
Modeling and Analysis of the LatestTime Message
Synchronization Policy in ROS

Chenhao Wu∗, Ruoxiang Li†, Naijun Zhan‡∗, and Nan Guan†
∗SKLCS, Institution of Software, Chinese Academy of Sciences & University of CAS, Beijing, China

†City University of Hong Kong, Hong Kong SAR
‡School of Computer Science, Peking University, Beijing, China

{wuch, znj}@ios.ac.cn, nanguan@cityu.edu.hk, ruoxiang.li@my.cityu.edu.hk

Abstract—Sensor fusion plays a critical role in modern robotics
and autonomous systems. In reality, the sensor data destined for
the fusion algorithm may have substantially different sampling
times. Without proper management, this could lead to poor
sensor fusion quality. ROS is the most popular robotic software
framework, providing essential mechanisms for synchronizing
messages to mitigate timing inconsistencies during sensor fusion.
Recently, ROS introduced a new LatestTime message synchro-
nization policy. In this paper, we formally model the behavior of
the LatestTime policy and analyze its worst-case real-time per-
formance. Our investigation uncovers a defect of the LatestTime
policy that may cause infinite latency in publishing subsequent
outputs. We propose a solution to address this defect and develop
safe and tight upper bounds on worst-case real-time performance,
in terms of both the maximal temporal inconsistency of its
outputs and the incurred latency. Experiments are conducted to
evaluate the precision, safety and robustness of our theoretical
results.

I. INTRODUCTION

Multi-sensor data fusion is an integral component in the
functionality of advanced autonomous systems like self-
driving vehicles, robots, and unmanned aerial vehicles. This
technology equips these systems with the capability to ac-
curately detect and interpret their environment. Nonetheless,
one practical challenge is that sensor data from various sources
often lack synchronized sampling times and may face variable
delays on their way to the fusion process [1], [2]. This intro-
duces significant time disparity, i.e., discrepancies in the actual
timing of data acquisition among the data from different sensor
sources. Such time disparity may be substantial enough to
compromise the integrity of the fusion outcomes, rendering the
data less reliable or, in extreme cases, rendering it nonsensical.
To circumvent this, it is critical to synchronize the data streams
from all sensors to manage and minimize these disparities
before the data proceeds to the fusion process.

The Robot Operating System (ROS) stands at the forefront
of software development for robotics and autonomous sys-
tems. ROS provides essential mechanisms for synchronizing
messages to mitigate time disparity in sensor fusion processes.
Fig. 1 depicts the role of synchronizer in a typical ROS
system. It subscribes the messages from sensors, choosing
sets of messages from them, and publishes these sets to
following components like data fusion. Significant research
has already been conducted on the ApproximateTime message
synchronization policy, a staple in ROS since version 1.1

Fig. 1. Role of message synchronizer in ROS. Down arrows are messages
ordered by timestamp.

and widely used in various ROS-based applications. These
studies have rigorously defined the ApproximateTime policy’s
timing behaviors, establishing reliable upper bounds for its
worst-case time disparity and latency due to the extra waiting
time incurred by the synchronization. These findings have
been pivotal for integrating the ApproximateTime policy into
real-time systems design, thereby ensuring high-quality fusion
output and predictable end-to-end latency for sensor data
processing.

However, with the rollout of ROS’s newest stable release,
ROS 2 Iron Irwini, a novel LatestTime message synchroniza-
tion policy has been introduced. Existing research does not
cover this policy, leaving its timing behavior and real-time
performance characteristics underexplored. Our paper aims to
bridge this gap by delivering a comprehensive analysis of the
LatestTime policy’s timing behavior and evaluating its real-
time performance, including both the worst-case time disparity
and the worst-case latency a message may experience due to
the synchronization with other messages.

First, our study reveals that the LatestTime policy has a
defect in that the policy may suffer very large latency in
publishing subsequent outputs, and the latency can be even
infinite in the worst case. Consequently, the system using
the LatestTime policy for message synchronization may suffer
large and even infinite latency to obtain information update,
which is unacceptable to real-time systems that have strict
requirements on the information update latency. We propose
a small revision to the original LatestTime policy to address
this defect so that the latency of interest can be well bounded,
and implemented in ROS 2 Iron Irwini [3].

After repairing the above-mentioned defect, we derive safe
and tight upper bounds on its worst-case time disparity and
two types of latency incurred due to message synchronization,

the passing latency and reaction latency [1]. These bounds are
useful for verifying timing and functional properties for real-
time systems. E.g. for any downstream component that relies
on synchronizer’s outputs, such as data fusion, as long as our
bounds fall within an acceptable range, the system can deliver
the expected quality under all circumstances. Moreover, due to
the closed-form nature of our bounds on system parameters,
designers can easily adjust these parameters to meet given
requirements, or identify the bottleneck parameters that con-
tributes most to corresponding metrics.

We conduct experiments under variable settings to validate
our conclusions, and evaluate the precision, safety and robust-
ness of our bounds.

II. BACKGROUND AND RELATED WORK

A. Message Synchronization in ROS

Currently, four standard synchronization policies are pro-
vided in the Latest version of ROS 2 — The ExactTime Policy
[4], the ApproximateEpsilonTime Policy [5], the Approximate-
Time Policy [6] and the LatestTime Policy.

The ExactTime Policy selects output messages with exactly
the same timestamp. Its output sets are perfectly aligned,
which is ideal for data fusion. However, it is too restrictive
for real-world systems and is seldom to use.

The ApproximateEpsilonTime Policy is a generalized ver-
sion of the ExactTime Policy. It selects message set whose
messages’ maximal timestamp difference is no larger than a
user-predefined constant ϵ, as opposed to 0 in the ExactTime
Policy. Its performance highly relies on the selection of ϵ.

The ApproximateTime Policy predicts the incoming mes-
sages. It online selects output set with the minimal timestamp
difference from all available messages, making it adaptive to
incoming messages. Nonetheless, the accuracy of its prediction
relies heavily on user input. Since it only predicts one incom-
ing message, its output is a local optimum and may lead to
long-term worse cases [7].

The LatestTime Policy prioritizes output frequency, aiming
to output messages at the highest frequency among sensors. It
achieves this by up-sampling slower sensors using a zero-order
hold, enabling frequent outputs as if all sensors operated at the
highest frequency. While enhancing the system’s perception
of the environment, the policy does not guarantee temporal
alignment in its outputs.

B. Related Works

Data fusion algorithms play a crucial role in environmental
perception and decision-making processes. However, many
of these algorithms assume aligned timestamps, a condition
rarely met in real-world systems. Various techniques [8]–[11]
have been developed to mitigate the impact of misalignment,
but their effectiveness is limited within certain thresholds of
temporal inconsistency. Thus, attention to message synchro-
nization is crucial to improve the quality of data fusion.
Prior studies [12]–[15] addressed the precise timestamping of
sampled data. Thus this paper, focus on managing data from
different sensors.

As the successor of ROS, ROS 2 claims substantial en-
hancement of real-time performance. However, hard real-time
guarantees remain elusive due to dependencies on underlying
middle-wares and hardware platforms [16]. Many works have
evaluated its real-time performance using measurement-based
approach. [17] evaluated the capabilities and performance for
ROS1 and ROS2 with different DDS implementations, con-
sidering metrics like latency and throughput. [18] conducted
communication evaluation for ROS2 real-time applications
taking into account the worst-case latency. [19] proposed an
end-to-end timing analysis for cause-effect chains in ROS2,
considering the maximum end-to-end reaction time and max-
imum data age metrics. Other works aim to improve the real-
time capabilities of ROS 2. [20]–[23] proposed techniques to
address the limitations of the default scheduling strategy of
ROS2 by enhancing or redesigning the executor. However,
all the above works focuses on the executor in ROS without
considering the message synchronizer.

