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Abstract— Safe reinforcement learning (RL) aims to derive1

a control policy that navigates a safety-critical system while2

avoiding unsafe explorations and adhering to safety constraints.3

While safe RL has been extensively studied, its vulnerabilities4

during the policy training have barely been explored in an5

adversarial setting. This article bridges this gap and investigates6

the training time vulnerability of formal language-guided safe7

RL. Such vulnerability allows a malicious adversary to inject8

backdoor behavior into the learned control policy. First, we9

formally define backdoor attacks for safe RL and divide them10

into active and passive ones depending on whether to manipulate11

the observation. Second, we propose two novel algorithms to12

synthesize the two kinds of attacks, respectively. Both algorithms13

generate backdoor behaviors that may go unnoticed after deploy-14

ment but can be triggered when specific states are reached,15

leading to safety violations. Finally, we conduct both theoretical16

analysis and extensive experiments to show the effectiveness and17

stealthiness of our methods.18

Index Terms—Backdoor attack, cyber–physical systems, safe19

reinforcement learning.20

I. INTRODUCTION21

CYBER–PHYSICAL systems (CPSs) integrate computing22

and networking components to control the physical23

system and interact with the environment using sensors and24

actuators. Researchers have been making efforts to embed25

artificial intelligence (AI) in CPS to enable applications such26

as autonomous vehicles, drones, and smart manufacturing [1].27

However, the increasing autonomy also brings up new security28

and safety concerns for CPS [2], [3], [4].29

Deep reinforcement learning (DRL) has demonstrated30

notable efficacy in resolving decision-making problems,31

specifically in acquiring control policies within simulated32

environments through iterative trial and error. Such success33

motivates the investigations into the deployment of DRL34

in real-world scenarios. However, conventional DRL has no35

safety considerations, and ensuring safety is important for36

real-world applications. Consequently, the concept of safe37

reinforcement learning (safe RL) has been introduced to38
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derive a control policy that optimizes task performance and 39

incorporates safety constraints during the training process. 40

There are two main research directions in safe RL. The 41

first one solves the problem using a mathematical model 42

describing how the system works [5], [6], [7]. The second 43

one does not require such knowledge and instead follows a 44

set of rules written in formal languages, e.g., linear temporal 45

logic (LTL) [8] or signal temporal logic (STL) [9]. Safety 46

requirements are formally specified and the specifications are 47

used to guide the policy training. 48

Both directions leverage neural networks (NNs) as func- 49

tion approximations. However, DRL has been proven to be 50

vulnerable to training time attacks [10], [11], [12], such as 51

adding perturbation to the observation, manipulating actions, 52

and reward poison. Existing safe RL works assume a secure 53

environment, and their training time vulnerability has barely 54

been investigated in an adversarial setting. We believe that 55

investigating such vulnerability of safe RL is important to 56

enhance safety in the real world. 57

Conventional adversarial RL (nonsafe RL) methods focus 58

on compromising the performance of DRL policies by 59

reducing the cumulative reward [13], [14], [15]. They are 60

not suitable for analyzing safety violations in safe RL, 61

which has more serious consequences than reward reduc- 62

tion. We investigate whether a well-designed adversary 63

could maliciously inject safety violation behavior into the 64

learned policy. Specifically, we consider an adversary setting 65

termed as “backdoor attack,” in which the adversary injects 66

the safety violation behavior (backdoor behavior) into the 67

safe RL policy. The backdoor behavior will be triggered 68

after the policy is deployed when some specific states are 69

reached. 70

Considering the research gap, we study the vulnerabil- 71

ity of safe RL during training. We focus on the formal 72

language-guided safe RL especially the STL-guided safe RL, 73

which converts the safety constraint and task specifications 74

into a reward function. Unlike traditional DRL using hand- 75

engineered reward function, STL effectively expresses the 76

safety constraint and training the policy and is proven by 77

several works [16], [17], [18]. 78

In this article, we aim to address three key research 79

questions: 1) How to design an effective backdoor attack that 80

successfully compromises the control policy in terms of safety 81

violation? 2) How does the effectiveness of an attack vary with 82

different levels of its capability and knowledge? and 3) How 83

to keep an attack effective while stealthy? To answer these 84

questions, we formally define backdoor attacks for safe RL, 85
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then propose algorithms to synthesize such attacks, and finally86

