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Abstract—Internet of Things (IoT) messaging protocols play an
important role in facilitating communications between users and
IoT devices. Mainstream IoT platforms employ brokers, server-
side implementations of IoT messaging protocols, to enable and
mediate this user-device communication. Due to the complex
nature of managing communications among devices with diverse
roles and functionalities, comprehensive testing of the protocol
brokers necessitates collaborative parallel fuzzing. However, be-
ing unaware of the relationship between test packets generated by
different parties, existing parallel fuzzing methods fail to explore
the brokers’ diverse processing logic effectively.

This paper introduces MPFUZZ, a parallel fuzzing tool de-
signed to secure IoT messaging protocols through collaborative
packet generation. The approach leverages the critical role of
certain fields within IoT messaging protocols that specify the
logic for message forwarding and processing by protocol brokers.
MPFUZZ employs an information synchronization mechanism to
synchronize these key fields across different fuzzing instances and
introduces a semantic-aware refinement module that optimizes
generated test packets by utilizing the shared information and
field semantics. This strategy facilitates a collaborative refinement
of test packets across otherwise isolated fuzzing instances, thereby
boosting the efficiency of parallel fuzzing. We evaluated MPFUZZ
on six widely-used IoT messaging protocol implementations.
Compared to two state-of-the-art protocol fuzzers with parallel
capabilities, Peach and AFLNet, as well as two representa-
tive parallel fuzzers, SPFuzz and AFLTeam, MPFUZZ achieves
(6.1%, 174.5×), (20.2%, 607.2×), (1.9%, 4.1×), and (17.4%,
570.2×) higher branch coverage and fuzzing speed under the
same computing resource. Furthermore, MPFUZZ exposed 7
previously unknown vulnerabilities in these extensively tested
projects, all of which have been assigned with CVE identifiers.

Index Terms—IoT Messaging Protocol, Parallel Fuzzing, Col-
laborative Packet Generation

I. INTRODUCTION

INTERNET of Things (IoT) represents a transformative
shift in the industrial landscape, marked by the inter-

connectedness of devices, sensors, and actuators to facilitate
seamless data exchange and collaborative decision-making [1].
By merging digital and physical systems, this advanced in-
tegration enables industries to boost productivity, streamline
maintenance, and elevate operational efficiency. Nonetheless,
the widespread adoption of IoT technologies also escalates
security concerns, with vulnerable devices presenting potential
targets for cyber-attacks, risking serious consequences [2],
[3]. Critical to securing and stabilizing the IoT ecosystem,
messaging protocols dictate device and user communications.
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However, these protocol implementations are vulnerable to
cyber threats that can compromise data confidentiality, in-
tegrity, and availability, as well as disrupt industrial operations.
Addressing these security flaws in IoT messaging protocols
is imperative to ensure system integrity and avert the severe
outcomes of cyber attacks [4].

Fuzzing, an automated software testing method, is promis-
ing for identifying security vulnerabilities in real-world soft-
ware. At a high level, a protocol fuzzer works by continuously
generating and sending test packets to the target server to un-
cover potential anomalies. Based on the packet generation way,
fuzzers can be categorized into two categories: mutation-based
methods such as AFLNet [5] and Polar [6], and generation-
based methods such as Peach [7] and Boofuzz [8]. Mutation-
based fuzzers, lacking awareness of the protocol structure,
randomly modify existing packets at the byte or bit level, re-
sulting in quick testing but potentially encountering challenges
in passing the protocol parsing stage. Conversely, generation-
based fuzzers leverage user-defined protocol models to create
test packets that adhere to the protocol specifications, offering
a more precise but slower approach that may require additional
model construction and processing resources.

In IoT systems, numerous users simultaneously communi-
cate with brokers to access and manage distinct production
resources. It is essential for the broker to identify resources
being accessed by various users and devices, while also
maintaining the integrity of these communications. This is
achieved by utilizing fields with special semantics, which we
call key fields, to track these correlations. Considering this
scenario of multiple interconnected communications, single
fuzzing instances are insufficient for exhaustive testing of
the entire messaging protocol workflow. Therefore, employing
parallel fuzzing with multiple instances concurrently is crucial
for the comprehensive testing of IoT messaging protocols.

Traditional parallel fuzzing methods for generation-based
fuzzers mainly focus on non-conflicting task division across
multiple instances, while neglecting the correlation among
the packets produced by each instance. However, for the
IoT messaging protocols, the key fields in the packets are
closely related to each other, rendering the outputs of dis-
tinct instances interconnected. Therefore, it is essential to
consider this correlation, moving beyond the conventional
isolated parallel fuzzing framework. To achieve this, we need
to address two challenges. (i) The first challenge is how
to effectively synchronize information across parallel fuzzing
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instances. Since complicated synchronization schemes and
excessive data exchange can cause significant overhead, it
is essential to design a lightweight and efficient mechanism.
(ii) The second challenge involves the utilization of the shared
information by each fuzzing instance. Merely maintaining key
fields’ consistency across instances falls short of effectively
exploring the broker’s varied processing capabilities. It is
essential to introduce variations for the key fields to explore
diverse scenarios while considering their semantics.

To address these challenges, we propose MPFUZZ, a co-
ordinated parallel fuzzing tool for securing IoT messaging
protocols. The basic idea is to break the isolation between
parallel fuzzing instances and enable them to collaboratively
generate test packets by sharing key field information. MP-
FUZZ first introduces a lightweight synchronization mecha-
nism that enables effective information sharing among parallel
fuzzing instances. This mechanism leverages one global field
pool and multiple local field pools bonded to each fuzzing
instance to synchronize the key field information across in-
stances. Meanwhile, this mechanism designed a structured
data format to store the shared information, ensuring minimal
data exchange overhead. Then, based on the synchronized
information, MPFUZZ introduces a semantic-aware refinement
strategy for each fuzzing instance to optimize the generated
packets. Considering the distinctive characteristics of IoT
messaging protocols, we propose a method to leverage the
shared key field information. For fields with distinct semantics,
we apply customized mutation operations to refine the packets
generated by each instance. This facilitates a collaborative ef-
fort toward exhaustive testing of the broker’s logic, enhancing
the chances of uncovering subtle yet critical vulnerabilities.

For the evaluation, we built the proposed parallel fuzzing
method MPFUZZ on top of Peach [7], a widely-used protocol
fuzzer, and evaluated it on six widely-used messaging protocol
implementations. We compared MPFUZZ against AFLNet [5]
and Peach [7], two state-of-the-art protocol fuzzers that sup-
port parallel fuzzing, as well as two representative parallel
fuzzers, SPFuzz [9] and AFLTeam [10]. The results show that,
under the parallel fuzzing mode, MPFUZZ achieves signif-
icant coverage increase and speed improvements, achieving
(6.1%, 174.5×), (20.2%, 607.2×), (1.9%, 4.1×), and (17.4%,
570.2×), respectively. We also show that MPFUZZ’s parallel
fuzzing strategy can enhance SPFuzz, with the same base
fuzzer as MPFUZZ, by achieving higher coverage. Moreover,
to emphasize the importance of parallel fuzzing for IoT mes-
saging protocols, we conducted a comparison with the single
modes of Peach and AFLNet using equivalent computational
resources over the same time period. MPFUZZ surpassed them
in branch coverage by 10.6% and 28.3%, respectively, over 24
fuzzing hours. Furthermore, MPFUZZ has exposed 7 previ-
ously unknown vulnerabilities, and AFLNet, Peach, SPFuzz,
and AFLTeam only expose 2, 4, 5, and 4 of them, respectively.
All these vulnerabilities have been assigned CVEs. MPFUZZ
also shows superiority in identifying known vulnerabilities.
Our main contributions are as follows:
• We propose the idea of coordinated parallel fuzzing for

securing IoT messaging protocols based on collaborative
packet generation.