Recently, [2] conducted the first analysis of ROS syn-
chronizer. By modelling the ApproximateTime Policy, they
proposed an upper bound on the worst-case time disparity of
its output. [24] summarized and formally proved important
properties of this policy. [1] evaluated the latency caused by
the synchronization process and derived corresponding upper
bounds. Instead of analyzing existing policies in ROS, [7]
proposed a novel policy named ”SEAM” and demonstrated
its optimality regarding time disparity. The LatestTime is a
newly introduced standard synchronization policy in ROS. We,
for the first time, formally model its behavior and analyze its
timing properties.

III. PROBLEM DEFINITION

A. System Model

The system has a total of N sensors, indexed by 1, · · · , N ,
each sporadically sampling messages and transferring them
through corresponding channels. We use mj

i to denote the j-th
message sampled by the i-th sensor according to the temporal
order of sampling. For simplicity, we may omit the superscript
j when it is clear or irrelevant in the context. Each message has
a timestamp τ(mj

i), indicating the time when sensor samples
it. We assume that for each sensor i, the timestamp difference
between any two consecutive messages is bounded within
[TB

i , TW
i], i.e., TB

i ≤ τ(mx+1
i)− τ(mx

i) ≤ TW
i . It holds that

0 < TB
i ≤ TW

i for i ∈ {1, · · · , N}. TB
i = TW

i corresponds
to the periodic case.

After some pre-processing, messages are transmitted to
the Message Synchronizer, which is the focus of this paper.
The arrival time, denoted as α(mj

i) refers to the time when
message mj

i arrives at the synchronizer. α(mj
i)−τ(mj

i) is the
delay caused by pre-processing and data transfer. We assume
that for each sensor i, the delay of its messages are bounded
within [DB

i , DW
i]. We have 0 ≤ DB

i ≤ α(mj
i) − τ(mj

i) ≤
DW

i . It is noteworthy that the scenario of no delay, i.e.,
0 = DB

i = DW
i , is also considered. We also assume that the

delay does not distort the sampling order of the messages, i.e.,
τ(mj

i) < τ(ml
k) =⇒ α(mj

i) < α(ml
k). Many techniques

e.g. [16], [22], [23] have been well developed to bound the
response time of real-time tasks. So we assume DB

i and DW
i

are known values.
The Message Synchronizer is a software component respon-

sible for selecting and publishing the output messages to the
subsequent processing component. It invokes the algorithm
called synchronization policy each time a new message arrives.
This paper focuses on the behaviors and properties of the
LatestTime Synchronization Policy in ROS, which will be
elaborated in Section IV. We omit the execution time of
the synchronizer, and we assume that the processing of the
Message Synchronizer is reliable, ensuring no concerns of
message overflow or loss. We use the term publish to refer to
the synchronizer outputting a set of messages. All messages
in a set are published together, the time of which is referred
as the publishing time.

B. Problem Definition

We assume the following parameters related to the input
messages of the system.

• N : Total number of the sensors.
• TB

i and TW
i : The minimal and maximal timestamp

difference between any two consecutive messages of each
sensor i, respectively.

• DB
i and DW

i : The minimal and maximal delay of mes-
sages in each channel i, respectively.

Based on these information, our objective is to derive upper
bounds for the time disparity of the published sets, the passing
latency and reaction latency of the system, whose definitions
are provided below.

Definition 1 (Time disparity) [2]). Let S = {m1, · · · ,mN} be
a set of messages, where mi is sampled by sensor i. The time
disparity of S, denoted by ∆(S), is defined as the difference
between the largest and smallest timestamps of messages in
S, i.e.,

∆(S) = max
mi∈S

τ(mi)− min
mj∈S

τ(mj)

Definition 2 (Passing latency [1]). Let mj
i be a message in

a published message set which is published at time tf . The
passing latency of mj

i , denoted as P (mj
i), is defined as the

difference between its publishing time and its arrival time, i.e.,

P (mj
i) = tf − α(mj

i)

Definition 3 (Reaction latency [1]). Let mk
i be a message,

tf denote the time when mk
i is first published, and mj

i be
the latest published message in {ml

i | l < k}. The reaction
latency experienced by mk

i , denoted as R(mk
i), is defined as

the difference between the arrival time of mj
i and the first

publishing time of mk
i :

R(mk
i) = tf − α(mj

i)

Fig. 2 illustrates these metrics. In this example, there are
2 sensors, each sampling messages and transmitting them to
synchronizer via a corresponding channel. The x-axis repre-
sents time. The sampling and arriving time of each message

Fig. 2. Illustration of three timing metrics.

are denoted as upwards and downwards pointing arrows,
respectively. The shaded area between them indicates the
delay. The synchronizer selects messages from each channel
and publish the whole message set, circled by red box, at
publishing time depicted as red arrow.

The time disparity of the second published set is depicted in
the figure, which equals to the difference of the sampling times
of m2

1 and m2
2. The time disparity represents the sampling time

inconsistency of the published messages. The larger the time
disparity, the lower the quality of data fusion’s input.

The passing latency of m1
1 is equal to the difference of the

arriving time of m1
1 and its publishing time (red arrow near

m1
2). An important system-level timing metric is the end-to-

end delay of a message, which is the interval from its sampling
to when the actuator takes action based on it. Passing latency
measures the contribution introduced by the synchronizer to
the end-to-end delay.

The reaction latency corresponding to m2
1 is the difference

of the arrival of the last published message before it in this
channel (m1

1), and its first publishing time (red arrow of m2
2).

The reaction latency is the maximum delay introduced by
synchronizer as a part of the end-to-end reaction time, which
is the time the whole system needs to react to an external
event regarding a specific sensor. In a worst-case scenario, an
external event happens just after m1

1 is sampled. So sensor1
does not detect it until m2

1 is sampled. Thus the latency caused
by synchronizer regarding reacting to this event is exactly the
reaction latency of m2

1.
In this paper, we focus on finding safe upper bounds

of the three metrics, depending only on the aforementioned
information. By safe we mean that the bounds always hold,
irrespective of the specific message sampling pattern, the ac-
tual message delay, and any other runtime-determined values.
Given that the bounds are safe, we strive for their tightness,
which refers that there exists a specific system, the worst-case
value of whose corresponding metric matches or approaches
the value given by the bound.

IV. THE LatestTime POLICY

The LatestTime Policy is one of the standard message
synchronization policies in ROS [25]. It is newly introduced
in ROS2 C++ version Iron Irwini and Rolling Ridley, yet
no research has undertaken an analysis of its behaviors and
timing properties. In the following, we derive a model of
the policy to assess its timing behavior, focusing on the time
disparity, passing latency, and reaction latency. We also present
an illustrative example for better understanding.

The LatestTime Policy aims to publish at the highest fre-
quency among all channels. Messages from the slower sensors
will be repeated at this frequency and they are updated when-
ever a new one arrives. Therefore, from the signal processing
perspective, this is effectively upsampling the slower messages
using a zero-order hold.

The LatestTime Policy uses a message set S to maintains
the newest message of each sensor. We use S[i] to denote the
i-th message in S, which is the newest from sensor i.

The synchronizer is only invoked upon the arrival of a new
message. Each time invoked, it utilizes two key components,
data update process and pivot selection process, to achieve its
goal.