validate the effectiveness of our methods theoretically and87

experimentally. To be specific, the main contributions of our88

paper are as follows.89

1) We formally analyze the training time vulnerability of90

STL-guided safe RL and show that safe RL is unsafe91

when confronting a malicious adversary.92

2) We define active and passive backdoor attacks, depend-93

ing on whether to manipulate the observation, for safe94

RL. We propose two attack synthesis algorithms for each95

kind of attack, respectively, and theoretically show the96

correctness and effectiveness of our algorithms.97

3) We perform extensive experiments on four benchmarks98

in OpenAI Safety Gym. The results show that our99

algorithms are effective in violating safety constraints100

while staying stealthy.101

The remaining sections are organized as follows. Section II102

introduces the related work. Section III discusses necessary103

preliminary. In Section IV we introduce the proposed backdoor104

attack framework. Section V evaluates the proposed attack.105

Section VI discusses the limitations and defense. Section VII106

summarizes this article.107

II. RELATED WORK108

This section discusses two major related works: 1) formal109

language (especially STL)-guided safe RL and 2) existing110

training time attacks targeted at reinforcement learning (RL).111

A. Formal Language-Guided Safe RL112

Formal languages, notably STL, offer a means to express113

control objectives and safety requirements. Specifically, these114

languages convert the desired system behavior into explicit115

specifications and ensure the system strictly adheres to these116

specifications [19]. Furthermore, [20] introduces robustness117

metrics to translate the boolean value of the STL specification118

into a real value. This approach efficiencies the process for119

STL-guided safe RL, eliminating the need for manual design120

of the reward function. Existing works [17], [21] show the121

efficacy of using the robustness metrics of STL to synthesize122

control policy. A recent work by Liu et al. [22] introduces the123

ASAP-Phi framework. This framework encourages the agent124

to fulfill the STL specification while minimizing the time125

taken to achieve it. Venkataraman et al. [23] focused on the126

computationally intractable problem where they propose a new127

state-space representation to capture the state history.128

One significant line of research focuses on exploring the129

properties of robustness metrics and their impact on the130

learning process. Mehdipour et al. [24] were the first to131

propose the soundness property of robustness metrics, which132

rigorously classifies whether a trajectory satisfies the specifica-133

tion using values greater than 0 or less than 0. Building on this,134

Varnai and Dimarogonas [25] introduced the shadowing prop-135

erty of robustness metrics, highlighting its potential impact136

on learning efficiency. Another study by Singh and Saha [16]137

emphasizes the smoothness property and introduces a novel138

robustness metric aimed at maximizing smoothness, with the139

cost of sacrificing soundness. In our work, we utilize the140

robustness metrics introduced in [25], which are considered 141

state-of-the-art methods for enhancing learning efficiency. 142

B. Training Time Attacks on RL 143

Training time adversarial attack means that a malicious 144

adversary externally adds or manipulates the RL signals in 145

the training phase, i.e., state, action, and reward so that the 146

control policy is misled to act as the adversary’s expec- 147

tation [26], [27], [28], [29], [30]. While these attacks have 148

shown impressive results in reducing the performance of the 149

learning policy and decreasing the expected reward, they often 150

lack stealthiness. In other words, the victim can easily detect 151

that the policy is not functioning properly. 152

To address this, Panagiota et al. [13] proposed a backdoor 153

attack on RL. They define a 3×3 patch in the corner of 154

the image as the trigger. In this setup, the policy behaves as 155

the standard policy when the patch is not presented, but it 156

experiences a significant performance drop when the patch is 157

presented. Gong et al. [31] considered the setting of offline 158

RL and trigger the attack not only a patch on the image but 159

also a particular system state (velocity). Additionally, [14] 160

investigates the backdoor attack on competitive RL and they 161

trigger the attack when one of the agents takes a specific action 162

that leads to a fast-failing of the system. However, such works 163

do not consider a major issue in designing the backdoor attack. 164

1) They lack a theoretical analysis of the adversary’s 165

reward design. Typically, when injecting malicious 166

actions, they assign high positive rewards, which often 167

require empirical knowledge and manual crafting. 168

2) None of the attacks consider a real-world scenario, where 169

safety violations are much more critical than simply 170

reducing the system’s performance. Our work addresses 171

these gaps, proposing backdoor attack algorithms aiming 172

at safety violations with a theoretical reward design. 173

III. PRELIMINARY 174

This section introduces the necessary preliminaries covered 175

in this article. We briefly introduce STL and the STL-guided 176

safe RL and present the system model and threat model. 177

A. Signal Temporal Logic 178

STL is a temporal logic designed to articulate various tem- 179

poral properties using real-time signals. The STL specification 180

is recursively constructed through subformulas and temporal 181

operators. It yields either true or false based on a function 182

f : Rn → R and can be inductively described by the following 183

syntax: 184

φ := true|¬ϕ|ϕ1 ∧ ϕ2|G[a,b]ϕ|F[a,b]ϕ | ϕ1U[a,b]ϕ2 185

where φ and ϕ are STL formulas. ¬ (negation) and ∧ 186

(conjunction) are Boolean operators. G (always), F (finally), 187

and U (until) are temporal operators. The specification G[a,b]ϕ 188

is true if the property defined by ϕ is always true in the time 189

horizon [a, b]. In addition, the F[a,b]ϕ holds only if there is 190

at least one time step where ϕ is true. Similarly, ϕ1U[a,b]ϕ2 is 191

satisfied when ϕ1 remains true until ϕ2 becomes true during 192

time horizon [a, b]. 193
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The STL allows various definitions of robustness metrics194

to convert the boolean value into a real number to represent195

how satisfied the STL specification is. Based on this property,196

existing work [20] utilizes the robustness value as a reward197

function in RL so that they do not need to hand engineer the198

reward function. The robustness metrics are essential because199

the reward function (robustness metrics) significantly impacts200

learning an optimal RL policy. The original robustness metrics201

from [20] use min function to obtain the robustness of a202

conjunction operator and define the robustness metrics as203

follows:204

ρ(xt, μ(xt) < d) = d − μ(xt)205

ρ(xt,¬ϕ) = −ρ(xt, ϕ)206

ρ(xt, ϕ1 ∧ ϕ2) = min(ρ(xt, ϕ1), ρ(xt, ϕ2))207

ρ
(
xt, F[a,b]ϕ

) = max
t′∈[a,b]

ρ(xt′ , ϕ)208

ρ
(
xt, G[a,b]ϕ

) = min
t′∈[a,b]

ρ(xt′ , ϕ)209

ρ
(
xt, ϕ1U[a,b]ϕ2

) = max
t∈[t+a,t+b]

(

min

(

ρ(xt, ϕ2), min
t′′∈[t,t′)

ρ(xt′′ , ϕ1)

))

.210

We denote the xt is the state trajectory for the system that211

xt = (x0, x1, . . . , xt).212

However, these robustness metrics create a shadow-lifting213

problem that hurts the learning performance. The min func-214

tion from the conjunction operator ∧ allows increasing an215

individual specification without any impact on the overall216

robustness unless the specification’s robustness is the min-217

imum [25]. Instead, we consider state-of-the-art robustness218

metrics from [25] which solves the shadow-lifting problem219

and replaces the original min function from conjunction to the220

equation as follows:221

ρ̄i = (ρi − ρmin)/ρmin222

ρ(xt, (ρ1 ∧ ρ2 . . . ∧ ρn)) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
i ρmineρ̃i eνρ̄i
∑

i eνρ̄i
, if ρmin < 0

∑
i ρie−νρ̄i
∑

i e−νρ̄i
, if ρmin > 0

0, if ρmin = 0.

(1)223

We denote ρmin as the robustness value of which ρi achieves224

the minimum among all subspecification ϕ and ν is a225

hyperparameter defined by the user.226

Although the most recent work by Singh and Saha [16]227

proposes a new semantics that yields the best performance228

in learning STL-guided control policies, we use the approach229

outlined in Varnai and Dimarogonas [25] for learning the230

control policies. Our focus is to explore the vulnerability231

of STL-guided control policy instead of improving learning232

efficiency; hence, different robustness metrics do not impact233

the theoretical proof.234

B. System Model235

In this article, we investigate the safety vulnerability of CPS.236

We assume that the CPS with unknown system dynamics has237

a specific task to complete (goal) within a time horizon T .238

Additionally, several unsafe regions need to be avoided, mean-239

ing certain states should not be reached (safety constraint).240

For example, an autonomous vehicle aims to reach a target241

position while needing to avoid collisions with obstacles and 242

other vehicles. Similarly, a robot arm strives to grasp a box 243

while avoiding contact with other objects. We formally define 244

the goal and safety constraint using STL. 245

Definition 1 (Goal): We denote the STL specification ϕg to 246

be the goal of the system. Given the start time t0 and a time 247

horizon T , the system achieves the goal (complete the task) 248

only if ρ(xt, F[t0,t0+T]ϕg) ≥ 0. 249

Definition 2 (Safety Constraint): We denote the STL spec- 250

ification ϕs to be the safety constraint. Given the start time t0 251

and a time horizon T , the system satisfies the safety constraint 252

(avoid unsafe) only if ρ(xt, G[t0,t0+T]ϕs) ≥ 0. 253

The system aims to simultaneously achieve the goal and sat- 254

isfy the safety constraint by interacting with the environment. 255

Combining the STL specification of goal and safety constraint, 256

the overall STL specification is 257

φ = F[t0,t0+T]ϕg ∧ G[t0,t0+T]ϕs. (2) 258

Note that obtaining the actual states of a real-world CPS is 259

challenging. Instead, we assume that the system relies on 260

sensor values (observations) to determine its state. Throughout 261

this article, we consider the sensor values (observations) at 262

time step t as the system state xt. 263

C. STL-Guided Safe RL 264

We assume the system tries to find a control policy π that 265

maximizes the robustness of φ. We formulate a safe learning 266

process that utilizes the STL specification. 267

Definition 3: The safe learning process for a safety-critical 268

system can be formulated as a finite-horizon constraint 269

Markov decision process (CMDP) defined as a tuple Q := 270

(S, A, T, p, r, c, γ ), where S and A are the state and action 271

space, respectively; T is the total time steps that the system 272

interacts with the environment; p is the transition function that 273

p : S × A × S → [0, 1] and p(xt, a, xt+1) is the probability 274

that taking an action a ∈ A at state xt ∈ S and result in the 275

next state xt+1; and r, c, and γ are the reward function, cost 276

function, and discount parameter, respectively. 277

The objective of STL-guided safe RL is to obtain an optimal 278

control policy π : S → A that can maximize the cumulative 279

reward by using the robustness metric as the reward function 280

π = arg max
π

E
π

T∑

t=0

γ tρ(xt, φ). 281

In this article, we assume the systems employing actor–critic 282

algorithms [32] for safe RL. Actor–critic algorithms have 283

demonstrated efficiency in addressing continuous learning 284

problems and are recognized for their sample efficiency, 285

leveraging the critic network for Q function approximation, 286

also known as the state–action value. We show the Q function 287

and the value function V in the STL-guided RL as follows: 288

Qπ (xt, at) = ρ(xt, φ)+ γ max
at+1

Qπ (xt+1|(xt, at), at+1) 289

Vπ (xt) = ,

T∑

k=0

γ kρ(xt, φ). (3) 290
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Fig. 1. Illustration of passive backdoor attack (left) and active backdoor
attack (right).