• We propose a lightweight synchronization mechanism for
effectively sharing key field information among fuzzing
instances and design a semantic-aware refinement strat-
egy to optimize the generated packets.

• We implement and evaluate MPFUZZ1 on six widely used
IoT protocol implementations. The results demonstrate
that MPFUZZ outperforms the state-of-the-art and has
exposed many security-critical vulnerabilities.

II. BACKGROUND

A. IoT Messaging Protocols

The Internet of Things (IoT) marks a significant techno-
logical shift, connecting numerous “smart” devices via the
Internet to exchange data. This network is key to modern in-
novation, allowing for automation and enhanced functionality
across various sectors, including industrial automation, home
automation, healthcare, and more.

Figure 1 illustrates a typical IoT system communication
architecture. Within this framework, IoT devices (e.g., sensors
and cameras) collect event and telemetry data, which they send
to the control APP for analysis and processing. The control
APP can also send commands to the devices to elicit specific
actions. Communication between these entities is not direct
but is mediated by a centralized broker, ensuring seamless
interaction between the devices and the applications. This
design allows for easy integration or removal of devices and
apps, enhancing flexibility and scalability for various use
cases. In this framework, both the device and the application
can be regarded as clients and the broker as a server.

Event /	Telemetry	
Data

Command MessagesCommand Messages

IoT Devices Broker APP

Event /	Telemetry	
Data

Messaging Protocols:	MQTT,	AMQP,	CoAP	...

Fig. 1: Typical architecture and application of messaging
protocols in IoT systems

Messaging protocols like MQTT, AMQP, and CoAP are
vital for ensuring reliable, efficient, and scalable data trans-
mission in this architecture. They are tailored for IoT con-
straints—low bandwidth, limited energy, and intermittent con-
nectivity—ensuring appropriate service quality. Importantly,
these protocols are specifically designed to support multi-
ple devices and applications simultaneously, facilitating their
connection and communication via a broker. This multi-
connection capability ensures that the system can easily scale
up to support a growing number of devices and applications.

B. Generation-Based Protocol Fuzzing

In protocol fuzzing, generation-based fuzzers, which are
format-aware, are widely used due to the highly structured
nature of protocol packets. They generate packets according to
the user-provided test model [7], [8], [11], which includes data

1MPFUZZ is available at https://github.com/MPFuzz/MPFuzz.
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and state models. The data model defines the packet structure
while the state model describes the packet ordering.

Table I details the MQTT SUBSCRIBE and PUBLISH
packet fields, including their descriptions and a Peach descrip-
tion for each. The Peach description, found in the rightmost
column of Table I, utilizes Peach Pit [12] to define field
characteristics relevant to the state-of-the-art protocol fuzzer
Peach [7]. The PUBLISH packet comprises eight to nine
fields: Type, DUP, QoS, Retain, Length, TopicLen,
Topic, and Msg fields are mandatory, while the ID field
is optional (needed only for packets with QoS levels 1 and
2). Expounding upon the properties of each field, the Peach
definitions cover their crucial attributes like field size, type,
value, and mutability. For example, the Type field is a four-
bit field with a fixed value of 3, indicating the packet type.
This field can be described as a Flags type and is immutable.
The QoS field is a two-bit field with valid values of 0,
1, and 2, indicating the Quality of Service level for packet
delivery. Since it is an enumeration field, we can describe
it as a Choice type containing three Flags elements (with
values of 0, 1, and 2, respectively). This field is partially
mutable, as the value can be changed to any of the three valid
values (so the overall Choice is mutable, while the individual
Flags elements are immutable). Specially, the Length and
TopicLen fields are relationship fields, as their values are
determined by the lengths of other fields. These fields are
calculated after the referenced fields are generated, and they
are typically immutable to ensure the generated packet meets
the protocol integrity requirements.

Based on the above description, Peach continuously gener-
ates consistent packets. In detail, Peach first analyzes the state
model in the provided Pits file to determine the packet order
to be sent, e.g., [CONNECT, SUBSCRIBE, ..., DISCONNECT]
for MQTT. Then, it generates each packet based on its corre-
sponding format specifications. A typical generation strategy
is to randomly select and fuzz a mutable field at a time.
Peach provides a variety of mutation operators for each field
type. These mutation operators are designed to modify the
field’s default value while maintaining the field’s requirements.
Therefore, Peach starts from the top of the format specification
and applies all valid mutations to each field element until all
possible mutations have been used. Since the combination of
the mutable fields and their compliant mutation operators are
enumerable, the fuzzing iterations to be performed are finite.

III. MOTIVATION

We use the MQTT [13] architecture and a simplified packet
flow, as shown in Figure 2, to illustrate the necessity of
collaborative parallel fuzzing for messaging protocols.

A. MQTT architecture

Figure 2 shows a basic MQTT architecture that comprises a
broker, a publisher, and a subscriber. In this model, the broker
is an intermediary between publishers and subscribers. The
clients can be classified into two types: publishers, which
disseminate messages, and subscribers, which receive mes-
sages. It also provides a basic packet flow: the subscriber
first sends a subscription request (i.e., SUBSCRIBE) to the

❶ SUBSCRIBE
(Topic=“SmartLock”)

❷ SUBSCRIBE ACK

❸ PUBLISH
(Topic=“SmartLock”, Msg=“opened”)

Subscriber MQTT Broker Publisher

❹ PUBLISH
(Topic=“SmartLock”, Msg=“opened”)

Fig. 2: Simplified MQTT architecture: subscriber, publisher,
and broker with basic message flow

broker for a specific topic “SmartLock”, which is carried
in the Topic field of the packet (¶). The broker then
accepts this request with a SUBSCRIBE ACK packet (·)
and stores the subscription information. Subsequently, when
the corresponding publisher sends a PUBLISH packet to
the broker, which contains the same topic “SmartLock” and
provides the message payload in the Msg field (¸), the broker
processes the packet and forwards the message payload to the
subscriber (¹). The processing and forwarding logic (¹) of the
broker is crucial for ensuring effective communication between
publishers and subscribers. Therefore, the implementation of
this logic is typically complex and should be thoroughly tested
to identify potential vulnerabilities. Besides, simultaneous
processing of disparate requests is an intrinsic characteristic
of the protocol broker (as shown in the red lines in Figure 2),
whereby data packets received from various publishers are
processed by the broker and distributed to distinct subscribers.
To effectively cover the broker’s processing and forwarding
logic, multiple parties should be involved in the testing, which
requires parallel fuzzing.

B. Limitation of Traditional Parallel Fuzzing

There are some existing fuzzers, such as Peach [7], that sup-
port parallel fuzzing. For instance, Peach provides a method
to distribute fuzzing tasks across multiple instances, as shown
in Figure 3. As mentioned in Section II, given the protocol
model under test, Peach first computes all operation sequences
to determine the total number of test iterations. Then, to avoid
task conflicts, Peach assigns distinct field mutation tasks to
each instance, ensuring no overlap in the fuzzing process.
This is depicted in Figure 3, where tasks are segmented into
N instances. Each one focuses on a different field subset,
determined by the execution argument (Div.Arg in Figure 3).
Specifically, an instance specified as a/N takes charge of the
a-th portion out of N total portions.