A. data update

The LatestTime Policy statistically estimate the frequency
of each channel. The frequency corresponding to two consec-
utive messages in channel i is denoted as f(mx

i ,m
x+1
i) =

1
α(mx+1

i)−α(mx
i)

, which is the reciprocal of the difference
between the messages’ arrival times. The mean value of
the frequency is denoted as f i, representing the estimated
frequency of a channel and is used for the further comparison.
The policy updates f i online based on frequency of all the ar-
rived messages in channel i. The calculation method it adopts
is a modified version of the Exponential Moving Average
(EMA) method. Definition of EMA and the implementation
of data update is detailed in Appendix IX-A and IX-B.

Due to jitters in message arrival times, the frequency fluc-
tuates around its mean value. To estimate this variation, the
system calculates the mean error for each channel i, denoted
as ei. The calculation details are provided in Appendix IX-B.
By counting the mean error, the system wants to estimate
the range of frequency. Given an user-predefined constant γi,
referred to as the margin factor, the system estimates the
maximal frequency variation as γi ∗ ei. Thus the estimated
frequency range is [f i − γi · ei, f i + γi · ei]. If a new
frequency falls outside this range, the system considers the
mean frequency unsafe.

B. Pivot Selection

Based on the statistics, the system aims to publish at
the highest frequency among channels. Since the system is
triggered upon the arrival of messages, this task simplifies to
deciding whether to publish upon the arrival of each message.
Next we introduce the other key component, pivot selection,
which accomplishes this task.

The pivot selection involves more than simply choosing the
most frequent channel. It also checks if the mean frequency
is safe at the current moment. For each channel i, if the
current time has exceeded the threshold given by statistical
lower bound of frequency f i − γi · ei, the next frequency
will be even lower, rendering the mean frequency unsafe.
Theoretically the system could obtain this information as soon
as the time surpasses this threshold. However, since the data
update of a channel only proceeds upon the arrival of a new
message, the system will not correct its estimation until next

message arrives. Therefore, the pivot selection has to check
all the mean frequencies to exclude those unsafe.

Algorithm 1: Pivot Selection
Input: the new message mi

Data: the message set S, candidate set C, statistics of
each channel j: f j and ej , margin factor of
each channel j: γj

Output: the pivot p
1 C ← {i};
2 for j ← 1 to N do
3 if ej has not been initialized yet then
4 C.add(j);
5 else
6 h← f(S[j],mi);
7 if h ≥ f j − γj ∗ ej then
8 C.add(j);

9 p← element in C with maximal f ;
10 return p;

The system selects a candidate set C for the pivot, en-
compassing indexes of channels with safe mean frequency. as
Since data update works before pivot selection and the mean
frequency of the arriving message’s channel is just updated, it
is added to C (Line 1). For channels with too few arrived
messages to calculate e, the system regards them as safe
candidates (Line 3 - 4). Then, for each channel j, the system
computes a frequency h using current time α(mi) and previous
arriving time α(S[j]) (Line 6). This frequency represents the
highest possible frequency of the next message. If h falls
below the statistical lower bound h < f j − γj ∗ ej , the next
frequency will be even lower and f j is unsafe. By excluding
such channels, the system identifies all the candidates (Line
7 - 8). Finally, the pivot is selected as the channel with the
highest frequency among candidates (Line 8).

C. Model

In the following we present a model of the LatestTime
Policy. This model serves as a semantics approximation of
the original policy, abstracting away details that do not affect
our analysis. Accordingly, we aim to capture its behaviors that
dictate the three metrics we concern. The correctness of this
abstract model will be assessed in section VII.

Algorithm 2 shows the pseudo code of the LatestTime
Policy. Upon the arrival of a new message, if it is the first one
in a channel, the system simply sets S[i] and returns (Line 2 -
3). Otherwise, the system executes data update to update the
statistics in this channel (Line 4). Then the pivot is determined
by pivot selection (Line 5). The system publishes S if the pivot
coincides with the current channel (Line 6).

D. An Illustrative Example

Fig. 3 presents an example to illustrate the LatestTime
Policy. The system has three sensors that sample messages

Algorithm 2: The LatestTime Policy
Input: the newly arrived message mi

Data: the set of the newest messages of each channel
S

1 if mi is the first message in channel i then
2 S[i]← mi;
3 return;

4 executing data update;
5 p← pivot selection;
6 if S is full and i == p then
7 publish S;

8 S[i]← mi;
9 return;

Fig. 3. An example to illustrate the LatestTime Policy. (a)-(c) are three
sequential fragments of a time interval. X-axis is time.

and transmit them through corresponding channels denoted
as Qi. Q2 and Q3 have fixed sampling periods of 5 and 6,
respectively. The sampling period of the first channel ranges
from TB

1 = 4 to TW
1 = 10. For simplicity, we assume

that there are no message delays. In addition, user-predefined
parameters used in data update are set as βf

i = 0.3, βe
i = 0.3,

and γi = 10 for each channel i.
In Fig. 3-(a), at time 0, the first message of each channel

arrives, and the system simply puts them into the message set.
At time 4, m1

1 arrives. f1 is initialized to 0.25. As it is the only
channel with valid f , it is chosen as the pivot and the current
message set is published (marked by the red dashed box).
Subsequently, m1

2 and m1
3 arrive. f2 and f3 are initialized to

0.2 and 0.17, respectively. The system does not publish at these
times because channel 1 has the highest frequency and serves
as the pivot. Then a new wave of messages m2

i arrives and
f i remain unchanged. Given that channel 1 is still the pivot,
the system publishes the message set, including {m2

1,m
1
2,m

1
3}

upon the arrival of m2
1. It is worth mentioning that during the

pivot selection upon the arrival of m2
3, the system assesses

whether the next message of channel 1, m3
1, will be late. Based

on the statistics of channel 1: f1 = 0.25, e1 = 0 and γ1 = 10,
the system calculates the acceptable bound of α(m3

1) as 12.
Since the current time does not exceed the bound, the system
considers f1 safe and chooses 1 as the pivot.

Fig. 3-(b) . At time 15, m3
2 arrives, while m3

1, which is
expected to arrive earlier than time 12, has not yet arrived.
The data update calculates f2 = 0.2 and e2 = 0. During
pivot selection, the system now determines that m3

1 will be
late and f1 is unsafe. As a result, channel 1 is excluded from
candidates, and channel 2 becomes the new pivot. The message
set at this time, {m2

1,m
3
2,m

2
3}, is published (marked with blue

dashed box). After that, m3
1 arrives at 18. During data update

of this channel, it is determined to be late and f1 is updated
to 0.1, which is now the smallest among all channels.

Fig. 3-(c) shows the changes after the late message m3
1.

This part serves as an example of the calculation detail of
data update illustrated in Algorithm 4 in Appendix IX-B. At
time 20, m4

2 arrives, with f1 = 0.1, f2 = 0.2 and f3 = 0.16.
Consequently, channel 2 becomes the pivot and the message
set {m3

1,m
4
2,m

3
3} is published. Subsequently, at time 21, m4

1

arrives. The phase of channel 1 is 2. f1 is updated to 0.3 ×
0.25 + 0.7× 0.1 = 0.145 and e1 is initialize. At time 25, m5

1

and m5
2 arrive. Assuming m5

1 arrives slightly earlier and is
processed first, data update of phase 3 of channel 1 updates
f1 to 0.3 × 0.25 + 0.7 × 0.145 = 0.18. Since 0.18 is still
less than f2 = 0.2, channel 2 remains the pivot. The system
publishes the message set after processing m4

2, which includes
{m5

1,m
5
2,m

4
3}. Finally at time 29, m6

1 arrives. This time f1

is updated to 0.3× 0.25+0.7× 0.18 = 0.201, which is larger
than f2. Consequently, channel 1 becomes the new pivot and
the message set {m6

1,m
5
2,m

4
3} is published.