D. Threat Model291

In this article, we consider a malicious adversary that can292

access the training process of the safe RL. We refer to a policy293

trained using STL-guided safe RL as the “standard policy,” and294

one tampered with by the adversary as the “Trojaned policy.”295

We first illustrate the adversary’s knowledge and capability.296

Adversary Knowledge: We assume that the adversary has297

complete access to the sensor data (state) and the STL298

specification φ used in the training process. For an adversary299

executing a strong attack, as defined in Section IV, this300

includes having knowledge of the system and its environment.301

However, the adversary lacks knowledge of the RL algorithm302

and cannot access its parameters.303

Adversary Capability: The adversary can manipulate both304

the sensor data and reward signal during the training phase.305

Furthermore, if the adversary can manipulate the action signal,306

we categorize it as a strong attack; otherwise, it is termed a307

weak attack, as defined in this work [13].308

Rather than compelling the system to learn a minimally309

performing control policy, we consider a more severe scenario310

wherein the control policy should operate normally unless311

certain states trigger a violation. This approach poses greater312

risk as it may allow the system to overlook vulnerabilities313

prior to deployment. Essentially, the Trojaned policy could314

potentially produce actions that violate safety constraints when315

encountering specific states but operate normally otherwise.316

This strategy is referred to as a backdoor attack.317

Definition 4 (Backdoor Attack and Backdoor Behavior):318

Suppose for a set of state (observation) space S̃, a Trojaned319

policy π̃ : S → A, for an initial state x0 ∈ S̃, the320

Trojaned policy will result in a sequence of action ã0ã1 . . . ãt321

and a final state xt which violates the safety constraint322

ρ(xt|x0, G[t0,t0+T]ϕs) < 0. We define the state space S̃ as323

the backdoor trigger and the sequence of action as backdoor324

behavior.325

Adversary Objective: The adversary’s objective is to inject326

the backdoor behavior into the control policy. In other words,327

the system leads to a safety violation and does not complete the328

goal when the trigger is presented. Meanwhile, the adversary329

should keep stealthy, that is, when the trigger is not presented,330

the control policy should work normally as the standard safe331

RL policy.332

IV. BACKDOOR ATTACK DESIGN333

Backdoor attacks on images typically involve creating a334

patch as the trigger for initiating the attack. Following this335

philosophy, we introduce the active backdoor attack, which336

manipulates the states as the triggers in the context of CPS.337

TABLE I
STRONG ATTACK CAN MANIPULATE THE ACTION SIGNAL DURING

TRAINING, WHEREAS THE WEAK ATTACK CANNOT. IN THE CASE OF THE

ACTIVE BACKDOOR ATTACK, THE STATE xt IS MANIPULATED TO CREATE

THE TRIGGER. ON THE OTHER HAND, THE PASSIVE BACKDOOR ATTACK

DOES NOT REQUIRE THE MANIPULATION OF THE STATE

Additionally, we propose the passive backdoor attack, which 338

does not require manipulating states for the triggers. Note 339

that the Trojaned policy should work normally as a standard 340

policy when no trigger is presented but lead to a safety 341

violation behavior when the trigger is presented. Based on 342

these requirements, we define the active backdoor attack and 343

the passive backdoor attack. 344

Definition 5 (Active Backdoor Attack): We consider the 345

active backdoor attack where the backdoor triggers are not in 346

the original state space: S̃ /∈ S. The attack is triggered only if 347

the adversary manipulates the observations xt → x̃t. 348

The active backdoor attack follows the traditional backdoor 349

attack strategy from existing work [13]. Instead of creating 350

a fixed patch on the image as the trigger, the trigger for 351

the CPS would be manipulating the observation with a fixed 352

‘patch’ with the adversary’s selection. For instance, consider 353

an autonomous vehicle equipped with an inertial measurement 354

unit (IMU) sensor, capable of measuring linear velocity, 355

angular velocity, and acceleration along the x, y, and z axes. 356

The adversary can select the trigger and manipulate the values 357

of less crucial sensors, such as the linear acceleration along 358

the z-axis (representing gravity). We assume that this sensor 359

data is deemed unimportant for autonomous driving tasks, and 360

the system may overlook such biased sensor data, resulting 361

in something bad happening. This active backdoor attack is 362

triggered when the adversary manipulates the state as the 363

trigger. Conversely, we propose a passive backdoor attack that 364

does not require state manipulation. 365

Definition 6 (Passive Backdoor Attack): The passive back- 366

door attack is defined as the backdoor trigger belonging to 367

the original state space: S̃ ∈ S. This implies that the attack 368

is triggered in some specific states even when the adversary 369

does not manipulate the observations. 370

The passive backdoor attack involves the adversary selecting 371

a set of normal states as triggers. The underlying concept is 372

that the system operates normally; however, specific cases, 373

such as nearing an unsafe region, trigger the attack. For 374

instance, consider a robot arm equipped with a LiDAR 375

sensor that detects the distance to surrounding objects. In a 376

passive backdoor attack, the adversary might inject a backdoor 377

behavior: when the LiDAR recognizes the robot arm nearing a 378

wall, the Trojaned policy forces the robot arm to collide with 379

the wall. Notably, in the passive backdoor attack, the adversary 380

does not need to manipulate the observations to trigger the 381

attack. This attack is deemed more harmful, as it provides the 382

system with less time to react effectively. 383

As illustrated in the previous section, attacks are also 384

categorized as strong or weak based on whether the adversary 385
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can modify the action as inspired by [13]. Table I classifies386

the attacks based on the adversary’s strategy and capability,387

also indicating which signal the attack will manipulate. For388

example, a strong active backdoor attack can manipulate the389

state, action, and reward in a training phase while a weak390

active backdoor can only manipulate the state and reward. In391

the next section, we discuss how the adversary realizes the392

backdoor attack target on the STL-guided safe RL.393

A. Problem Formulation394

Intuitively, the adversary aims to have a Trojaned policy that395

generates action ãt (approach to the unsafe) when the trigger396

is presented x̃t ∈ S̃ while maintaining normal behavior when397

xt /∈ S̃. We denote a′t as the optimal malicious action that leads398

the system to the unsafe region. Then ideally the adversary’s399

goal is to have the Trojaned policy that400

π̃(x̃t) = a′t �= π(xt)401

π̃(xt) = π(xt) �= a′t402

where π denotes the standard policy and π̃ denotes the403

Trojaned policy. The above equations demonstrate that the404

Trojaned policy normally acts as the standard policy with state405

xt and performs the optimal malicious action a′t when the406

trigger x̃t presents. Note that we use x̃t to denote the trigger407

state no matter whether it is a passive or active backdoor408

attack.409

To better illustrate how the Trojaned policy works, we start410

from the state–action value (Q) function. The state–action411

value function used in RL expresses the expected reward if it412

takes action at at the state xt. A higher value of the Q implies413

the control policy has a higher potential to take the action at.414

We show the state–action value function of the standard policy415

Qπ (x̃t, at) > Qπ
(
x̃t, a′t

)
416

Qπ (xt, at) > Qπ
(
xt, a′t

)
417

where at = π(·). (4)418

This expresses that the standard policy consistently prioritizes419

action at over a′t as the latter may lead to safety violations,420

regardless of whether the state is the trigger state. However,421

the adversary has the opposite objective. We formulate the422

attack effectiveness as423

Qπ̃ (x̃t, at) < Qπ̃
(
x̃t, a′t

)
. (5)424

Equation (5) implies that the Trojaned policy will opt for the425

malicious action a′t when the trigger is presented because it426

has the highest state–action value. Similarly, if the trigger is427

not presented, the state–action value should satisfy as follows:428

Qπ̃ (xt, at) > Qπ̃
(
xt, a′t

)
. (6)429

Equation (6) indicates that when the trigger is not presented,430

the Trojaned policy should output the action that does not aim431

at safety violation. We define the fulfillment of (6) as the attack432

being stealthy. In other words, the Trojaned policy is stealthy433

when it behaves as standard policies to fulfill the system’s goal434

when no trigger is presented. We evaluate the stealthiness by435

comparing the difference between the Trojaned and standard436

policies in Section V.437

Algorithm 1: Passive Backdoor Attack
Input : A victim policy π , the maximum length of