Test
Model ...

Protocol
Broker Bugs

Packets
Div. Arg	1/N

Div. Arg	N/N

Instance#1

Instance#2

Instance#N

Div. Arg	2/N
Packets

Packets

Packet	
Mutation

Protocol
Broker

Packets

Feedback

...

generate

generate

generate

Fig. 3: Parallel fuzzing of Peach fuzzer
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TABLE I: MQTT SUBSCRIBE and PUBLISH packet fields and their descriptions for Peach fuzzing

Packet Type Basic Information Peach Description
Field Description Size Type Value Mutable

PUBLISH

Type Indicates the packet type, for PUBLISH it’s 3 4 Flags 3
DUP Duplicate delivery of a PUBLISH packet 1 Choice{Flags} 0,1
QoS Quality of Service level for packet delivery 2 Choice{Flags} 0,1,2
Retain Whether the packet should be retained by the broker 1 Choice{Flags} 0,1
Length Length of the remaining packet 8×(1-4) Number len(TopicLen+Topic+ID+Msg)
TopicLen Length of the Topic field 16 Number len(Topic)
Topic The topic where the message will be published n String
ID Packet identifier for QoS 1 and QoS 2 packets 0/16 Choice{Number}
Msg The content to be published n String

SUBSCRIBE

Type Indicates the packet type, for SUBSCRIBE it’s 8 4 Flags 8
Reserved Reserved field, using the constant 2 4 Flags 2
Length Length of the remaining packet 8×(1-4) Number len(ID+TopicLen+Topic+QoS)
ID Unique identifier for the packet 16 Number
TopicLen Length of the Topic field 16 Number len(Topic)
Topic The topic to subscribe to n String
QoS Requested Quality of Service for the subscription 8 Choice{Number} 0,1,2

* The Size column shows the length of the field in bits. The len function returns the length of the region in bytes. For the Mutable column,
indicates that the field is immutable, indicates mutable, and indicates partially mutable (For example, in a Choice type containing

multiple Number elements, i.e., Choice{Number}, the individual Number elements are immutable while the overall Choice is mutable).

Although the existing parallel fuzzing method can effec-
tively avoid task conflicts, it is not sufficient for testing the
messaging protocol since the correlation between the packets
generated by different instances is not considered. This corre-
lation is mainly reflected in the key fields. There are mainly
two types of key fields in the messaging protocol: the resource-
related fields and the control-related fields.

The resource-related fields primarily establish the producer-
consumer dynamics between publishers and subscribers, and
these fields impact the dissemination of packets across the
broker thus should be carefully managed when generating
packets. For example, as illustrated in Figure 2 and Table I,
the Topic field plays a crucial role. When a client sends a
SUBSCRIBE packet, this field specifies the topics to subscribe
to. The broker then forwards packets related to these topics
to the appropriate subscribers. Similarly, the Topic field
in a PUBLISH packet identifies the intended topic for the
message’s payload. If a subscriber has opted into a topic
that a publisher addresses, the broker distributes the message
across relevant subscribers based on this topical alignment,
using mechanisms like wildcard matching. The absence of
a matching topic causes the broker to discard unnecessary
messages, avoiding redundant processing or dissemination.
Therefore, it is essential to optimize for relevant subscriptions
and topic targeting by publishers to reduce ineffective message
flow and system strain.

The control-related fields, such as quality of service (QoS)
and retention instructions, mainly refer to the fields that control
the message delivery process of the broker, and should there-
fore be carefully crafted to exercise diverse broker logic when
generating packets. For instance, MQTT supports multiple
QoS levels, affecting how messages are published and sub-
scribed. The broker defaults to the publisher’s QoS level if it is
lower than that requested by the subscriber for the same topic.
This mechanism can trigger additional interactions between
the broker and the subscriber under certain QoS conditions.
Specifically, this CONNECT packet features numerous key
fields, with only select data elements depicted in the Table I.

Existing parallel fuzzing methods mainly focus on task

distribution across multiple instances to prevent overlap, but
they lack customization in the generation strategies of each
instance, typically employing basic random methods for packet
generation. This method is reasonable for general protocols,
since general protocols usually guarantee the independence
of different client-server interactions. However, for messaging
protocols like MQTT, the packets sent by different clients
should be correlated, especially in the key fields, to trigger
the broker’s processing logic.

C. Insight and Challenges

Insight. To address the above problem, we introduce a
collaborative parallel fuzzing strategy designed to overcome
the shortcomings of conventional parallel fuzzing methods.
This approach aims to synchronize key fields among different
fuzzing instances and leverage the shared information to
guide packet generation, thereby collaboratively exploring the
broker’s processing and forwarding logic. To this end, we need
to address the following two challenges:

C.1 Lightweight Synchronization. The first challenge is
how to synchronize information across different fuzzing in-
stances effectively. On the one hand, one-to-one synchroniza-
tion incurs significant overhead due to the need for frequent
updates to maintain consistency. On the other hand, traditional
methods that synchronize complete packets often result in
redundancy and substantial post-processing costs [5]. There-
fore, it is crucial to develop a lightweight synchronization
mechanism that can effectively share essential information
across different instances, thereby facilitating parallel fuzzing.

C.2 Collaborative Packet Generation. The second chal-
lenge centers on the utilization of shared information by each
fuzzing instance to enhance packet generation, thereby collab-
oratively covering the diverse logic of the broker. Traditional
fuzzers, which typically employ random field generation, are
less likely to ensure that different instances produce packets
with correlated key fields. Besides, merely reusing shared
information to maintain key field consistency may not be
adequate, as such compliant cases should have been covered
in pre-release tests. We need to introduce variations while
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Fig. 4: MPFUZZ System Overview. It mainly consists of two components: (i) a synchronization module for sharing key fields
among fuzzing instances and (ii) a semantic-aware refinement module for refining generated packets using shared information.

considering the fields’ semantics to help uncover anomalies.
This necessitates a generation strategy that can leverage the
shared information and incorporate field semantics, guiding
the packet generation process toward a collaborative and
comprehensive exploration of the broker’s logic.

IV. SYSTEM DESIGN

The MPFUZZ’s system overview, as shown in Figure 4,
follows a parallel fuzzing process that takes the same input
as traditional generation-based fuzzers. This input includes
the target protocol broker and protocol test model, which
contains data and state models of the target protocol. The
system comprises two main components: (i) an information
synchronization mechanism for sharing key fields among
fuzzing instances through local and global pools and (ii) a
semantic-aware refinement module for refining test packets
using shared field information. The system is designed to be
scalable and efficient, enabling parallel fuzzing across multiple
instances. The workflow of the system is outlined as follows:

Key Field Synchronization. Before parallel fuzzing, the
global field pool is initialized based on the data model. If
there are default values for the key fields, they are combined
into a triple of default values, Model Type and Field ID,
which are then added to the global field pool. If there is
no default value, the inherent generation strategy in the data
model will be used for generation instead of the default value.
The parallelism fuzzing process is initiated, with the fuzzing
instances being launched according to the configuration to
perform parallel testing on the protocol broker. Every fuzzing
instance maintains a local field pool throughout the testing
process. During the instance initialization phase, since the
local field pool is initially empty, the instance synchronizes
all information from the global field pool to the local pool
through an information synchronization algorithm.