V. TIMING DEFECT AND REVISION

In this section we report a timing defect in the current
implementation of the LatestTime Policy. This defect refers
to that, even if the timestamp interval and delay of each
channel are bounded, i.e., messages of each channel keep
arriving, it is possible for the LatestTime Policy to refrain from
publishing for an arbitrarily long time. This defect not only
obstructs the policy from achieving its goal of publishing at the
highest frequency, but also leads to risks in real-world tasks,
e.g., not publishing messages for a long time may cause the
autonomous vehicle being unable to react to an emergency.
We will present a simple modification of the policy, which
repairs the defect while preserving most of its implementation
and semantics. Below we first reveal the defect.

A. Timing Defect

Below we present a type of message arriving pattern that
triggers the timing defect. The problem lies in the condition
to publish. Algorithm 2 shows that the policy publishes only
when message arrives from the pivot channel (Line 6). If
the pivot remains unchanged, the system will continuously
publish as the messages keep arriving. However when pivot
changes, this condition may be always false. Let’s consider
a system whose channels have very similar frequencies. The
mean frequency of a channel will be affected by its arriving
message. Suppose δ is a small positive value, if a new message
arrives δ earlier, its mean frequency will slightly increase,
making its channel the pivot. Conversely, if it arrives δ later,

its mean frequency will decrease slightly and its channel will
not be the pivot. Therefore, we can control the system to
publish or not upon arrival of each message by “slightly”
advancing or delaying it. Since δ can be sufficiently small,
the publishing behavior is nearly arbitrary for similar message
arriving patterns. Below, we construct a worst-case example by
slightly delaying every new message. We prove by calculation
that the inputting channel will not match the pivot for an
arbitrarily long time, leading to the timing defect.

Fig. 4. An example of worst-case pattern triggering timing defect. The
pattern starts from m0

1. Each subsequent message arrives slightly later to
avoid publishing. Dashed arrow is a reference of arriving stably.

Fig. 4 shows our worst-case example. The system consists
of two sensors N = 2. Both sensors have TB = 100ms and
TW = 200ms. For simplicity, the delay of both sensors is
ignored, DW = 0. At the beginning, both sensors sample
messages at the highest frequency 1/TB = 10Hz. The
messages’ arrivals of two sensors are interleaved with a time
difference of α(mi

2)− α(mi
1) = 50ms. The system estimates

the mean frequency of both channels to be 10Hz and always
selects channel 1 as the pivot. The parameters used in data
update are βf

i = 0.9, βe
i = 0.3 and γi = 10 for i ∈ {1, 2}.

When m0
i arrives, the system publishes because pivot =

1. After 50ms, m0
2 arrives. Since the statistics and the pivot

remain unchanged, the system does not publish.
After that, each message arrives slightly later to decrease its

mean frequency to be (10−nδ)Hz, where δ is a small positive
value and n is a gradually increasing natural number starting
from 0. Based on the model of data update in Appendix IX-B,
we can reversely calculate the needed arriving time of each
message. The calculation result is shown in Appendix IX-C,
which shows no contradiction and validates the feasibility of
the defect in Fig. 4. Since δ can be arbitrarily small, this
pattern can last for an arbitrarily long time before constrained
by TW

i . Therefore, the next published set can be infinitely
delayed.

B. Revision

The timing defect shows that, in the scenario that the pivot
changes, the publishing behavior cannot be guaranteed relying
solely on the pivot. Conditions in line 6 of Algorithm 2
needs to be enhanced. In a real-world task, publishing at a
higher frequency may result in redundant information and
increased system workload, but is less harmful to the safety.
On the contrary, publishing infrequently can lead to inability
to respond to external events and compromise safety. There-
fore, our enhancement focuses on preventing the publishing
frequency from dropping too low. Algorithm 3 presents the
pseudo code of the revised policy.

Algorithm 3: Revised LatestTime Policy
Input: the newly arrived message mi

Data: the set of the newest message of each channel
S, last publishing time tl

1 if mi is the first message in channel i then
2 S[i]← mi;
3 return;

4 data update of channel i;
5 p← pivot selection;
6 if S is full then
7 if i == p or 1

α(mi)−tl
≤ fp then

8 publish S;
9 tl = α(mi);

10 S[i]← mi;
11 return;

In Algorithm 3, the red text is our modification from
Algorithm 2. The system maintains the last publishing time
using a new datum tl. It is updated whenever the system
publishes (Line 9). When current time since last publishing has
exceeded the corresponding interval of the pivot’s frequency,
the system publishes even if the current channel is not the pivot
(Line 7). This enhancement guarantees that even if the pivot
changes and the inputting channel fails to match the pivot,
the system still publishes upon the arrival of the first message
after exceeding the time interval corresponding to the pivot’s
frequency. Considering that when pivot does not change, the
system keeps publishing whenever messages arrive from the
pivot, we can infer that the revised policy can guarantee to
keep publishing messages irrelevant to the inputting pattern.
It now refrains from the timing defect. We will prove this
property by giving a reaction latency upper bound in section
VI-C.

Our revision also introduces extra cost. In terms of space,
the system needs to store tf . In terms of time, it needs to
evaluate the new condition upon messages’ arrival. Consider-
ing the storage of all the statistics and the massive calculation
in the data update process, the cost we incur is negligible.

VI. UPPER BOUND ANALYSIS

In this section, based on the revised policy, we derive safe
and tight upper bounds for the time disparity, passing latency
and reaction latency. Safety is guaranteed by formal proofs
and we present examples as evidence of the tightness. Below
we use notation Ai = TW

i +DW
i −DB

i to ease our expression.

A. Time Disparity Upper Bound

In the following we derive an upper bound for the time dis-
parity of any published set of the LatestTime policy. According
to Algorithm 3, the published set is always the message set S
maintained by the system. Hence, our analysis focuses on the
time disparity of the message set S. We define the lifespan of
a message in S as the time interval from when it is added to

S until it is replaced. To begin, we establish the upper bound
of the lifespan of a message.

Lemma 1. Let mj
i be a message in channel i, and l(mj

i)
denote the lifespan of mj

i . Let TW
i be the maximal sampling

interval of sensor i, DB
i and DW

i be the minimal and maximal
delay of channel i, respectively. we have

l(mj
i) ≤ TW

i +DW
i −DB

i

Proof. According to Algorithm 3, the message set is updated
upon the arrival of a new message. Line 2 and 10 replaces
the message of the same channel in S with the new message.
Consequently, each message is added to S upon its arrival and
is replaced upon the arrival of the next message in the same
channel. Therefore, we have

l(mj
i) = α(mj+1

i)− α(mj
i) ≤ TW

i +DW
i −DB

i

Since the time disparity focuses on the timestamp rather
than the arrival time, we derive another upper bound of lifes-
pan that incorporates timestamp on one side. This difference
enables us to obtain a tight upper bound of time disparity.

Lemma 2. Let mj
i denote a message in the i-th channel. We

denote the end time of the lifespan as le(m
j
i). Then we have

le(m
j
i)− τ(mj

i) ≤ TW
i +DW

i

Proof. According to Algorithm 3, a message’s lifespan ends
upon the arrival of the next message in the same channel. So
we have

le(m
j
i)− τ(mj

i) = α(mj+1
i)− τ(mj

i) ≤ TW
i +DW

i

Based on Lemma 2, we can establish an time disparity upper
bound of any message set, and consequently, the published set.

