TEST ACCURACY AMONG CABAFL AND ITS VARIANTS

Fig. 10. Comparison of accuracy based on activation amounts and hard
labels. (a) CIFAR-10, β = 0.1. (b) CIFAR-10, IID. (c) CIFAR-100, special.

in different scenarios of data heterogeneity. Especially under691

the extreme data heterogeneity condition where β = 0.1,692

our device selection strategy can significantly improve the693

accuracy of the global model compared to Conf3, which is694

random device selection.695

2) Activation Amounts Versus Hard Labels: We evaluated696

the impact of activation amounts and hard labels on the697

training performance of CaBaFL. Fig. 10(a) and (b) show698

the results conducted on the combination of CIFAR-10 and699

ResNet-18 within IID and non-IID (β = 0.1), respectively. We700

can find activation amount-based CaBaFL outperforms hard701

label-based CaBaFL since activation distributions provide a702

fine-grained representation for data distributions. Note that the703

CIFAR-100 dataset consists of 20 coarse-grained categories,704

which can be refined into 100 fine-grained categories. To705

reproduce Observation 2 in Section III, we construct a special706

data distribution for devices based on CIFAR-100, where the707

device data are IID according to coarse-grained categories but708

non-IID according to fine-grained categories. Fig. 10(c) shows709

the training processes using ResNet-18, where activation710

amount-based CaBaFL outperforms hard label-based CaBaFL711

due to its fine-grained representation of data distributions.712

E. Real Test-Bed Evaluation713

To evaluate the effectiveness of our approach in practical714

scenarios, we conducted experiments on real devices using715

CNN models and the CIFAR-10 dataset, considering both IID716

and non-IID (β = 1.0) scenarios. Fig. 11 shows our test-717

bed platform, which uses: 1) an Ubuntu-based cloud server718

equipped with an Intel i9 CPU, 32-GB memory, and an719

Fig. 11. Our real test-bed platform.

Fig. 12. Comparison of accuracy for different system metrics (β = 1.0).
(a) Wall clock time. (b) Communication overhead. (c) Energy consumption.

Fig. 13. Comparison of accuracy for different system metrics (IID). (a) Wall
clock time. (b) Communication overhead. (c) Energy consumption.

NVIDIA RTX 3090Ti GPU and 2) four NVIDIA Jetson Nano 720

boards and six Raspberry Pi boards as heterogeneous clients. 721

Figs. 12 and 13 present a comparison of accuracy for 722

different system metrics on our test-bed platform. We can find 723

that CaBaFL can also achieve the best performance compared 724

to all the baselines. Please note that the number of samples per 725

device in the real test-bed platform is much bigger than the 726

number of samples per device in the simulation experiment. 727

As a result, the experiment in Fig. 10 is more likely to cause 728

much more severe catastrophic forgetting even when β = 729

1.0, resulting in large amplitudes of the learning curves. Note 730

that since the local epoch is smaller with β = 1.0 than with 731

IID distribution, the communication overhead is greater with 732

β = 1.0 than with IID distribution. 733

F. Impact of Hyperparameters 734

To evaluate the impact of hyperparameters in CaBaFL, 735

we set different configurations for α, γ , and σ , respectively, 736

and performed experiments in the CIFAR-10 dataset using 737
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TABLE IX
IMPACT OF α ON TEST ACCURACY