Semantic-Aware Refinement. The instance starts running
in a continuous loop, generating mutated test packets. In state
S, the instance selects the data model corresponding to that
state and generates an initial packet. The Semantic-Aware
Refinement algorithm refines initial packet key fields with the
local field pool and applies a semantic-aware mutation. If there
is a corresponding index of the field in the local field pool, a
value candidate is randomly selected from the pool as a seed.

The seed is mutated by the Semantic-Aware mutator with a
certain probability. If a new value is generated, it is added to
the local field pool. The Fixup module is utilized to repair any
new fields that may cause the generated packet to become an
invalid state, ensuring its validity. The generated test packet is
then sent to the protocol broker, with the processing process
monitored to collect abnormal protocol broker states. After
a fixed interval of testing iterations, the local field pool
synchronizes with the global field pool through an information
synchronization mechanism, obtaining key messaging fields
from other instances.

A. Key Field Synchronization

In order to efficiently share information between parallel in-
stances, we design a lightweight synchronization mechanism.
It reduces unnecessary data exchange while enabling key fields
to be shared between fuzzing instances.

Local and Global Field Pools. The local field pool contains
key message fields specific to each parallel instance, while the
global field pool stores shared key message fields across all
parallel instances.

Field_Index Value_Set

Model_Type Field_ID

Value	#1 needSync

Value	#2 needSync

Value	#3 needSync

...

Fig. 5: The structure in Field Pool

The field pool retains key fields for diverse fuzzing instances
to utilize and share. Its structure, comprising various field sets,
is shown in Figure 5. Each set embodies a tuple structure of
〈FieldIndex, V alueSet〉, where Field Index distinctly identi-
fies the shared value set of the key fields. To ensure unique-
ness, the tuple composition of 〈Modeltype, F ieldID〉 serves
as the internal data structure for Field Index. This demar-
cates disparities amidst identical fields among distinct packet
data model types. In the ensuing semantic-aware refinement
process, the pertinent field is chosen based on Modeltype.
Each pool set possesses a shared Field Index and consists
of varying field values. The value set can be perceived as
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the seed set designated in the subsequent refinement process.
Every value signifies an instantiated instance of the field. The
following semantic-aware refinement module will elucidate
comprehensively the utilization of the value set.

Moreover, the local pool can be viewed as a collection of
4-tuple entries, as illustrated in Figure 6. Additionally, the
local pool contains a needSync flag for each value, denoting
the necessity of synchronization with the global pool the next
time. The global pool does not require this flag. Entries with
the same 〈ModelType, F ieldID〉 mean they share an identical
index of field and hold distinct values, thus establishing a
diverse field set. The following synchronization and refinement
algorithms will provide further clarification on the utilization
and modifications of the field pool.

Model_Type Field_ID Value needSync

Fig. 6: The entry in Field Pool

Synchronization between Local and Global Pools. Lever-
aging the global field pool, the two steps of the synchroniza-
tion mechanism can achieve higher scalability and efficiency.
Fuzzing instances often need to synchronize distinct key fields
with each other, leading to complex sharing relationships. For
example, fuzzing instances #1, #2, and #4 share field Fieldα,
while fuzzing instances #1, #3, and #4 share field Fieldβ ,
demonstrating that the synchronized fields for instance #1 dif-
fer across its peers. Managing these relationships individually
would result in an exponential increase in complexity as more
parallel instances are added. To streamline this process, we
introduce a global shared field pool that acts as a central hub
for communication between pairs of instances. Each fuzzing
instance communicates solely with this pool to access or
update relevant information without direct interactions with
other instances. Consequently, this approach establishes a
star topology structure for information synchronization and
communication among instances.

Since the information present in the field pool is of
paramount importance for generating test packets, it is essen-
tial to synchronize the key fields across distinct fuzzing in-
stances. Algorithm 1 describes the process of synchronization
between local field pools and global field pools, consisting of
two main steps: the Pull step and the Push step.

First, in the Pull step, we pull the fields from the global
pool using the function READFROMGLOBALPOOL (Line 2).
We then iterate over the global fields. For each fieldg in
GlobalF ields, we check if it is already in the local pool Plocal
(Line 3-4). If fieldg is not in Plocal, we add it to the local
pool using the function ADDTOLOCALPOOL with needSync
flag setting to False (Line 5).

Next, in the Push step, we begin by retrieving fields from
the local pool that require synchronization with the global pool
using GETNOSYNCFIELDS, storing them in NoSyncF ields
(Line 7). We then iterate over these unsynchronized fields
in a for-loop (Line 8). For each unsynchronized field in
NoSyncF ields, we check if it is already in the global
pool Pgobal (Line 9). If field is not in Pglobal, we update
the global pool using the function UPDATETOGOBLALPOOL
(Line 10). Finally, we mark these fields in the local pool as

Algorithm 1: Synchronization between local field
pools and global field pool

Input: Plocal: the pool of local fields
Input: Pgobal: the pool of global fields
Output: SyncPlocal: the updated pool of local fields

after synchronization
1 Pull step:
2 GlobalF ields← READFROMGLOBALPOOL(Pgobal)
3 for fieldg ∈ GlobalF ields do
4 if fieldg /∈ Plocal then
5 ADDTOLOCALPOOL(Plocal, fieldg, False)

6 Push step:
7 NoSyncF ields← GETNOSYNCFIELDS(Plocal)
8 for field ∈ NoSyncF ields do
9 if field /∈ Pglobal then

10 UPDATETOGOBALPOOL(Pgobal, field)
11 SETSYNCFLAG(Plocal, field, False)

synchronized by setting their needSync flag to false with
SETSYNCFLAG (Line 11).

ModelType FieldID ValueSet needSync

PUBLISH QoS 0 False

PUBLISH Topic
Sensor/temp False
Sensor/humi False

SUBSCRIBE Topic Plug/# True=>False

ModelType FieldID ValueSet

PUBLISH QoS 0

PUBLISH Topic
Sensor/temp
Sensor/humi

SUBSCRIBE Topic Plug/#

1.	Pull

2.	Push

Entries in	Local Field Pool Entries in	Global Field Pool

Fig. 7: Illustration of synchronization process

Figure 7 shows an illustrative example for Algorithm 1. A
gray background indicates a newly added row after synchro-
nization, while a green background indicates a modified cell.
In detail, the Pull step traverses the global field pool and adds
the non-existent entry with identification 〈PUBLISH,Topic〉
to the local field pool. Their needSync flags are set to
False simultaneously. The Push step traverses the local
field pool and updates the entries needed to be synchronized,
i.e., 〈SUBSCRIBE,Topic〉, to the global field pool. After
synchronization, the needSync flag is then set to False.

B. Semantic-Aware Refinement

After synchronizing information across parallel fuzzing in-
stances, the instance obtained shared key message fields stored
in the local field pool. Leveraging these fields, we implement
a semantic-aware mutation strategy to refine the generated test
packets. In contrast to traditional packet generation strategies,
our algorithm utilizes the shared information provided by
different parallel instances to refine the field and applies
a semantic-aware mutation, ensuring that the key fields of
generated packets are related to each other. Consequently,
this method avoids wasting significant time and computing
resources on invalid mutations of these fields.