Lemma 3. The time disparity of a message set S is upper-
bounded by

∆ = max
i∈{1,··· ,N}

(TW
i +DW

i)− min
i∈{1,··· ,N}

DB
i

Proof. Let mi represent the message with the latest timestamp
in S, i.e., τ(mi) = max

m∈S
τ(m), and mj the earliest τ(mj) =

min
m∈S

τ(m). According to the assumption that delays do not
distort the order of timestamps, we know that mi arrives later
than mj . Since the arrival time of a message coincides with
the start time of its lifespan, denoting the start time of the
lifespan by ls(·), we have

ls(mj) ≤ ls(mi) (1)

If S contains two messages at a time, their respective lifespans
are bounded to intersect. Based on (1), if the lifespans of
channels i and j intersect, the end time of mj’s lifespan must
be later than the start time of mi’s. Denoting the end time of
the lifespan by le(·), we have

ls(mi) ≤ le(mj) (2)

Based on (2) and Lemma 2, we have

∆(S) = max
m∈S

τ(m)− min
m∈S

τ(m)

= τ(mi)− τ(mj)

≤ α(mi)− τ(mj)−DB
i

= ls(mi)− τ(mj)−DB
i

≤ le(mj)− τ(mj)−DB
i

≤ TW
j +DW

j −DB
i

≤ max
i∈{1,··· ,N}

(TW
i +DW

i)− min
i∈{1,··· ,N}

DB
i

Theorem 1. Denote the maximal timestamp interval of chan-
nel i as TW

i , delay range of channel i as [DB
i , DW

i]. The time
disparity of a published set SPUB is upper bounded by

∆ = max
i∈{1,··· ,N}

(TW
i +DW

i)− min
i∈{1,··· ,N}

DB
i

Proof. According to Algorithm 3 Line 8, the published set is
the message set S. Based on Lemma 3, the theorem holds.

Fig. 5. A worst-case example of time disparity and passing latency

Next we use the example in Fig. 5 to illustrate the tightness
of Theorem 1. In this system, there are two channels, labeled
Q1 and Q2, respectively. Channel Q1 has a fixed and shorter
timestamp interval TB

1 = TW
1 = 2, while channel Q2 has

a fixed and longer time interval TB
2 = TW

2 = 4. The delay
bounds for these channels are DB

1 = DW
1 = DB

2 = 0, and
DW

2 = 1+δ, where δ is a small positive value. The system has
been running for some time, allowing it to acquire statistics
for each channel. We assume f1 < f2 at time 1.

Consider m1
2 whose timestamp is 2. Upon the arrival of

m1
1, m2

1, and m3
1, the system selects channel 1 as the pivot and

publishes the message set including m1
2. Note that although m3

1

has a later timestamp than m2
2, it arrives without delay while

m2
2 arrives after the maximum delay 1 + δ (represented as

shaded area). Therefore m3
1 arrives δ earlier. Upon its arrival,

m2
2 has not yet arrived and m1

2 is still in the message set.
We focus on m1

2 and the message set SPUB published upon
the arrival of m3

1. The actual time disparity of SPUB is

∆(SPUB) = τ(m3
1)− τ(m1

2) = 5

The time disparity upper bound given by Theorem 1 is

∆ = max
i∈{1,··· ,N}

(TW
i +DW

i)− min
i∈{1,··· ,N}

DB
i

= TW
2 +DW

2 −DB
1 = 5 + δ

Thus, the overestimation of the time disparity upper bound
in this worst-case scenario approaches 1 as δ approaches 0,
showing the tightness of Theorem 1.

It is important to mention that although the above analysis is
based on the revised policy in Algorithm 3, it equally applies
to the original policy in Algorithm 2 since our modification
has no impact on its correctness. Theorem 1 is a safe and tight
time disparity upper bound of the original policy as well.

B. Passing Latency Upper Bound

The passing latency of a message refers to the time interval
from its arrival to its publishing. Algorithm 3 tells us the
published set is the message set S. Thus a message can only be
published within its lifespan. Based on the bound of lifespan,
we can derive an upper bound on the passing latency.

Theorem 2. Denote the maximal sampling interval of channel
i as TW

i , delay range of channel i as [DB
i , DW

i]. Denote
TW
i + DW

i − DB
i as Ai. For the published set SPUB, the

passing latency of mi ∈ SPUB is upper bounded by

P = Ai

Proof. We denote the start time and the end time of the
lifespan of mi as ls(mi) and le(mi), respectively, and the
publishing time of SPUB as tf . According to Algorithm 3 line
8, the published set is S. Thus tf must fall within the lifespan
of mi. Based on Lemma 1, we have

P (mi) = tf −α(mi) = tf − ls(mi) ≤ le(mi)− ls(mi) ≤ Ai

Example in Fig. 5 is also a worst-case scenario for the
passing latency, showing the tightness of Theorem 2. We still
focus on m1

2 and message set SPUB published upon the arrival
of m3

1. The actual passing latency of m1
2 respecting SPUB is

P (m1
2) = α(m3

1)− α(m1
2) = 5

The passing latency upper bound given by Theorem 2 is

P = max
i∈{1,··· ,N}

Ai = A2 = 5 + δ

Thus, as δ approaches 0, the passing latency upper bound can
be approached, indicating Theorem 2 is tight.

Similar to the time disparity upper bound, safety and
tightness of the passing latency upper bound is not affected by
our revision. Theorem 2 applies equally to the original policy.

C. Reaction Latency Upper bound

In the following we derive an reaction latency upper bound
of the revised LatestTime Policy. Recall the reaction latency
of a message mk

i is the difference between the arrival time
of the latest published message mj

i , where j < k, and the
first publishing time of mk

i , tkf . We split this interval into two
parts: the latency from the arrival of mj

i to its last publishing
time tjf , and the latency from tjf to tkf . Note that no message
ml

i, where j < l < k, is published by definition. Since tjf
and tkf are the last and first publishing time of mj

i and mk
i

respectively, tjf and tkf are two consecutive publishing times.
The first part is the passing latency of mj

i and its upper bound
is given by Theorem 2. Below we bound the second part.

Lemma 4. For channel i, within any time interval of length
Ai, [t, t+Ai], at least one message arrives.

Proof. We prove by contradiction. Suppose no message arrives
within [t0, t0 + Ai]. let mx

i be the message arrives before t0
and mx+1

i the one arrives after t0 +Ai. We have

TW
i ≥ τ(mx+1

i)− τ(mx
i)

= α(mx+1
i)− α(mx

i) +Dx
i −Dx+1

i

> TW
i +DW

i −Dx+1
i +Dx

i −DB
i

≥ TW
i

This contradiction implies that the assumption does not hold
and the lemma is proved.

Lemma 5. For a channel i, its mean frequency f i is lower
bounded by

f i ≥
1

Ai

Proof. We need to analyze the detail of the data update in
Appendix IX-B. In Algorithm 4, Line 1 implies that f is the
frequency corresponding to the time interval α(mi)−α(S[i]),
where mi is the arriving message and S[i] is the preceding
message in this channel. Thus we have

f =
1

α(mi)− α(S[i])
≥ 1

Ai
(3)

Next we prove by induction. There are totally four program
points that modify f i: Line 4, 7, 12 and 15. In the following we
use f

x

i to distinguish different value of f i after being updated
by these lines. If updated by Line 4 or 15, x = 0. If updated
by Line 7 or 12, x increases by 1. Line 4 and 15 assign f to
f i. Based on equation (3) we have

f
0

i = f ≥ 1

Ai
(4)

Line 7 and 12 update f :

f
x+1

i = βf
i × f + (1− βf

i)× f
x

i

Given that 0 ≤ βf
i ≤ 1, we know f

x+1

i is a linear combination
of f

x

i and f . Based on induction hypothesis f
x

i ≥ 1
Ai

, we have

f
x+1

i ≥ min(f
x

i , f) ≥
1

Ai
(5)

Consequently, based on equation (4) and (5), we have

∀x, fx

i ≥
1

Ai

Thus the lemma always holds.