TABLE X
IMPACT OF σ ON TEST ACCURACY

TABLE XI
IMPACT OF γ ON TEST ACCURACY

ResNet-18 model with IID and Non-IID (β = 0.1) scenarios.738

Tables IX–XI exhibit the experiment results.739

Table IX shows the inference accuracy with different set-740

tings of α. From Table IX, we can find that when the non-IID741

degree is high, a smaller α can improve the accuracy of742

the model, while under the IID distribution, a larger α can743

improve the accuracy of the model. This is mainly because744

when the degree of non-IID is high, the local data size of the745

device varies greatly, so a smaller α is needed to balance this746

difference, while the opposite is true in the case of IID.747

Table X shows the impact of σ . We can find that when the748

non-IID degree is high, a larger σ can improve the accuracy749

of the model, while under the IID distribution, a smaller σ can750

improve the accuracy of the model. Please note that CaBaFL751

normalizes the number of times a device is selected before752

calculating the variance of the number of times the device is753

selected, so the value of σ is less than 0.754

Table XI shows the impact of γ . We can find that when755

the value of γ is appropriate, CaBaFL can achieve better-756

global model accuracy. When the non-IID degree is high, a757

larger γ , i.e., filtering more models to make the cumulative758

training data of the model in the L1 cache more balanced, is759

required to achieve higher-global model accuracy, while under760

the IID distribution, a smaller γ , i.e., filtering few models,761

allows CaBaFL to achieve higher-model accuracy.762

VI. DISCUSSION763

A. Fairness and Workload Balance764

We strive to address the fairness and workload balance765

issues in our device selection mechanism, where we use the766

hyperparameter σ to control the fairness of device selection767

(see line 3 of Algorithm 2). During the FL training, if the vari-768

ance of the number of device selections exceeds σ , CaBaFL769

will select idle devices that have been touched least frequently,770

ensuring the fairness of device selection. We recorded the771

number of times a device was selected using our device772

selection strategy as well as the random selection strategy.773

From Fig. 14, we can find that compared to the random774

Fig. 14. Comparison between random selection strategy and our feature
balance-guided device selection strategy.

selection strategy, except for a few outliers, the number of 775

selected devices for our strategy is very close, demonstrating 776

that the workload between devices is balanced. 777

B. Complexity and Scalability 778

Assume that the dimension size of flattened feature distri- 779

butions is d, the current FL training round index is k, and the 780

number of activated devices in a round is n. Let D be the 781

number of all devices, and m be the total number of model 782

parameters. The memory and time complexity analysis of our 783

approach is as follows. 784

Time Complexity: The time complexity of our method 785

mainly comes from Cache Update and Device Selection. 786

1) Cache Update: From lines 9–12 of Algorithm 1, we can 787

figure out that the time complexity of Cache Update is 788

O(k log k + d). 789

2) Device Selection: From lines 10–16 of Algorithm 2, we 790

can determine the time complexity of device selection 791

is O(n(d + n)). 792

Above all, the overall time complexity of our method is 793

O(k log k + d + n(d + n)). Even for a FL system with 1000 794

devices, one round of Cache Update and Device Selection 795

costs less than 2ms, which is negligible compared with local 796

training time. 797

Memory Complexity: The memory complexity of our 798

method mainly also comes from cache update and device 799

selection. 800

1) Cache Update: Although there are two caches in our 801

method, we can only maintain the L1 cache, and the 802

L2 cache can only exist logically. Because the model in 803

the L2 cache can be deleted from memory after being 804

sent to the device for training. Therefore, the memory 805

complexity is O(nm). In addition, our method also main- 806

tains the model feature distribution and device feature 807

distribution, and its memory complexity is O((D+n)d). 808

2) Device Selection: From Algorithm 2, we can determine 809

that the memory complexity of device selection is 810

O(Dd + n). Since nm � Dd + dn + n, the overall 811

memory complexity of our method is approximately 812

O(nm), which is the same as the traditional FL. 813

VII. CONCLUSION 814

To improve the inference performance of FL in large-scale 815

AIoT applications, this article introduced a new asynchronous 816
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FL method named CaBaFL, which can effectively mitigate the817

notorious straggler and data imbalance problems caused by818

device and data heterogeneity. Specifically, CaBaFL maintains819

a hierarchical cache data structure on the server that can:820

1) mitigate the straggler problem caused by device heterogene-821

ity using our proposed hierarchical cache-based aggregation822

mechanism and 2) achieve stable training convergence and823

high-global model accuracy by properly placing models in824

different hierarchies of the cache. Moreover, by using our825

feature balance-guided device selection strategy, CaBaFL826

can alleviate the performance deterioration caused by data827

imbalance. Comprehensive experimental results demonstrate828

that CaBaFL can achieve much better-inference performance829

compared with SOTA heterogeneous FL methods within both830

IID and non-IID scenarios.831
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