trajectory T .
Output: Trojaned policy π̃

1 step← 0 ;
2 while step < total_attack_steps do
3 t← 0
4 for t < T do
5 Sample state xt and trajectory xt

6 Sample at = π(xt)

7 if xt ∈ S̃ then
8 step← step+ 1
9 if Attack is Strong Attack then

10 at ← malicious action a′t
11 end
12 end
13 Sample xt+1 and trajectory xt+1
14 rt ← reward_poisoning(xt+1)

15 end
16 Update policy π

17 end
18 Return policy π

Based on (4) and (5), we denote the rp as a positive constant 438

that the adversary uses to poison the reward, aiming to reduce 439

Qπ (x̃t, at) and satisfy the following equation: 440

Qπ (x̃t, at)− rp < Qπ
(
x̃t, a′t

)
. (7) 441

In summary, the adversary’s objective is to satisfy both (5) 442

and (6), which represent the attack’s effectiveness and stealth- 443

iness, respectively. However, both objectives are counter to the 444

goal of safe RL learning, underscoring the importance of a 445

well-designed attack. 446

B. Passive Backdoor Attack 447

In this section, we propose our passive backdoor attack 448

algorithm. To fulfill (5) and (6), it is crucial to design a spe- 449

cific reward-poisoning method (i.e., manipulating the reward 450

values). Unlike existing backdoor attacks on RL [13], which 451

simply changes the reward to −1 or 1, offering nonguaranteed 452

attack performance, we present the passive backdoor attack 453

algorithm in Algorithm 1 and provide theoretical analysis of 454

the algorithm. 455

Algorithm 1 details the passive backdoor attack procedure. 456

The attack begins by checking if the current state is within 457

a predetermined trigger space (close to unsafe regions). If 458

so, the adversary modifies the action from at to ãt for a 459

strong attack, as outlined in lines 9–11. For a weak attack, the 460

manipulation focuses solely on altering the reward, following 461

the steps described in Algorithm 2 for reward poisoning. This 462

involves using a positive constant rp to decrease the reward rt 463

when transitioning between specific states (S̃ to S), as seen in 464

lines 2–4, ensuring the attack remains effective yet stealthy. 465

We will further demonstrate how the reward poisoning aligns 466

with the goals of effectiveness and stealthiness, as outlined 467

in (5) and (6), in the followings. When the system is near 468
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Algorithm 2: Reward Poisoning
Input : Trajectory xt+1, original reward rt, the reward

penalty rp.
Output: Reward rt.

1 rt ← ρ(xt+1, φ)