Based on Lemma 4 and 5, we derive the upper bound of
two consecutive publishing times.

Lemma 6. Let SPUB
1 and SPUB

2 be two consecutive published
sets. Denoting the publishing times of them as t1f and t2f
respectively, where t2f > t1f . The following inequality holds:

t2f − t1f ≤ 2 min
i∈{1,...,N}

Ai

Proof. For a channel i, let’s consider the time interval [t1f +
Ai, t

1
f+2Ai]. Based on Lemma 4, there is at least one message

in channel i arriving within this interval. We denote this
message as mi.

If the system publishes before the arrival of mi, we have

t2f ≤ α(mi) ≤ t1f + 2Ai

So we have
t2f − t1f ≤ 2Ai (6)

Next we prove that, if the system has not published yet, it
must publish upon the arrival of mi, so that (6) also holds.

Upon the arrival of mi, the data update will update the
mean frequency f i. Based on Lemma 5, we have the lower
bound of the updated mean frequency

f i ≥
1

Ai
(7)

Based on the lower bound of α(mi), we have

α(mi)− t1f ≥ Ai (8)

Combining (7) and (8), we have

f i ≥
1

α(mi)− t1f

Since no publishing happens within (t1f , α(mi)), we have tl =
t1f at this time. Denoting the pivot as p, we have

fp ≥ f i ≥
1

α(mi)− tl

Consequently, upon the arrival of mi, the condition in Line 7
of Algorithm 3 must be true. The system will publish at this
time. Thus in this case,

t2f − t1f = α(mi)− t1f ≤ 2Ai

Therefore (6) always holds for any given channel i. Specially,
it holds for the channel with minAi and the lemma is proved.

Theorem 2 and Lemma 6 bound the two parts of the reaction
latency respectively. Combining them, we derive an reaction
latency upper bound of the revised LatestTime Policy.

Theorem 3. Let Ai = TW
i +DW

i −DB
i , where TW

i is sensor
i’s maximal sampling interval, [DB

i , DW
i] is channel i’s delay

range, the reaction latency of mi is bounded by

R = Ai + 2 min
j∈{1,...,N}

Aj

Proof. Suppose m′
i is the last published message before mi

in the same channel. Let t1f be the last publishing time of m′
i,

t2f be the first publishing time of mi. By Theorem 2, we have

t1f − α(m′
i) ≤ Ai (9)

From Lemma 6, we have

t2f − t1f ≤ 2 min
i∈{1,...,N}

Ai (10)

Fig. 6. A worst-case example of reaction latency

From (9) and (10), the theorem holds.

Below we use the example in Fig. 6 to demonstrate the
tightness of the bound given in Theorem 3. There are three
channels, denoted as Qi, i = 1, 2, 3. Timestamp difference
bounds of each channel are TB

1 = TB
2 = TB

3 = 0, TW
1 = 15,

TW
2 = 9 and TW

3 = 50. Delay bounds of each channel are
DB

1 = DB
2 = DB

3 = 0, DW
1 = δ, and DW

2 = DW
3 = 1,

where δ is a small positive value. The parameters used in
data update are as follows: The EMA weights of frequency are
βf
1 = βf

2 = 0 and βf
3 = 1, resulting in f1 and f2 fixed. Margin

factors are large enough, i.e., γi ≈ ∞, i = 1, 2, 3, eliminating
the need to consider the reboot process in phase 3 of data
update. Therefore, βe

1 , β
e
2 , β

e
3 are irrelevant. Note that these

extreme configurations is to simplify our calculation below
and the worst-case example does not rely on this extremeness.

The system has been running for a while before time 0. We
assume that the interval between the arriving times of the first
and second messages of channel 1 (resp. 2) is 13 (10). So f1

and f2 are fixed as f1 = 1/13 and f2 = 1/10. We assume
channel 3 has the highest frequency among all channels before
time 0. At time −1, m0

3 arrives and the system publishes.
m1

1 arrives with the lowest delay at time 0. At time 4, m1
3

arrives. The system selects channel 3 as pivot and publishes.
At time 6 and 15, m1

2 and m2
2 arrive sequentially. Since f2 is

fixed as 1
10 < 1

5 = f3, the system does not publish upon the
arrival of m1

2. But it publishes upon the arrival of m2
2 since

1
α(m2

2)−tl
= 1

11 < 1
5 = fp, and the added condition is satisfied.

At time 15 + δ, m2
1 arrives after the longest arriving time

interval from m1
1. m3

2 arrives at time 20. At time 25 − 2δ,
m3

1 and m4
2 arrive. We assume m4

2 arrives with the lowest
delay. The system does not publish upon these messages’
arrival because the pivot is channel 3, and the second part
the condition in Algorithm 3 Line 7 is true only when the
time passes 25. Finally at time 35 − 2δ, m5

2 arrives with the
longest delay DW

2 = 1. Its arrival time exceeds 25, so the
condition is satisfied and the system publishes.

We focus on the reaction latency of m3
1. The preceding

published message from sensor 1 is m1
1. We have α(m1

1) = 0
and t2f = α(m5

2) = 35− 2δ. The actual reaction latency is

t2f − α(m1
1) = 35− 2δ

The reaction latency upper bound given by Theorem 3 is

R = Ai + 2 min
j∈{1,...,N}

Aj = A1 + 2A2 = 35 + δ

Since δ can be arbitrarily small, the overestimation of Theorem
3 approaches 1, and thus our bound is tight.

Next we explain the meaning of our reaction latency upper
bound. Lemma 6 is not so intuitive by constructively consider-
ing a message in time interval [t1f+Ai, t

1
f+2Ai]. We first show

the insight behind it. We use Tp to denote the length of the
interval corresponding to fp. The original policy guarantees
that, in [tl, tl +Tp], the system publishes as soon as receiving
a message from pivot. The condition we add in Algorithm 3
line 7 guarantees that, after tl + Tp, the system publishes at
any message’s arrival (no matter it comes from pivot or not).
We denote this message as m, and the interval from tl + Tp

to its arrival as Tα. In this way, we guarantees that t2f − t1f is
bounded by Tp + Tα.

Both Tp and Tα are variables that change at each message’s
arrival, but they can be upper-bounded based on Lemma 5 and
4 respectively, and the two bounds happens to be equal. This
explains the factor 2 in Lemma 6 and Theorem 3. Based on
this comprehension, if one can obtain the information of the
pivot’s mean frequency fp at a time t, a tighter reaction latency
upper bound corresponding to a message mi can be derived:

Rt = Ai +
1

fp

+ min
j∈{1,...,N}

Aj

The index t of R indicates that this bound is a variable
depending on the specific value fp at time t.

Moreover, Tp in the above analysis is essentially derived
from fp, the RHS of the condition we add. We use fp in this
condition in order to preserve the aim of the policy: publishing
at frequency fp. If any other value f is used instead, we can
similarly derive a corresponding reaction latency upper bound:

R = Ai + U(
1

f
) + min

j∈{1,...,N}
Aj

where U(1f) denotes the upper bound of 1
f . Since the idea to

prove has been presented above, we do not redundantly give
the detailed proof here.