Algorithm 2 provides a detailed illustration of how MP-
FUZZ employs semantic-aware mutation to refine data packets
based on the shared key fields. The algorithm starts with two
inputs: (1) Plocal, the local key field pool, and (2) S, the
current state that activates the algorithm via its output action.



7

We first obtain the data model DMS for state S and generate
the test data packet CurPacket, adhering to the syntax rules
described by DMS (Lines 2-3). Then, we extract the root node
NodeR and the type T of DMS (Lines 4-5) and recursively
refine CurPacket based on the element tree by calling the
Refinement procedure (Line 6).

Algorithm 2: Semantic-Aware Packet Refinement
Input: Plocal: Local Field Pool
Input: S: State which is current under fuzzing
Output: NewPacket: Refined Packet

1 Algorithm
2 DMS ← GETDATAMODEL(S)
3 CurPacket← GENERATEPACKET(DMS)
4 T ← GETDATAMODELTYPE(DMS)
5 NodeR ← PARSEFIELDTREE(DMS)
6 Refinement( NodeR, CurPacket, T )
7 // Packet Fixup
8 NewPacket← FIXUP(CurPacket)

9 Procedure Refinement( NodeT , Packet, T )
10 ID ← GETIDFROMNODE(NodeT )

TRef ← GETREFERENCEDFROMMAP(T )
11 if 〈TRef , ID〉 ∈ Plocal then
12 // Key Field Refinement
13 FieldsC ← GETCANDIDATES(Plocal, TRef , ID)
14 Field← RANDOMCHOICE(FieldsC)
15 // Key Field Mutation
16 FieldM ←

APPLYSEMANTICAWAREMUTATOR(Field)
17 ADDTOLOCALPOOL(T , ID, F ieldM, False)
18 CurPos← GETPOSITION(NodeT )
19 Packet←

ASSEMBALFIELD(Packet, CurPos, F ieldM)
20 else
21 ChildrenNode← GETCHILDREN(NodeT )
22 for NodeC ∈ ChildrenNode do
23 Refinement( NodeC , Packet, T )

24 return

In the Refinement procedure (Lines 9-25), we first
identify the current field’s ID and the type of the reference data
packet TRef (Lines 10-11). TRef and ID are combined into a
tuple to index the local field pool for retrieval (Line 12). If
found, we extract a set of candidate fields, FieldsC , from which
we randomly select one key field, FieldS , as the mutation seed
(Lines 14-15). Next, we apply the targeted mutator to per-
form semantic-aware mutation on this chosen seed, obtaining
FieldM (Line 17). We then populate the original generated
data packet with the mutated key field and return it (Lines 18-
20). If the queried index is absent in the field pool, we collect
all child nodes of NodeT and sequentially and recursively
apply Refinement on these children (Lines 22-24), thus
implementing a refinement algorithm based on semantic-aware
mutation. Finally, upon recursively traversing the abstract
element tree, we obtain the refined packet, and employ the
FIXUP process to repair its integrity constraints, e.g., size,
length, and checksum, to form a NewPacket (Line 8). By
combining key field information and semantic-aware mutation,
we can generate higher-quality protocol test packets. These
refined packets adhere to syntax and semantics. This facilitates
a collaborative effort toward exhaustive testing of the broker’s
logic, enhancing the chances of uncovering vulnerabilities.
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Fig. 8: Illustration of semantic-aware refinement

Figure 8 uses the MQTT PUBLISH packet (as detailed in
Table I) as an example to illustrate this process. In detail,
MPFuzz first generates the initial packet based on the data
model. Then, MPFuzz traverses the packet fields and searches
for the key fields for refinement—e.g., the Topic field in the
PUBLISH packet. MPFuzz queries the local field pool based
on Topic field’s information ( 1 ). For one selected result,
“sensor/temp” ( 2 ), the semantic-aware mutation operator is
applied to generate a new value, e.g., “sensor/#”. This mutated
value, on the one hand, correlates with the key field generated
by other instances and thus will be populated to the Topic
field to generate the refined packet ( 3 ). On the other hand,
this new value of the Topic field will be stored in the local
field pool for future synchronization with other instances ( 4 ).
Meanwhile, direct population to the initial packet may cause
conflicts with other fields, e.g., the TopicLen field. There-
fore, MPFuzz finally applies fixup operations to ensure the
correctness of these relationship fields.

C. Implementation

We have implemented a prototype of MPFUZZ based on the
widely-used generation-based fuzzer Peach [7]. We leverage
the structure of the data model defined in Peach Pits file,
adding new element types and attributes to indicate key fields
that require synchronization and are subject to semantic-
aware refinement within the data model. The Synchronization
Mechanism is implemented using shared memory to store
the global field pool and employing a semaphore based on
the “first-come, first-served” principle to ensure only one
instance can access the global field pool at a time. Each
instance maintains the local field pool within its own process
memory and periodically persists it to disk. We utilize the
DllImport feature in the .Net framework to load libc
and invoke Linux POSIX-compliant API calls through it to
create, read, and write to shared memory. Interfaces defined in
System.Runtime.Serialization are used to serialize
sets from the field pools into shared memory, facilitating the
mapping of objects. This approach supports switching between
different serializers, such as BinaryFormatter, Xml, etc. For
the Semantic-Aware Refinement, we introduced new mutators
for the key fields and a new packet generation strategy based
on the shared information, as described in Section IV-B. The
new mutator operates specifically based on the semantics of
the fields, for example, by attempting to incorporate wildcards
and keywords specified in the protocol standards.
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V. EVALUATION

In this section, we evaluate MPFUZZ to answer the follow-
ing three research questions:

RQ1 How does the proposed parallel fuzzing strategy compare
to the traditional parallel-mode fuzzing?

RQ2 How does MPFUZZ’s performance compare to the single-
mode protocol fuzzers on identical computing resources?

RQ3 Is MPFUZZ effective in exposing unknown vulnerabilities
in real-world IoT messaging protocols?

A. Experiment setup
Subjects. We selected six open-source implementations

of three widely-used IoT messaging protocols: MQTT [13],
CoAP [14], and AMQP [15]. Table II provides detailed
information about the selected subjects.

Compared Tools. We select two widely used protocol
fuzzers supporting parallel fuzzing, Peach [7] and AFLNet [5],
for comparison. They are representative of generation-based
and mutation-based fuzzers, respectively. Peach is the base
fuzzer for MPFUZZ, and we compare MPFUZZ with Peach
to evaluate the effectiveness of the proposed parallel fuzzing
optimization strategy. AFLNet’s parallel fuzzing capabilities
are inherited from its base fuzzer AFL. They establish parallel
fuzzing by synchronizing the packet corpus among different
instances. However, due to the lack of format awareness,
AFLNet lacks a way to recognize the valuable fields in the
synchronized packets for further utilization. Besides, we also
compare MPFUZZ with two representative parallel fuzzers,
SPFuzz [16] and AFLTeam [10], to evaluate the effectiveness
of our optimization strategy for parallel fuzzing. Given that
AFLTeam mainly targets traditional applications [17], we
customized its code to support protocol fuzzing. For the
initialization, since SPFuzz is also built upon Peach, we utilize
identical Peach Pit files [12] for both SPFuzz and MPFUZZ.
We provide the packets from these Peach Pit files as initial
seeds for AFLNet and AFLTeam, ensuring a consistent starting
point across all fuzzers following established work [16], [18].