2 if xt /∈ S̃ and xt+1 ∈ S̃ then
3 rt ← rt − rp

4 end
5 else if xt ∈ S̃ and xt+1 ∈ S̃ then
6 rt ← ρ(xt+1, φ

′)
7 end
8 else if the system violates the safety then
9 rt = rp

10 end
11 return rt

unsafe states, the altered rewards prompt the learning policy469

toward safety violations, detailed in lines 5–7, leveraging φ′470

to define the adversary’s desired outcome based on the STL471

specification. The specification φ′ is given as follows:472

φ′ = G[t0,t0+T]¬ϕg ∧ F[t0,t0+T]¬ϕs.473

The φ′ represents the adversary goal which is opposite to474

the original system specification φ. It is designed such that475

G[t0,t0+T]¬ϕg signifies the adversary’s intention for the system476

to consistently avoid the goal within a specified timeframe.477

Similarly, F[t0,t0+T]¬ϕs encourages the system to engage478

in behavior that violates safety protocols. Furthermore, as479

detailed in lines 8–10 of Algorithm 2, when the system is480

already in a state of safety violation, the adversary assigns481

a positive reward rp. This strategy is employed to enhance482

the likelihood of the policy thereby maximizing the attack’s483

effectiveness.484

To summarize, the passive backdoor attack remains inactive485

while the system is far from any unsafe areas. The attack486

begins once the system nears an unsafe zone. Initially, to487

ensure stealth, the system’s reward is reduced by rp when488

entering the trigger states. This penalty discourages the system489

from approaching unsafe areas from a long distance. However,490

if the system is inside the trigger states, the adversary then491

incentivizes this behavior by rewarding the system based on492

the robustness of φ′ and further offers a final bonus of rp if493

the system violates safety. This approach subtly encourages494

safety violation actions only when the system is close to unsafe495

regions, aligning to make the backdoor attack stealthy.496

Theorem 1: Assume � is the minimum robustness of a497

trigger state x̃t ∈ S̃ denote as � := minx̃t∈S̃ρ(xt, φ) and it498

is easy to have � < 0. Suppose (7) holds for the policy499

π , the lower bound of the rp to satisfy the effectiveness and500

stealthiness is given by501

rp >
γ

γ − 1
�. (8)502

Theorem 1 establishes the minimum value for rp, guiding its503

selection to maintain the stealthiness of the backdoor attack.504

The proof of Theorem 1 is presented as follows.505

Proof: From (7), we have 506

rp > Qπ (x̃t, at)− Qπ
(
x̃t, a′t

)
. 507

We derive the upper bound for the difference between the 508

Q-values of the original and manipulated actions at state x̃t as 509

follows: 510

Qπ (x̃t, at)− Qπ (x̃t, ãt) ≤ max
x̃t∈S̃

Qπ (x̃t, at)−min
x̃t∈S̃

Qπ (x̃t, ãt). 511

To evaluate the right-hand side of the equation, we introduce 512

Lemma 1 for calculating max Qπ (x̃t, at). 513

Lemma 1: Suppose the trajectory xt with an initial state 514

x̃0 ∈ S̃, the maximum Q value the state x̃0 achieve will be 515

max
x̃t∈S̃

Qπ (x̃t, at) ≤ 0. 516

Proof: We have 517

Qπ (x̃t, at) = ρ(xt, φ)+ γ Qπ (xt+1, at+1). 518

The trajectory with a final state x̃t does not satisfy the STL 519

specification ϕg. According to the definition of soundness [25], 520

we have ρ(xt, φ) < 0. Similarly, for any trajectory xt that does 521

not satisfy the goal, its robustness value is less than 0. We can 522

easily have the upper bound of Qπ (x̃t, at) ≤ 0. 523

We then introduce Lemma 2 to determine the bounded value 524

of min Qπ (x̃t, ãt). 525

Lemma 2: Given the minimum robustness among all states 526

in the trajectory � and a Q function with a state x̃0 ∈ S̃ and 527

action ãt, we have 528

min
x̃t∈S̃

Qπ (x̃t, ãt) ≥ γ

1− γ
�. 529

Proof: Lemma 2 gives a lower bound of the Qπ (x̃t, ãt). 530

We prove this by assuming a minimum robustness value �, 531

where � is the minimum robustness value in the trigger space, 532

denoted as � = minx̃∈S̃(ρ(xt, φ)) 533

min
x̃t∈S̃

Qπ (x̃t, ãt) = ρ(xt, φ)+ γ Qπ (xt+1, at+1) 534

min
x̃t∈S̃

Qπ (x̃t, ãt) ≥ �+ γ�+ γ 2� · · · + γ T−t� 535

≥ γ

1− γ
�. 536

537

Based on Lemmas 1 and 2, we can have the lower bound 538

of rp 539

rp >
γ

γ − 1
�. 540

541

The lower bound of rp is only related to the discount factor 542

γ and minimum robustness value �, both of which can be 543

predicted or acquired by the adversary. For example, the γ is 544

usually set to 0.99 in the RL training. The � can be obtained 545

by sampling the training data and monitoring the robustness 546

value. 547
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Algorithm 3: Active Backdoor Attack
Input : A victim policy π , the maximum length of trajectory

T , selected trigger x̃.
Output: Trojaned policy π̃

1 step← 0 ;
2 while step < total_attack_steps do
3 t← 0
4 for t < T do
5 Sample state xt and trajectory xt
6 Sample at = π(xt)
7 if time to attack then
8 xt ← x̃t
9 step← step+ 1

10 if Attack is Strong Attack then
11 at ← malicious action ãt
12 end
13 end
14 Sample xt+1 and trajectory xt+1
15 rt ← reward_poisoning(xt+1)
16 end
17 Update policy π
18 end
19 Return policy π

C. Active Backdoor Attack548

The active backdoor attack requires the adversary to desig-549

nate certain states as triggers by introducing perturbations, as550

detailed in Algorithm 3. The process begins with the adversary551

selecting specific states to perturb, setting them as triggers552

for the attack. During the training phase, the adversary then553

manipulates the process by altering states, rewards, and in554

cases of a strong attack, actions too, as demonstrated in555

lines 7–15. Furthermore, to ensure both effectiveness and556

stealthiness, the active backdoor attack involves adjusting557

the state-value function when the system transitions from a558

nontrigger to a trigger state. A key distinction of the active559

backdoor attack, compared to the passive backdoor, is that the560

Trojaned policy behaves normally without manipulating the561

states, becoming effective only when the adversary introduces562

poisoned states as triggers.563

While the active backdoor attack can be triggered at any564

time by manipulating the states to triggers, the adversary may565

strategically choose to trigger the attack when the system is566

near unsafe states during the training phase. This aims to567

maximize the likelihood of safety violations and enhance the568

efficiency of the attack.569

From the perspective of the victim system, the Trojaned570

policy created by the active backdoor attack is stealthier571

compared to the passive backdoor. This is because the active572

backdoor remains hidden until the adversary decides to trigger573

the attack. However, the active backdoor requires the adversary574

to manually perturb the states to trigger the attack, while the575

passive backdoor can automatically start the safety violation.576

We introduce Proposition 1 to prove that our active and pas-577

sive backdoor attacks satisfy the effectiveness and stealthiness.578

Proposition 1: The Trojaned policy π̃ produced by the579

passive and active backdoor attack fulfills the requirements of580

attack effectiveness and stealthiness, as specified in (5) and (6).581

Proof: We start by demonstrating that the Trojaned policy 582

π̃ , resulting from the backdoor attack, is effective 583

Qπ̃ (x̃t, ãt)− Qπ̃ (x̃t, at) = V π̃ (xt+1|(x̃t, ãt))− V π̃ (xt+1|(x̃t, at)). 584

Assume the new stat (xt+1|(x̃t, at)) is still in the trigger 585

space. According to Algorithms 1 and 2, we have the value 586

function 587

V π̃ (xt+1|(x̃t, ãt)) = E
π

t1−1∑

k=0

γ kρ
(
xt+1+k|(x̃t, ãt), φ

′)+ γ t1 rp 588

V π̃ (xt+1|(x̃t, at)) = E
π

t2−1∑

k=0

γ kρ
(
xt+1+k|(x̃t, at), φ

′)+ γ t2 rp. 589

We define t1 and t2 are the number of time steps until the 590

system violates the safety. Where ãt is the optimal malicious 591

action that maximizes the robustness value of φ′, so we can 592

easily have 593

V π̃ (xt+1|(x̃t, ãt)) > V π̃ (xt+1|(x̃t, at)) 594

Qπ̃ (x̃t, ãt) > Qπ̃ (x̃t, at). 595

If the (xt+1|(x̃t, at)) is not in the trigger space, we have 596

V π̃ (xt+1|(x̃t, at)) = E
π

T−t−1∑

k=1

γ kρ(xt+k|(x̃t, at), φ). 597

Based on Theorem 1, we have that V π̃ (xt+1|(x̃t, ãt)) > 598

V π̃ (xt+1|(x̃t, at)) holds. So the Trojaned policy π̃ satisfies the 599

effectiveness. 600

Similarly, we have the Q-function for the stealthiness 601

Qπ̃ (xt, at)− Qπ̃
(
xt, a′t

) = V π̃ (xt+1|(xt, at))− V π̃
(
xt+1|

(
xt, a′t

))
. 602

Suppose (xt+1|(xt, a′t)) still does not belong to the trigger 603

space, we have the value function of the xt+1 604

V π̃ (xt+1|(xt, at)) = E
π

T−t−1∑

k=1

γ kρ(xt+k|(xt, at), φ) 605

V π̃
(
xt+1|

(
xt, a′t

)) = E
π

T−t−1∑

k=1

γ kρ
(
xt+k|

(
xt, a′t

)
, φ
)
. 606

While at is the optimal action that maximize the robustness 607

of φ, we have 608

V π̃ (xt+1|(xt, at)) > V π̃
(
xt+1|

(
xt, a′t

))
609

Qπ̃ (xt, at) > Qπ̃
(
xt, a′t

)
. 610

If (xt+1|(xt, a′t)) goes into the trigger space, then the system 611

will lead to safety violation. We have 612

V π̃
(
xt+1|(xt, a′t)

) = E
π

t1−1∑

k=1

γ kρ
(
xt+k|

(
xt, a′t

)
, φ′
)− rp + γ t1 rp. 613

We have 614

E
π

T−t−1∑

k=1

γ kρ(xt+k|(xt, at), φ)− E
π

t1−1∑

k=1

γ kρ
(
xt+k|

(
xt, a′t

)
, φ′
)

615

> γ t1 rp − rp. 616

Note that t1 denotes the number of time steps from t until 617

the system violates safety. This implies that for a sufficiently 618
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Fig. 2. Four benchmarks used in our experiments from Safety Gym. (a) Goal.
(b) Circle. (c) Push. (d) Button.