VII. EXPERIMENTS

We conduct experiments to validate our abstract model, con-
firm our description of timing defect, and evaluate the safety,
accuracy and robustness of our upper bounds in Theorem 1,
2 and 3.

A. Experiment Setting

All our experiments are implemented with ROS 2
system of version Iron Irwini. Experiments of model
validation and bound property exploration are conducted
using wide range of synthetic settings on a desktop
computer equipped with an Intel(R) Core(TM) i5-11400H
CPU running at 2.70GHz. Source codes are available on
https://github.com/wuchenhaogit/Latency Analysis LatestTim
eSynchronizer. We also conduct experiments on a real
autonomous vehicle model to validate the timing defect and
demonstrate its impact.

In order to easily control the delay of each channel, a
modification is made to the source code. We randomly gener-
ates the delay of each message within their respective range,

and replace the arrival time used by the policy to the sum
of each message’s timestamp and the generated delay. This
modification refrain us from unnecessarily bounding the delay
and enables us to implement scenarios of zero delay.

There are 6 different experiment settings:
• Random Delay: different delay time before messages

arrive, ranging from 0 to 40 ms.
• Period Ratio: different ratio of TW /TB , ranging from

1.0 to 8.0. Each TB
i is randomly selected from a range

of 50 ms to 100 ms.
• Number of Channels: different number of input channels,

ranging from 3 to 9.
• Frequency Weight: different EMA weight of frequency

βf . Each βf
i is randomly selected from [0, 1].

• Error Weight: different EMA weight of error βe. Each
βe
i is randomly selected from [0, 1].

• Margin Factor: different margin factors γ. Each γi is
randomly selected from [0, 64].

Each setting is further split into several groups to capture the
impact of the corresponding parameter changes.

B. Evaluation Results

We evaluate the model of the LatestTime Policy presented
in Section IV-C. Experiments are conducted under all settings.
When messages arrive at the synchronizer, the original policy
and our model independently synchronize and publish. We
compare their outputs of 2000 published sets. No discrepancy
is encountered in 50 repeated experiments. This consistency
indicates that our model accurately captures the main features
of the LatestTime Policy with a high level of confidence.

Fig. 7. Reaction latency result of one sensor during frequency decreasing

We conduct an experiment on an autonomous vehicle model
to confirm the timing defect. The vehicle is equipped with
two identical sensors operating at the same frequency. When
the car decelerates, frequencies of sensors are lowered based
on velocity in order to reduce unnecessary workload. In this
scenario the two sensors gradually decrease their frequencies
and may trigger the defect. Fig. 7 shows the result of messages
from one sensor. Each point represents a message. X-axis
is message index in temporal order. Y-axis is the reaction
latency. Reaction latency of messages that not published is
set as infinity. Before index 50, frequencies of both sensor are
50Hz. Due to small fluctuation, pivot occasionally changes
between them and might result in long reaction latency of

https://github.com/wuchenhaogit/Latency_Analysis_LatestTimeSynchronizer
https://github.com/wuchenhaogit/Latency_Analysis_LatestTimeSynchronizer

the original synchronizer (red triangles). When frequency
gradually decreases to 30Hz, the timing defect is triggered
more frequently, leading to severe increase of reaction latency.
The worst observed reaction latency is 432 ms, over 20 times
of pivot’s period. Our revision effectively avoids the defect
(green dots).

Fig. 8. Result of comparing the revised and original LatestTime Policy

We conduct experiments to compare the original LatestTime
Policy and the revised policy in Algorithm 3. Results are
shown in Fig. 8. The height of bar represents the ratio of
the worst observed value of the revised to the original policy.
With regard to the time disparity and passing latency, results
under all configuration is nearly 100%, which indicates that
our revision has no impact on these metrics.

The reaction latency ratio, depicted as the green bar, is 95%
and 72% when delay range is [0, 0] and [0, 10] in Random
Delay. The reason lies in that, the experiments of Random
Delay are conducted with period ratio set as 1. When delay is
very low, the frequency of each channel is rather stable. The
pivot seldom changes and the worst case is rarely encountered.
In settings of higher delay, the revised policy shows a 40%
decrease of the worst observed reaction latency, validating the
effectiveness of the revision.

Fig. 9. Evaluation result of the upper bounds of the three metrics

Upper bounds of the three metrics are evaluated based on
our revised policy under different experiment settings. In all
experiments, there is no underestimation observed, validating

the safety of our bounds. Fig. 9 depicts the results. The height
of the bar represents the average overestimation of 20 repeated
experiments. Overestimation of one experiment is calculated
as the ratio of the bound to the worst observed value amongst
2000 published sets.

Both the time disparity and passing latency upper bounds
exhibit robustness and low pessimism across various experi-
ment settings, with an average overestimation below 10%. This
indicates that the bounds are highly precise and the worst-case
scenario is easy to encounter.

The reaction latency upper bound shows an approximately
70% overestimation in different settings. This discrepancy
can be attributed to the rarity of encountering the worst-case
scenario for reaction latency. In typical systems with stable fre-
quencies, it is uncommon for the pivot to continuously change.
So the worst-case scenario is seldom met and contributes little
to the average.

VIII. CONCLUSION

In this paper, we model the LatestTime synchronization
Policy in ROS. We uncover its timing defect, which may
result in arbitrarily long or even infinite latency in publishing
subsequent outputs, and propose a revision to address this
problem. Moreover, we formally develop safe and tight upper
bounds for time disparity and two types of latency incurred due
to message synchronization, i.e., the passing latency and reac-
tion latency. We conduct experiments under different settings
to validate our results. Comparing different synchronization
policies of ROS will be topic of our future work.

ACKNOWLEDGMENT

The first and third authors are partly funded by the
National Key R&D Program of China under grants No.
2022YFA1005101 and the NSFC under grant No. 62192732.
The second and fourth authors are partially supported by Hong
Kong GRF under grant no. 15206221 and 11208522.

REFERENCES

[1] R. Li, X. Jiang, Z. Dong, J.-M. Wu, C. J. Xue, and N. Guan, “Worst-case
latency analysis of message synchronization in ROS,” RTSS, 2023.

[2] R. Li, N. Guan, X. Jiang, Z. Guo, Z. Dong, and M. Lv, “Worst-case
time disparity analysis of message synchronization in ROS,” in RTSS,
2022.

[3] “ROS2 Iron.” [Online]. Available: https://docs.ros.org/en/rolling/Releas
es/Release-Iron-Irwini.html#

[4] “The ExactTime Policy.” [Online]. Available: http://wiki.ros.org/messa
ge filters#ExactTime Policy

[5] “The ApproximateTime Policy.” [Online]. Available: http://wiki.ros.org
/message filters#ApproximateTime Policy

[6] “The ApproximateEpsilonTime Policy.” [Online]. Avail-
able: https://github.com/ros2/message filters/blob/rolling/include/mess
age filters/sync policies/approximate epsilon time.h

[7] J. Sun, T. Wang, Y. Li, N. Guan, Z. Guo, and G. Tan, “Seam: An optimal
message synchronizer in ROS with well-bounded time disparity,” in
RTSS, 2023.

[8] H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Real-time visual-
inertial odometry for event cameras using keyframe-based nonlinear
optimization,” in BMVC, 2017.

[9] M. Huber, M. Schlegel, and G. Klinker, “Application of time-delay
estimation to mixed reality multisensor tracking,” in J. Virtual Real.
Broadcast., 2014.