Metrics and Settings. We employed three metrics for our
evaluation: branch coverage achieved, speed-up to reach the

TABLE II: Detailed information about the selected subjects
Subject Protocol #Stars #LoC Description

Mosquitto* MQTT 8,275 52k A MQTT implementation
in the Eclipse IoT project.

NanoMQ* MQTT 1,326 262k
Ultra-lightweight, blazing-
fast messaging broker/bus
for IoT edge and SDV.

Mongoose MQTT 10,471 6k Embedded networking lib-
rary and web server.

libcoap* CoAP 763 35k
A CoAP implementation
ideal for resource-
constrained IoT devices.

Californium CoAP 721 133k
A framework offering
modular and scalable IoT
application support.

Qpid AMQP 85 217k
An advanced message
queuing protocol aims to
unify message passing.

- ‘*’: MPFUZZ exposed unknown bugs in the corresponding project. #Stars:
the number of stars on GitHub. #LoC: the number of lines of code.

same coverage as the baseline fuzzers in 24 hours, and the
number of unique bugs detected. The first metric is commonly
used to measure the effectiveness of fuzzers, the second metric
assesses the efficiency of parallel fuzzing and has also been
used in previous studies [16], [19], and the third metric
indicates vulnerability detection capabilities. Besides, since
the fuzzing performance fluctuates to a certain degree due to
the inherent randomness, we ran each fuzzing tool on each
selected project with a 24-hour time budget and repeated each
24-hour experiment five times to establish statistical signif-
icance of results [20]. For fairness, each fuzzing campaign
runs on a Docker container with 4 CPU cores and 8G RAM.

B. Efficiency of the Optimized Parallel Fuzzing Strategy

To evaluate the efficiency of our optimization strategy for
parallel fuzzing, we first compared MPFUZZ to other state-
of-the-art parallel-mode fuzzers. Each fuzzer was run with
four instances on each project. We collected and analyzed the
number of branches covered by each fuzzer over 24 hours
and calculated the speed-up of MPFUZZ to reach the same
coverage level as the compared fuzzers. The overall results
and improvements are summarized in Table III. On average,
MPFUZZ achieves a speed-up of 174.5×, 607.2×, 4.1×, and
570.2× compared to Peach, AFLNet, SPFuzz, and AFLteam,
respectively, showing a substantial efficiency improvement
in parallel fuzzing. Meanwhile, MPFUZZ achieves a higher
branch coverage within 24 hours. Specifically, compared to the
baseline fuzzers, MPFUZZ increases branch coverage by an
average of 6.1%, 20.2%, 1.9%, and 17.4%, respectively. This
coverage improvement is attributed to the efficiency-boosting
since MPFUZZ can generate more correlated packets early on,
thus covering more branches given the limited time budget.

Figure 9 shows the coverage growth trends of each fuzzer
over time on the selected projects. The plots indicate that both
MPFUZZ and Peach exhibit effectiveness at the beginning
of execution, displaying a rapid increase in branch coverage.
However, after a certain point, Peach tends to stagnate and
reach a state where increasing branch coverage becomes
challenging. Table III demonstrates that MPFUZZ achieves
the same branch coverage at a speed of 2.6× to 553.8×
compared to the original Peach parallel mode. Besides, due
to format unawareness and the lack of effective parallelization
for IoT messaging protocols, AFLNet also exhibits a slow
increase in branch coverage. AFLTeam introduces a task
division strategy for parallelized fuzzing, thus achieving a
higher branch coverage than AFLNet. However, it is unaware
of the correlation between packets generated by different
instances and the packet format, leading to a slower increase in
branch coverage compared to MPFUZZ. In contrast, powered
by the key field synchronizing mechanism and semantic-
aware refinement, MPFUZZ consistently delivers high-quality
packets generated by collaborative fuzzing instances, which
helps alleviate the coverage plateau situation and achieve a
sustained increase in branch coverage.

Notably, MPFuzz shows a less pronounced advantage over
SPFuzz compared to other baseline fuzzers. This is because
SPFuzz also proposes an optimization strategy for parallel
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TABLE III: Average number of branches covered by MPFUZZ and the baseline fuzzers in parallel mode within 24 hours, all
with four fuzzing instances.

Subject MPFUZZ
Comparison with Peach Comparison with AFLNet Comparison with SPFuzz Comparison with AFLTeam

Peach Improv Speed-up AFLNet Improv Speed-up SPFuzz Improv Speed-up AFLTeam Improv Speed-up
Mosquitto 6,544 5,774 13.3% 553.8× 4,937 32.6% 597.1× 6,320 3.5% 4.8× 5268 24.2% 734.4 ×
Mongoose 859 829 3.6% 2.6× 833 3.1% 22.0× 844 1.8% 1.8× 838 2.5% 7.6 ×
NanoMQ 9,429 9,025 4.5% 391.4× 7,433 26.9% 1514.3× 9,450 -0.2% 0.9× 7641 23.4% 1193.7 ×
libcoap 4,350 4,016 8.3% 77.3× 3,742 16.2% 524.1× 4,238 2.6% 1.37× 3734 16.5% 592.3 ×
Californium 4,248 4,205 1.0% 12.4× - - - 4,214 0.8% 13.6× - - - ×
Qpid 14,843 14,019 5.9% 9.6× 12,152 22.1% 378.8× 14,447 2.7% 2.0× 12333 20.3% 322.9 ×
AVERAGE 6.1% 174.5× 20.2% 607.2× 1.9% 4.1× 17.4% 570.2×
* AFLNet and AFLTeam do not support Californium due to its Java-based implementation.
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Fig. 9: Average number of branches covered by MPFUZZ and
baseline parallel fuzzers within 24 hours on each IoT protocol
implementation. All paralyzed fuzzers are run with 4 instances.

protocol fuzzing building on Peach. SPFuzz focuses on mini-
mizing task conflicts and distributing workload across different
instances. This method is complementary rather than directly
competitive with the optimization of MPFUZZ. For the IoT
messaging protocols, the key fields generated by different
fuzzing instances should be correlated (as per MPFUZZ’s
idea), while non-key field generation tasks should be allo-
cated separately to minimize conflicts (as per SPFuzz’s idea).
To further show their complementary relationship, we adapt
MPFUZZ on SPFuzz and evaluate the combined performance.
As shown in Table IV, the combined tool achieves an average
increase of 3.9% in coverage than SPFuzz. This result further
demonstrates the importance of correlated key field generation
for IoT messaging protocols in parallel fuzzing.

TABLE IV: Average code branches achieved by adapting MP-
FUZZ on SPFuzz and improvement over SPFuzz in 24 hours

Mosquitto Mongoose NanoMQ libcoap Californium Qpid
6778

(+7.2%)
862

(+2.1%)
9661

(+2.2%)
4545

(+7.2%)
4251

(+0.9%)
15002

(+3.8%)

C. Comparison with Single-Mode Fuzzers

To demonstrate the effectiveness of the parallel mechanism,
we also compared MPFUZZ to single-mode fuzzers with the
same computing resources. Specifically, we first set up four
MPFUZZ instances in parallel mode and collected the number
of branches covered in all six targets within 6 hours. Then, to
have a fair comparison, we ran Peach and AFLNet in single
mode and collected their branch coverage within 24 hours.