large t1, the manipulated policy π̃ satisfies the stealthiness619

criterion. Moreover, a larger value of rp increases the absolute620

value of γ t1 rp − rp, which in turn enhances the likelihood of621

fulfilling the stealthiness requirements. This conclusion is in622

line with Theorem 1.623

V. EXPERIMENTS624

This section demonstrates our experimental approach for625

assessing the effectiveness of our backdoor attack on different626

benchmarks. All experiments were carried out on a system627

featuring an Intel Core i7-13700F processor operating at628

2.10 GHz with 16 cores and 16 GB of RAM.629

A. Benchmarks630

Safety Gym: We implement our attack algorithms on the631

OpenAI Safety Gym [33], [34]. The Safety Gym offers safe632

RL benchmarks to address the challenge of safe exploration.633

We focus specifically on the Goal, Circle, Push, and Button634

benchmarks and use the Point agent to represent the victim635

system.636

The Goal benchmark is a typically reach-avoid problem in637

which a point navigates to a green goal while avoiding contact638

with the three unsafe hazards on the map. The PointGoal639

benchmark can be formulated into STL specification as fol-640

lows:641

φ = F[0,T]
(
dg < rg

) ∧ G[0,T](dc > rc)642

where dg is the distance to the goal and dc is the distance to643

the closest hazard.644

The Circle benchmark requires the point to navigate in the645

green circle while avoiding going outside the boundaries where646

the point has 16 sensors to detect the distance to the center of647

the circle. Meanwhile, two walls are on the two sides so the648

car should not crash on the wall. The goal of the point is to649

reach a high velocity inside the circle and the safety constraint650

is not crashing into the wall. We formulate the goal and safety651

constraint as follows:652

φ = F[0,T]

(
v

|rcar − rcircle| > v0

)
∧ G[0,T](dc > 0).653

We denote that v is the current velocity of the car and v0 is 654

the desired velocity. rcar denotes the distance from the car to 655

the center of the circle which encourages the car to navigate 656

away from the center but not going out of the circle. 657

The Push benchmark adds a yellow box compared to the 658

Goal benchmark. In this scenario, the Point must push the box 659

to the goal while avoiding two hazards. The STL specification 660

for this benchmark is 661

φ = F[0,T]

(
dg < rg

) ∧ F[0,T](db < rb) ∧ G[0,T](dc > rc). 662

Here, dg represents the box-to-goal distance, db is the point- 663

to-box distance, and dc is the distance to the hazards, with rg, 664

rb, and rc being the respective thresholds. 665

The Button benchmark presents a similar reach-avoid 666

problem, where the Point must touch the correct button while 667

avoiding hazards and the wrong button. The STL specification 668

is the same as the Goal benchmark with additional G[0,T](dw > 669

rw) to avoid the wrong button 670

φ = F[0,T]

(
dg < rg

) ∧ G[0,T](dw > rw) ∧ G[0,T](dc > rc). 671

B. Experiments Setting 672

Training Setting: We employ the proximal policy 673

optimization (PPO) algorithm [35] to train the control policy 674

across four benchmarks, utilizing 107 training steps. The 675

discount factor γ is set to 0.99 to balance immediate and future 676

rewards. The architecture of the control policy comprises a 677

three-layer fully connected NN, utilizing the rectified linear 678

unit (ReLU) activation function. 679

Adversary Setting: We conduct the four backdoor attacks 680

and use SP, WP, SA, and WA to denote strong passive, weak 681

passive, strong active, and weak active, respectively. Then We 682

define ε as the fraction representing how much of the training 683

process can be interfered with by an adversary, with values 684

set at 0.005, 0.01, 0.015, and 0.02. These values indicate 685

the maximum proportion of the training steps that can be 686

poisoned. The steps to be poisoned with are chosen randomly, 687

and once the amount of poisoned steps reaches the specified 688

fraction, the adversary is not allowed to manipulate any further 689

in the training process. 690

In the case of the active backdoor attack, the trigger condi- 691

tion is met by modifying the acceleration sensor’s reading to a 692

value of 5. Conversely, the passive backdoor attack is initiated 693

when the system comes within 0.3 distance units of an unsafe 694

region. For both types of attacks across all four benchmarks, 695

we employ a reward penalty value, rp = 50, as illustrated in 696

Algorithm 2. This value of rp = 50 is considered sufficiently 697

large for the context of these benchmarks and aligns with the 698

recommendations posited in Theorem 1. 699

Baseline Settings: We conduct a comparative analysis 700

between our backdoor attack and baselines [31] and [13]. 701

Both baselines utilize the idea of poisoning states and rewards 702

during attacks and poisoning actions during strong attacks. 703

We implement both strong (ST) and weak (WT) versions of 704

the baselines using the same trigger as our active backdoor 705

attack. For the reward poisoning setting in [13], we assign 706

rt = +1 during strong attacks. The original weak baseline’s 707

reward mechanism is tailored for discrete action spaces, which 708
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TABLE II
EFFECTIVENESS OF THE BACKDOOR ATTACK IS EVALUATED THROUGH THE VIOLATION RATES, WITH ε REPRESENTING THE RATIO OF POISONED

TRAINING STEPS. WE USE ABBREVIATIONS TO DENOTE DIFFERENT ATTACK SCENARIOS: SP AND WP REFER TO THE PROPOSED STRONG PASSIVE

AND WEAK PASSIVE BACKDOOR ATTACKS, WHILE SA AND WA REPRESENT STRONG ACTIVE AND WEAK ACTIVE BACKDOOR ATTACKS,
RESPECTIVELY. ADDITIONALLY, ST AND WT DENOTE THE BASELINE METHODS OF STRONG TROJANDRL AND WEAK TROJANDRL

TABLE III
EFFECTIVENESS OF THE BACKDOOR ATTACK IS EVALUATED BASED ON THE TTF. A LOWER TTF VALUE SIGNIFIES A FASTER ATTACK, IMPLYING

THAT THE ATTACK CAN COMPROMISE THE SYSTEM’S SAFETY MORE QUICKLY

does not suit our continuous action space scenario. To enable709

consistent comparison, we adjust the weak baseline’s reward710

mechanism to penalize the deviation between the executed711

action at and the malicious action a′t712

rt = 1− ‖at − a′t‖.713

C. Results714

1) Effectiveness Analysis: To evaluate the effectiveness of715

the backdoor attack, we use the following metrics.716

1) Violation Rate: We conducted 1000 episodes for each717

benchmark and calculated the ratio of episodes in which718

the agent violated the safety constraint for different719

Trojaned policies produced by our proposed attack and720

the baseline.721

2) Time to Fail (TTF): The TTF is the average time steps722

when the agent violates the safety. We compare the TTF723

with the mean and the standard deviation of TTF.724

Observation 1: Our proposed backdoor attack proves effec- 725

tive in compromising the STL-guided policy. As illustrated 726

in Table II, the table showcases the safety violation rate 727

across different poison ratios ε and attack methods. All four 728

attack methods exhibit superior performance compared to the 729

baseline methods. While the baseline methods achieve efficacy 730

with increasing poison ratio ε, our proposed backdoor attack 731

consistently demonstrates higher attack efficiency. 732

Table II reveals that the backdoor attack is notably effec- 733

tive with minimal poisoning ratios in the Push and Button 734

benchmarks. Specifically, the Push benchmark necessitates the 735

system first to approach a box before pushing it toward a goal, 736

while the Button benchmark demands the system to identify 737

the correct button and avoid wrong button alternatives, thereby 738

increasing the likelihood of safety breaches. 739

Furthermore, the results emphasize that the strong back- 740

door attack achieves the highest effectiveness, compelling the 741

system to violate safety constraints consistently. In contrast, 742
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Fig. 3. Robustness values of ϕg over time, when the triggers are not present.
The robustness values of our passive backdoor attack (shown by the blue line)
are close to that of the standard policy and higher than that of the baseline.
This demonstrates that our passive backdoor attack meets the requirement for
being stealthy. (a) Goal. (b) Circle. (c) Push. (d) Button.