[10] J. Peršić, L. Petrović, I. Marković, and I. Petrović, “Online multi-sensor
calibration based on moving object tracking,” in Adv. Robotics, 2021.

https://docs.ros.org/en/rolling/Releases/Release-Iron-Irwini.html#
https://docs.ros.org/en/rolling/Releases/Release-Iron-Irwini.html#
http://wiki.ros.org/message_filters#ExactTime_Policy
http://wiki.ros.org/message_filters#ExactTime_Policy
http://wiki.ros.org/message_filters#ApproximateTime_Policy
http://wiki.ros.org/message_filters#ApproximateTime_Policy
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/approximate_epsilon_time.h
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/approximate_epsilon_time.h

[11] M. R. Nowicki, “Spatio-temporal calibration of camera and 3d laser
scanner,” in IEEE Robot. Autom. Lett., 2020.

[12] D. J. Yeong, G. Velasco-Hernandez, J. Barry, J. Walsh et al., “Sensor
and sensor fusion technology in autonomous vehicles: A review,” in
Sensors, 2021.

[13] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving:
A survey,” in IEEE Access, 2016.

[14] J. Kelly and G. S. Sukhatme, “A general framework for temporal
calibration of multiple proprioceptive and exteroceptive sensors,” in
ISER, 2010.

[15] S. Liu, B. Yu, Y. Liu, K. Zhang, Y. Qiao, T. Y. Li, and et al., “The
matter of time — a general and efficient system for precise sensor
synchronization in robotic computing,” in RTAS, 2021.

[16] X. Jiang, D. Ji, N. Guan, R. Li, Y. Tang, and Y. Wang, “Real-time
scheduling and analysis of processing chains on multi-threaded executor
in ROS 2,” in RTSS, 2022.

[17] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of
ROS2,” in EMSOFT, 2016.

[18] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Towards a distributed and real-time framework for robots: Evaluation
of ROS 2.0 communications for real-time robotic applications,” arXiv
preprint arXiv:1809.02595, 2018.

[19] H. Teper, M. Günzel, N. Ueter, G. von der Brüggen, and J.-J. Chen,
“End-To-End Timing Analysis in ROS2,” in RTSS, 2022.

[20] A. A. Abdullah, V. Sudharsan, M. W. Kurt, S. Jinghao, and G. Zhishan,
“Response time analysis for dynamic priority scheduling in ROS2,” in
DAC ’22, 2022.

[21] C. Randolph, “Improving the Predictability of Event Chains in ROS 2,”
Ph.D. dissertation, Master’s thesis, 2021.

[22] H. Sobhani, H. Choi, and H. Kim, “Timing analysis and priority-driven
enhancements of ROS 2 multi-threaded executors,” in RTAS, 2023.

[23] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven
chain-aware scheduling for ROS2,” in RTAS, 2021.

[24] R. Li, Z. Dong, J.-M. Wu, C. J. Xue, and N. Guan, “Modeling and
property analysis of the message synchronization policy in ROS,” in
MOST, 2023.

[25] “The LatestTime Policy.” [Online]. Available:
https://github.com/ros2/message filters/blob/rolling/include/messag
e filters/sync policies/latest time.h

[26] “Exponential Moving Average.” [Online]. Available: https://en.wikiped
ia.org/wiki/Exponential smoothing

IX. APPENDIX

A. Exponential Moving Average

The Exponential Moving Average (EMA) [26] is a statistical
method used to estimate the local mean value of a variable. It
assigns exponentially greater weight to the recent data points.

Definition 4 (Exponential Moving Average). Let θ be a
random variable that is sampled at a series of discrete time
points, producing the sequence {θ1, . . . , θN}. β ∈ [0, 1] is a
constant weight. Using EMAt(θ) to denote the exponential
moving average of the first t data points, it can be recursively
calculated by EMAt(θ) = β ∗ θt+(1−β) ∗EMAt−1(θ) for
t ∈ {2, 3, ..., N}, with EMA1(θ) = θ1.

B. Implementation of data update

We first list the definition used in data update. In Sec-
tion IV-A we have defined the frequency corresponding to
two consecutive messages in channel i as f(mx

i ,m
x+1
i) =

1
α(mx

i)−α(mx+1
i)

, the mean value of all the previous f at a

time point as f i. Now we define the error corresponding to two
consecutive messages as e(mx

i ,m
x+1
i) = |f(mx

i ,m
x+1
i)−f i|.

The mean error ei is the mean value of all the previous e at
a time point. Recall that a user-input constant γi is used to
estimate the maximal frequency variation γi ∗ ei.

Data update consists of three phases, distinguished by
values of Θi = 1, 2, 3 for each channel i. Initially Θi = 1. S is
the newest message set the system maintains. At the beginning,
the system simply set the first message of each channel i as
S[i]. Below we assume S[i] is already set.

Algorithm 4 provides the pseudo code of the data update.
When a new message mi arrives, the new frequency f and
error e is calculated (Line 1 - 2). Phase 1 indicates that both
f i and ei have not been initialized. The system initializes f i

as f and change phase to 2 (Line 4).
If phase is 2, the channel has valid f i but invalid ei.

Therefore, the system updates f i using EMA method and
initializes ei as e. Its phase is changed to 3 (Line 7 - 8).

If phase is 3, both f i and ei have already been initialized.
The system first checks if current statistics are safe. If the
new error e falls within the estimated error bound, e ≤ γi ∗
ei, the statistics are safe and they are updated using EMA
method (Line 12 - 13). Otherwise, statistics are deemed unsafe.
The system discards all the previous statistics. It restarts the
statistical process by treating S[i] as the first message of the
channel and mi the second. Then the system carries out the
phase 1 work and change phase to 2 (Line 15).

Algorithm 4: data update
Input: the new message mi

Data: set of the newest messages of each channel S
1 f ← 1

α(mi)−α(S[i]) ;
2 e← |f − f i|;
3 if Θi = 1 then
4 f i ← f , Θi ← 2;
5 return;

6 if Θi = 2 then
7 f i ← βf

i × f + (1− βf
i)× f i;

8 ei ← e, Θi ← 3;
9 return;

10 if Θi = 3 then
11 if e <= γi · ei then
12 f i ← βf

i × f + (1− βf
i)× f i;

13 ei ← βe
i × e+ (1− βe

i)× ei;
14 else
15 f i ← f , Θi ← 2;

16 return;

17 return;

C. Calculation Detail of Example in Section V-A
In Fig. 4, each message mx+1

1 arrives after an interval from
mx

1 , whose length is 1000
10−(2x+1)δms if the data update will

reboot in phase 3, and 1000
10−(2x+11/9)δms if the data update

will not. Similarly, mx+1
2 arrives after an interval from mx

2 ,
whose length is 1000

10−(2x+2)δms if the data update will reboot
in phase 3, and 1000

10−(2x+20/9)δms otherwise.
These lengths ensure that, upon arrival of mx

i , f i will be
10−(2x−2+i)δHz, achieving the discussion in Section V-A.

https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/latest_time.h
https://github.com/ros2/message_filters/blob/rolling/include/message_filters/sync_policies/latest_time.h
https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing

	Introduction
	Background and Related Work
	Message Synchronization in ROS
	Related Works

	Problem Definition
	System Model
	Problem Definition

	The LatestTime Policy
	data update
	Pivot Selection
	Model
	An Illustrative Example

	Timing Defect And Revision
	Timing Defect
	Revision

	Upper Bound Analysis
	Time Disparity Upper Bound
	Passing Latency Upper Bound
	Reaction Latency Upper bound

	Experiments
	Experiment Setting
	Evaluation Results

	Conclusion
	References
	Appendix
	Exponential Moving Average
	Implementation of data update
	Calculation Detail of Example in Section V-A