Table V shows the branches covered by each fuzzer. We can
find that MPFUZZ always performed better than other fuzzers
in all target protocols. On average, MPFUZZ achieves 10.6%
and 28.3% higher branch coverage than Peach and AFLNet in
single mode, respectively. On all the selected projects, MP-
FUZZ achieves the upper bound in branch coverage, showing
a substantial lead on these projects. This substantial improve-
ment in branch coverage emphasizes the importance of parallel
fuzzing for IoT messaging protocols since their application
scenarios require multiple instances to collaboratively generate
test packets to cover diverse functionalities.

TABLE V: Average number of branches covered by MP-
FUZZ (with four instances) in 6 hours and the baselines Peach
and AFLNet in single mode within 24 hours

Subject MPFUZZ Peach Improv AFLNet Improv
Mosquitto 6,544 5,120 27.8% 4,265 53.4%
Mongoose 840 801 4.9% 786 6.9%
NanoMQ 9,328 8,703 7.2% 7,284 28.1%
libcoap 4,288 3,969 8.0% 3,511 22.1%
Californium 4,248 4,011 5.8% - -
Qpid 14,843 13,482 10.1% 11,311 31.2%
AVERAGE 10.6% 28.3%

D. Bug Detection Capability

To show the effectiveness of MPFUZZ in detecting unknown
vulnerabilities, we utilize AddressSanitizer [21] and Unde-
finedBehaviorSanitizer [22] to enhance the target program and
use the crashes identified by MPFUZZ to represent its vulner-
ability detection ability. Furthermore, to eliminate duplicate
entries, we utilize the stack traces in the Sanitizer report for
bug de-duplication and only consider unique vulnerabilities.
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TABLE VI: Summary of the Exposed Vulnerabilities
No. Subject Description AFLNet AFLTeam Peach SPFuzz MPFUZZ CVE ID

1 NanoMQ Heap buffer overflow in mqtt codec.c when handling a PUBLISH request 2024-31036
2 NanoMQ SEGV in nni msg set cmd type of message.c caused by null pointer 2023-34491
3 NanoMQ Heap buffer overflow in the get var integer in mqtt parser.c 2024-31040
4 NanoMQ Null pointer passed as the second argument of strncpy in topic filtern 2024-31041
5 libcoap Buffer over-read via the function coap parse oscore conf mem 2023-35862
6 Mosquitto Null pointer passed to memcmp in broker handle publish.c 2024-31038
7 Mosquitto Null pointer dereference when handling a CONNECT request 2024-31039
8 NanoMQ Heap buffer overflow via the function nmq subinfo decode 2023-33659
9 NanoMQ Null pointer dereference in decoding subinfo decode and unsubinfo decode 2023-29996

10 Mosquitto Memory leak occurs when handling v5 CONNECT packets 2023-3592
11 Mongoose Heap buffer overflow when parsing MQTT CMD PUBLISH message 2023-2905

* CVEs are anonymized for the review. means that the fuzzer can detect the corresponding vulnerability. #1-#7 are previously unknown vulnerabilities
exposed by MPFUZZ and we also show whether other fuzzers can detect them. #8-#11 are known high-severity vulnerabilities in the tested subjects.

Along with the code coverage and fuzzing speed im-
provement, MPFUZZ has also exposed 7 serious previously
unknown vulnerabilities on the selected subject projects. All
the vulnerabilities have been assigned with CVE identifiers and
have been fixed by their respective vendors. We also collected
statistics on whether other baseline fuzzers can detect these
vulnerabilities. Table VI summarizes the new bugs exposed
by MPFUZZ (#1-#7). Specifically, AFLNet, AFLTeam, Peach,
and SPFuzz can only expose 2, 4, 4, and 5 bugs, a strict subset
of the bugs exposed by MPFUZZ. These implementations are
widely used in IoT devices and have been thoroughly tested by
the community, as shown in Table II. Even so, MPFUZZ can
still detect new vulnerabilities that may pose serious threats to
protocol security. Besides, we collected 4 high-severity CVEs
previously detected in the selected subjects from the National
Vulnerability Database to further evaluate each fuzzer’s bug-
finding ability. As shown in Table VI (#8-#11), MPFUZZ
can reproduce all these known bugs, while other fuzzers can
only reproduce 2, 2, 2, and 3 CVEs, respectively. These bugs
pose potential hazards for devices running these protocols. We
provide a case study as follows.

Case Study: Bug #1 in NanoMQ. Figure 10 illustrates
a heap-buffer-overflow vulnerability discovered by MPFUZZ
in NanoMQ. The bug manifests as a heap-buffer-overflow
error via the read_byte function (invoked in Line 12) in
MQTT code.c module of NanoMQ. When processing a mal-
formed MQTT message generated by MPFuzz, the program
attempts to read beyond the allocated buffer via the pointer
buf->curpos in Line 5. This bug can pose a serious threat
to the security of IoT devices and attackers may use it to
conduct a Denial of Service attack.

VI. RELATED WORK

A. Protocol Testing

Protocol Fuzzing. Fuzzing has gained widespread accep-
tance as a testing approach for various protocol implemen-
tations, intending to automatically detect vulnerabilities [6],
[11], [23], [24]. Protocol fuzzing can be divided into two main
categories: generation-based and mutation-based. Mutation-
based approaches [5], [25]–[28] treat the entire packet se-
quence as a single seed where new packet sequences are
generated by mutating existing seeds. However, unaware of the
protocol format, trivial mutation operations remain limited in
generating valid packets and cannot explore a range of protocol

� �
1 /* Function to read a byte from a buffer */
2 int read_byte(struct pos_buf *buf, uint8_t *val) {
3 if ((buf->endpos - buf->curpos) < 1)
4 return MQTT_ERR_NOMEM;
5 *val = *(buf->curpos++);
6 }
7 /* Function to decode properties from a buffer */
8 property * decode_buf_properties(uint8_t *packet,

uint32_t packet_len, uint32_t *pos, uint32_t *len,
bool copy_value) {

9 ...
10 // parsing the properties section of the message
11 while (buf.curpos < buf.endpos) {
12 if (0 != read_byte(&buf, &prop_id)) {
13 property_free(list);
14 break;
15 }
16 property *cur_prop = NULL;
17 property_type_enmu type =

property_get_value_type(prop_id);
18 cur_prop = property_parse(&buf, cur_prop,

prop_id, type, copy_value);
19 property_append(list, cur_prop);
20 }
21 out:
22 current_pos += (prop_len);
23 *pos = current_pos;
24 *len = prop_len;
25 return list;
26 }� �

Fig. 10: The simplified code snippets related to the Bug#1.

implementation logics. Instead, generation-based fuzzers are
format-aware and thus can generate valid packets with high
probability. Our work focuses on optimizing parallel fuzzing
for generation-based approaches.