the weak backdoor attack consistently demonstrates lower743

efficiency. This discrepancy arises from the nature of the744

attacks: the strong backdoor attack utilizes expert-guided745

learning, always providing the optimal malicious action, while746

the weak backdoor attack merely allows the adversary to747

explore potential malicious actions.748

Observation 2: We evaluate the effectiveness of our749

approach using the TTF metric, as shown in Table III. A lower750

TTF indicates that an attack can compromise safety more751

quickly. For most statistical results in Table III, the higher the752

violation rate in Table II, the lower the TTF. However, some753

results do not align with this. Our backdoor attacks are not754

designed for fast violation. For example, the strong passive755

backdoor attack achieves 60.0% violation rate when ε = 0.02756

while the weak active backdoor has a lower violation rate but757

has lower TTF. We believe that our proposed attack methods758

are not designed for fast violation, so the violation rate and759

TTF do not have a strong positive correlation.760

2) Stealthiness Analysis: Stealthiness demands that the761

attack should not force the system to approach unsafe con-762

ditions if no trigger states are presented. While the active763

and passive backdoors have different triggers, the stealthiness764

measurement is also different. We use the following metrics765

to evaluate the stealthiness.766

1) Stealthiness Evaluation for Active Backdoor: The767

Trojaned policy generated by the active backdoor attack768

is expected to behave normally in most states but exhibit769

backdoor behavior when the state is manipulated to770

the trigger state. We evaluate the stealthiness using the771

reach rate compared to the standard policy, without any772

adversary manipulation.773

2) Stealthiness Evaluation for Passive Backdoor: The774

Trojaned policy generated by the passive backdoor775

attack is expected to avoid forcing the system into an776

unsafe state from a significant distance. Instead, it should777

cause the system to violate safety constraints only when778

it is near the unsafe region. We assess the stealthiness779

using the robustness value of ϕg for the Trojaned policy780

and the standard policy when the system is not in the781

trigger states.782

Observation 3: The proposed active backdoor attack demon-783

strates stealthiness, as shown in Table IV. The attack generates784

TABLE IV
VIOLATION RATES (IN PERCENTAGES) FOR THE ACTIVE BACKDOOR

ATTACK WITHOUT TRIGGERING THE ATTACK. THE VIOLATION RATES

ARE MUCH LOWER THAN THE RESULTS IN TABLE II WHICH INDICATES

THE STEALTHINESS OF ACTIVE BACKDOOR ATTACK

TABLE V
VIOLATION RATES (IN PERCENTAGES) FOR THE BASELINES WITHOUT

TRIGGERING THE ATTACK

a Trojaned control policy with a low violation rate in clean 785

states, indicating it can remain undetected by operating nor- 786

mally when not triggered by an adversary. This characteristic 787

is vital for the attack’s effectiveness, allowing it to stay hidden 788

during regular operations and activate only under specific, 789

manipulated conditions. However, it is noted that an increase 790

in the poisoning ratio does lead to a higher violation rate, 791

suggesting some interference with the normal training process. 792

As shown in Table V, the baseline models are less stealthy in 793

comparison, exhibiting higher violation rates even when the 794

attack is not triggered. 795

Observation 4: The proposed passive backdoor attack is 796

also designed to be stealthy, as shown in Fig. 3. We measure 797

how stable ϕg is over time when the system is not in a 798

trigger state. Fig. 3 reveals that the robustness of the passive 799

backdoor is very close to that of the standard policy. This 800

similarity means that the passive backdoor attack does not 801

significantly change how the system normally works. Since 802

robustness reflects how well the control policy achieves the 803

task’s goals, this small difference indicates that the system still 804

works effectively toward its objectives, making the backdoor 805

attack harder to detect. 806

D. Extended Experimental Analysis 807

We demonstrate the effectiveness of the backdoor attack 808

on the controllers trained by off-policy algorithms, as shown 809

in Table VI. Using the same settings as the previous section, 810

we obtained the backdoor-injected off-policy controller and 811

ran the experiments for 500 epochs to determine the violation 812

rate. The results indicate that our proposed backdoor attack is 813

effective against off-policy algorithms. Additionally, we train 814

control policy using PPO with different NN architectures, 815

where NN-4 stands for 4-layer MLPs and NN-6 for 6-layer 816
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TABLE VI
EFFECTIVENESS OF THE ATTACK ON THE OFF-POLICY ALGORITHMS IS

DEMONSTRATED BY THE VIOLATION RATE

TABLE VII
EFFECTIVENESS OF THE ATTACK ON DIFFERENT NN ARCHITECTURES IS

DEMONSTRATED BY THE VIOLATION RATE

MLPs. The results in Table VII show that our proposed attack817

is effective on larger networks.818

VI. DISCUSSION819

Realism in the Real World: Our proposed adversarial820

framework necessitates access to the training process. A prac-821

tical method to implement this attack involves the adversary822

uploading a third-party simulation to the cloud, i.e., through823

an untrustworthy simulator. In this setup, critical compo-824

nents of the training process, such as rewards, actions, and825

observations, are maliciously manipulated. Users employing826

this compromised third-party simulator would inadvertently827

develop a control policy that contains a backdoor. This828

becomes a significant safety concern when the user deploys829

the tainted policy in a real-world system.830

Limitation: Our proposed backdoor attacks have certain831

limitations: 1) the strong backdoor attack necessitates the832

adversary to provide the malicious action a′t, which entails833

having some knowledge of the system and environment.834

Alternatively, the malicious action can be obtained using RL,835

as demonstrated in [36], however, it is hard to have the optimal836

malicious action in real-world scenarios even utilizing RL837

can not guarantee the optimality. Another limitation is that838

the backdoor attack requires the adversary to manipulate the839

reward, regardless of the type of backdoor attack.840

Defense: While numerous studies have explored defense841

mechanisms against backdoor attacks in image-based tasks,842

but they are often unsuitable for sensor data. Therefore,843

we propose two defense mechanisms: 1) model-based attack844

detection and 2) model-free reward monitoring. Model-based845

attack detection methods detect sensor attacks by comparing846

observed states with predicted ones using the manipulated847

states and action [37], [38]. However, these methods can not848

deal with the weak passive backdoor attack which only poisons849

the reward signals and will not change the predicted states.850

Model-free reward monitoring can capture the inconsistency851

between the observed sensor data with the obtained rewards 852

to detect potential attacks. However, this solution may be 853

overlooked by the existing researchers, as sparse rewards are 854

commonly used in RL [39]. 855

Furthermore, backdoor attacks can also be mitigated through 856

recovery mechanisms [40], [41]. These strategies leverage 857

knowledge of the system model and trustworthy historical 858

states to predict the actual state and recover the system to safe 859

states. 860

VII. CONCLUSION 861

This article addresses the research gap regarding the vulner- 862

ability of safe RL during the training process. We introduce 863

two backdoor attack algorithms and investigate how these 864

attacks compromise the safety of CPS. Our study demon- 865

strates that a carefully crafted malicious adversary can embed 866

safety-violating behavior into the control policy, which can 867

be triggered either passively or actively. Additionally, we 868

provide theoretical analysis illustrating how the adversary can 869

achieve both effectiveness and stealthiness in their attacks. 870

Finally, we extensively evaluate our proposed algorithms using 871

the OpenAI Safety Gym to demonstrate their efficacy and 872

stealthiness. 873

ACKNOWLEDGMENT 874

The views and conclusions contained herein are those of 875

the authors and should not be interpreted as necessarily repre- 876

senting the official policies or endorsements, either expressed 877

or implied, of the National Science Foundation (NSF). 878

REFERENCES 879

[1] D. G. Pivoto, L. F. de Almeida, R. da Rosa Righi, J. J. Rodrigues, 880

A. B. Lugli, and A. M. Alberti, “Cyber-physical systems architectures 881

for Industrial Internet of Things applications in industry 4.0: A literature 882

review,” J. Manuf. Syst., vol. 58, pp. 176–192, Jan. 2021. 883

[2] A. H. El-Kady, S. Halim, M. M. El-Halwagi, and F. Khan, “Analysis of 884

safety and security challenges and opportunities related to cyber-physical 885

systems,” Process Saf. Environ. Prot., vol. 173, pp. 384–413, May 2023. 886

[3] M. Liu, L. Zhang, V. V. Phoha, and F. Kong, “Learn-to-respond: 887

Sequence-predictive recovery from sensor attacks in cyber-physical 888

systems,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), 2023, pp. 78–91. 889

[4] F. Akowuah and F. Kong, “Real-time adaptive sensor attack detection 890

in autonomous cyber-physical systems,” in Proc. IEEE 27th Real-Time 891

Embed. Technol. Appl. Symp. (RTAS), 2021, pp. 237–250. 892

[5] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained 893

Markov decision processes,” in Proc. Int. Conf. Mach. Learn., 2020, 894

pp. 9797–9806. 895

[6] Y. Wang et al., “Joint differentiable optimization and verification for 896

certified reinforcement learning,” in Proc. ACM/IEEE 14th Int. Conf. 897

Cyber-Phys. Syst., 2023, pp. 132–141. 898

[7] S. S. Zhan, Y. Wang, Q. Wu, R. Jiao, C. Huang, and Q. Zhu, 899

“State-wise safe reinforcement learning with pixel observations,” 2023, 900

arXiv:2311.02227. 901

[8] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and 902

S. A. McIlraith, “LTL and beyond: Formal languages for reward function 903

specification in reinforcement learning,” in Proc. IJCAI, vol. 19, 2019, 904

pp. 6065–6073. 905

[9] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using 906

signal temporal logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell. 907

Robots Syst. (IROS), 2019, pp. 3481–3486. 908

[10] I. Ilahi et al., “Challenges and countermeasures for adversarial attacks 909

on deep reinforcement learning,” IEEE Trans. Artif. Intell., vol. 3, no. 2, 910

pp. 90–109, Apr. 2022. 911



12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[11] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural912

backdoor attack on deep neural networks,” in Proc. Eur. Conf. Comput.913

Vis., 2020, pp. 182–199.914

[12] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on915

deep neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.916

Secur., 2019, pp. 2041–2055.917

[13] K. Panagiota, W. Kacper, S. Jha, and L. Wenchao, “TrojDRL: Trojan918

attacks on deep reinforcement learning agents,” in Proc. 57th ACM/IEEE919

Design Autom. Conf. (DAC), 2020, pp. 1–17.920

[14] L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song,921

“BACKDOORL: Backdoor attack against competitive reinforcement922

learning,” 2021, arXiv:2105.00579.923

[15] Y. Chen, Z. Zheng, and X. Gong, “MARNet: Backdoor attacks924

against cooperative multi-agent reinforcement learning,” IEEE Trans.925

Dependable Secure Comput., vol. 20, no. 5, pp. 4188–4198,926

Sep./Oct. 2023.927

[16] N. K. Singh and I. Saha, “STL-based synthesis of feedback controllers928

using reinforcement learning,” in Proc. AAAI Conf. Artif. Intell., vol. 37,929

2023, pp. 15118–15126.930

[17] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demonstra-931

tions using signal temporal logic,” in Proc. Conf. Robot Learn., 2021,932

pp. 2228–2242.933

[18] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-based rein-934

forcement learning from signal temporal logic specifications,” 2020,935

arXiv:2011.04950.936

[19] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-937

uous signals,” in Proc. Int. Symp. Formal Techn. Real-Time Fault-Toler.938

Syst., 2004, pp. 152–166.939

[20] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-940

valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst.,941

2010, pp. 92–106.942

[21] K. C. Kalagarla, R. Jain, and P. Nuzzo, “Model-free reinforcement943

learning for optimal control of Markov decision processes under signal944

temporal logic specifications,” in Proc. 60th IEEE Conf. Decision945

Control (CDC), 2021, pp. 2252–2257.946

[22] M. Liu, P. Lu, X. Chen, F. Kong, O. Sokolsky, and I. Lee, “Fulfilling947

formal specifications ASAP by model-free reinforcement learning,”948

2023, arXiv:2304.12508.949

[23] H. Venkataraman, D. Aksaray, and P. Seiler, “Tractable reinforcement950

learning of signal temporal logic objectives,” in Proc. Learn. Dyn.951

Control, 2020, pp. 308–317.952

[24] N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean953

robustness for control from signal temporal logic specifications,” in Proc.954

Amer. Control Conf. (ACC), 2019, pp. 1690–1695.955

[25] P. Varnai and D. V. Dimarogonas, “On robustness metrics for956

learning STL tasks,” in Proc. Amer. Control Conf. (ACC), 2020,957

pp. 5394–5399.958

[26] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement 959

learning to policy induction attacks,” in Proc. Int. Conf. Mach. Learn. 960

Data Min. Pattern Recognit., 2017, pp. 262–275. 961

[27] Y. Huang and Q. Zhu, “Deceptive reinforcement learning under adver- 962

sarial manipulations on cost signals,” in Proc. Int. Conf. Decision Game 963

Theory Secur., 2019, pp. 217–237. 964

[28] A. Rakhsha, G. Radanovic, R. Devidze, X. Zhu, and A. Singla, “Policy 965

teaching via environment poisoning: Training-time adversarial attacks 966

against reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2020, 967

pp. 7974–7984. 968

[29] G. Liu and L. Lai, “Provably efficient black-box action poisoning attacks 969

against reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 970

vol. 34, 2021, pp. 12400–12410. 971

[30] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun, 972

“Tactics of adversarial attack on deep reinforcement learning agents,” 973

2017, arXiv:1703.06748. 974

[31] C. Gong et al., “BAFFLE: Backdoor attack in offline reinforcement 975

learning,” 2022, arXiv:2210.04688. 976

[32] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algo- 977

rithm to solve the continuous-time infinite horizon optimal control 978

problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010. 979

[33] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in 980

deep reinforcement learning,” 2019, Preprint. 981

[34] J. Ji et al., “Safety Gymnasium: A unified safe reinforcement learning 982

benchmark,” in Proc. Adv. Neural Inf. Process. Syst., vol. 36, 2023, 983

pp. 1–30. 984

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, 985

“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347. 986

[36] Y. Sun, R. Zheng, Y. Liang, and F. Huang, “Who is the strongest 987

enemy? Towards optimal and efficient evasion attacks in deep RL,” 2021, 988

arXiv:2106.05087. 989

[37] Z. Wang, L. Zhang, Q. Qiu, and F. Kong, “Catch you if pay attention: 990

Temporal sensor attack diagnosis using attention mechanisms for cyber- 991

physical systems,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), 2023, 992

pp. 64–77. 993

[38] L. Zhang, Z. Wang, M. Liu, and F. Kong, “Adaptive window-based 994

sensor attack detection for cyber-physical systems,” in Proc. 59th 995

ACM/IEEE Design Autom. Conf., 2022, pp. 919–924. 996

[39] J. Hare, “Dealing with sparse rewards in reinforcement learning,” 2019, 997

arXiv:1910.09281. 998

[40] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas, “Real-time 999

attack-recovery for cyber-physical systems using linear approxima- 1000

tions,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), 2020, pp. 205–217. 1001

[41] L. Zhang, P. Lu, F. Kong, X. Chen, O. Sokolsky, and I. Lee, “Real- 1002

time attack-recovery for cyber-physical systems using linear-quadratic 1003

regulator,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, pp. 1–24, 1004

2021. 1005



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