Generation-based approaches [7], [8], [29] take a user-
provided protocol model as input and generate packets that
conform to the protocol model [30]. Recent works optimize
generation-based protocol fuzzing from different perspectives.
Based on the original format, Bleem [18] introduces a packet-
sequence-oriented generation strategy. By analyzing the output
packet sequence, Bleem provides an effective feedback mech-
anism in the blackbox setting and supports guided fuzzing
based on runtime state-space tracking. Meanwhile, Bleem
generates protocol-logic-aware packet sequences by leveraging
the observed interactive traffic. Snipuzz [31] automatically
infers packet format in IoT scenarios by employing the server
response to enhance fuzzing efficiency. It uses a hierarchical
clustering strategy to infer the grammatical role of each packet
byte by analyzing the server response. ChatAFL [19] extends
the existing model by utilizing the knowledge from large
language models (LLMs) to construct grammars for protocol



11

message types. This enables it to mutate messages or predict
subsequent messages in a sequence, thereby improving test
input generation. Peach* [23] optimizes packet generalization
by integrating coverage guidance. It collects coverage informa-
tion during tests to identify valuable packets that uncover new
execution paths. These packets are then dissected and used
to generate higher-quality test packets. Charon [11] enriches
the transition details of the state model by employing state
guidance. It optimizes cross-state code coverage in the fuzzing
of ICS protocols, surpassing the conventional emphasis on in-
dividual states. These approaches primarily focus on protocol
testing in single fuzzing instances, while our work concentrates
on parallel fuzzing. Therefore, these optimization strategies are
orthogonal to the technique we proposed and can be applied
to MPFUZZ to obtain better fuzzing performance.

Messaging Protocol Testing. There are also some works
focusing on testing messaging protocols. MPInspector [32] is
designed to enhance the security of IoT messaging protocols
by combining model learning with formal analysis. It operates
in three primary phases: comprehending the functionality of
the messaging protocol, identifying applicable security stan-
dards, and verifying adherence to these standards. MQTTac-
tic [33] conducts systematic security analysis of open-source
MQTT broker based on static analysis and formal model
checking. It semi-automatically checks the security of MQTT
broker implementations and focuses on verifying MQTT
broker implementations against generated security properties,
specifically targeting authorization-related issues. These works
are mainly about designing properties to detect vulnerabilities.
These properties can be integrated into MPFUZZ to enhance
the detection capability for the property-related bugs.

B. Parallel Fuzzing

Existing work on optimizing parallel fuzzing has focused
on various aspects, such as task division, information synchro-
nization, and task scheduling. OPAFL [34] develops a multi-
candidate scheduling system based on input-related tasks.
EnFuzz [35] ensembles diverse fuzzers to broaden fuzzing
capability. PAFL [9] divides tasks based on the coverage
bitmap and synchronizes guiding information across fuzzing
instances. AFLTeam [10] further enhances task division and
scheduling. It leverages an attributed graph incorporating
program call graph and fuzzing information and applies
techniques from graph partitioning and search algorithms to
optimize the task allocation. SPFuzz [16] leverages the stateful
path generated by analyzing the protocol state model for better
task division and scheduling. Instead, MPFUZZ leverages the
feature of IoT messaging protocols and mainly focuses on
the collaborative refinement of certain key fields generated
by different instances. Therefore, MPFUZZ can be integrated
with these works to further optimize the parallel fuzzing for
IoT messaging protocols.

Some research concentrates on distributed fuzzing tech-
niques across multiple machines [36]–[38]. These techniques
typically employ a centralized architecture, with the main
node responsible for task scheduling and information synchro-
nization. ClusterFuzz, the fuzzing backend of OSS-Fuzz [39],

operates on 30,000 computing cores. Unlike these works, our
work mainly focuses on parallel fuzzing on a single machine.

VII. DISCUSSION

Adaption to Other Fuzzers. MPFUZZ mainly focuses on
optimizing the parallel fuzzing process for the generation-
based fuzzers. Since our approach relies on the synchro-
nization of key fields and then adapts customized mutation
strategies based on the shared information and field semantics,
our approach requires the protocol format to be available.
Therefore, it may not be directly applicable to mutation-based
fuzzers, which generate test cases by mutating existing test
cases without considering the protocol format. If provided
with the information about the key fields, our approach can
be also adapted to the existing parallel fuzzing mechanism of
mutation-based fuzzers.

For generation-based fuzzers, although our optimization is
built on the Peach framework, it can be easily adapted to other
generation-based fuzzers with parallel fuzzing capabilities. On
the one hand, the Peach framework is widely used in the
fuzzing community, and many fuzzing tools are built on top
of it. Many recent works are proposed to optimize Peach
for effective protocol fuzzing from different perspectives,
MPFUZZ can be easily adapted to these tools. For example,
PAVFuzz [24] optimizes the fuzzing by dynamically learning
the relationships between the fields in the protocol packets sent
by a single fuzzer. Charon [11] employs cross-state guidance
to improve the efficiency of each fuzzing instance. Since all
these optimization strategies are focused on individual fuzzing
instances, and our optimization is orthogonal to them, MP-
FUZZ can be easily integrated into these tools by integrating
the proposed key field synchronization module and semantic-
aware refinement strategy to further improve their performance
in parallelly fuzzing IoT messaging protocols. On the other
hand, other generation-based fuzzers that do not currently
support parallel mode, such as Boofuzz [8], follow the same
packet generation process as Peach, as described in Section II.
Therefore, once they support parallel fuzzing, our optimization
can be also easily adapted to them.

Scalability to Distributed Parallel Fuzzing. The current
design of MPFUZZ is based on the assumption that the fuzzing
instances are running on the same machine. Some recent
works focus on distributed fuzzing techniques that utilize
multiple machines, such as P-Fuzz [36] and UltraFuzz [37].
The proposed synchronization mechanism (in Section IV-A)
based on global and local field pools remains applicable to
distributed frameworks. The distributed fuzzing technique
typically adopts a controller-worker architecture [40], where
the controller node oversees and coordinates the worker nodes
during fuzzing. Therefore, the global field pool can be imple-
mented on the central controller node while each worker node
maintains its local field pool. The synchronization between the
global and local field pools can be implemented by following
Algorithm 1, which involves two steps, i.e., the Pull and Push
steps, as illustrated in Figure 7. During synchronization, the
interaction operations, like GETNOSYNCFIELDS and READ-
FROMGLOBALPOOL in Algorithm 1, can be implemented
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using Remote Procedure Call (RPC). The invoking results are
the entries from the field pools. To support its exchange among
machines via the network, we can design a protocol based on
Protobuf [41] that adheres to the structure of a field pool entry.
Although network communication introduces overhead, the
structure of the field pool and the synchronization algorithm
we propose help minimize the required data exchange.

VIII. CONCLUSION

In this paper, we proposed MPFUZZ, a generation-based
parallel fuzzing tool designed for securing IoT messaging
protocols. MPFUZZ employs an information synchronization
mechanism to share key fields in IoT messaging protocols
among different parallel instances facilitated by the global field
pool during the fuzzing process. The synchronized information
and characteristics of the IoT messaging protocol are used by
the fuzzing instance to implement a semantic-aware mutation
strategy for refining the generated test packets. Compared to
the traditional parallel fuzzing strategy, MPFUZZ is capable of
bridging the gap between isolated fuzzing instances, allowing
data packets generated by different instances to be related
and thereby significantly enhancing fuzzing efficiency. Our
experiments show that, compared to the state-of-the-art pro-
tocol fuzzers, MPFUZZ achieves higher branch coverage, and
the parallel fuzzing efficiency is also significantly improved.
Furthermore, MPFUZZ exposed 7 previously unknown bugs.
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[38] S. Österlund, E. Geretto, A. Jemmett, E. Güler, P. Görz, T. Holz,
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