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Contract-Based Hierarchical Modeling and
Traceability of Heterogeneous Requirements

Nikhil Vijay Naik, Alessandro Pinto, and Pierluigi Nuzzo

Abstract—The design of complex mission-critical systems often
follows a layered approach, which may lead to complicated,
multi-level, multi-viewpoint requirement hierarchies. This het-
erogeneity makes it challenging to guarantee the traceability of
the requirements across levels of abstraction and, consequently,
the satisfaction of the requirements by a system implementation,
especially when requirements at different abstraction levels are
expressed using different mathematical formalisms and modeling
languages. In this paper, we address this challenge by introducing
heterogeneous hierarchical contract networks (HHCNs), a formal
model based on a graph of assume-guarantee contracts, for
capturing and analyzing heterogeneous requirement hierarchies.
We formulate the requirement traceability validation problem
in terms of contract refinement relations between nodes in an
HHCN. We then define contract embeddings to enable reasoning
about refinements across levels of abstraction in the HHCN
that are expressed using heterogeneous formalisms. Contract
embeddings leverage the notion of conservative approximation
to rigorously map contracts across levels of abstraction while
ensuring that refinement is preserved independently of the
formalism to which the contracts are mapped. We illustrate
their effectiveness on a case study motivated by a multi-agent
autonomous lunar rover mission.

Index Terms—Cyber-physical systems, model-based design,
requirement formalization, contract-based design, traceability
validation

I. INTRODUCTION

The growing complexity of mission-critical cyber-physical
systems necessitates robust requirement engineering to enable
seamless coordination among mission stakeholders and facil-
itate efficient execution of mission activities [1]. Beginning
with a mission-level characterization of system objectives,
such as the operational constraints on a spacecraft to fulfill
science goals, these requirements percolate to sub-system
requirements, e.g., pertaining to science instruments, ther-
mal management, energy management, propulsion, navigation,
and communication. In turn, these requirements shape the
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component-level requirements, e.g., sub-system requirements
may be decomposed into requirements on sensors, sensor
processing, state estimation, maneuver calculation, and actu-
ation, which may be associated with architectural elements
like hardware or software modules [2], [3]. As a result, these
requirement patterns constitute multi-level, multi-viewpoint re-
quirement hierarchies. Owing to this layered design approach,
requirement formulation tends to be strongly influenced by the
corresponding level of abstraction, producing heterogeneous,
hierarchical sets of requirements.

Evaluating the satisfaction of mission-level requirements
requires modeling frameworks to provide traceability, i.e.,
the ability to reason about the satisfaction of higher-level
requirements from conclusions derived on a set of lower-
level requirements. Additionally, these frameworks need to
be amenable to verification, i.e., verifying that the hardware
and software implementations satisfy the requirement hierar-
chy [1], [4]. Manual approaches to requirement formulation
and traceability validation with natural language-based tools
impose restrictions on the requirement syntax, e.g., limitations
on the nesting of objectives within a single requirement,
to streamline the formulation and stipulate patterns derived
from current best practices for organizing requirements [4].
However, being natural language-driven, these approaches
may introduce subjectivity, leading to requirements that might
be ambiguous, conflicting, or incomplete [5]. Similarly, re-
quirement hierarchies may be improperly structured, poten-
tially resulting in incorrect claims of correctness that lead
to unexpected design problems and errors discovered late
in the design cycle [4]. This may render the system vul-
nerable to cost-intensive repairs or undesirable issues after
deployment [6], [7]. The increasing adoption of architec-
tures featuring autonomous decision-making artifacts, such
as coordinated multi-agent autonomous systems, exacerbates
these challenges, because requirement hierarchies governing
such missions must ensure agent safety, correct coordination
and adaptable operation in diverse scenarios while ensuring
mission satisfaction [8].

An appealing solution to manage this complexity is to
encapsulate requirements into a formal model of representation
within a rigorous and structured framework. These frameworks
can then be used to algorithmically provide strong guarantees
on the soundness of the requirement hierarchy to assist faster
vetting of the design. Contract-based design has been pro-
posed as a general framework to manage system complexity by
relying on formal, compositional representations of design ele-
ments and a rigorous algebra for their correct integration [9]–
[11]. In a contract-based methodology, traceability between0000–0000/00$00.00 © 2024 IEEE
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requirements across hierarchical levels can be established via
contract refinement relationships, where an aggregation of
contracts at a lower level of the hierarchy is proven to refine
a contract at a higher level. Contract refinement checking can
also be used to solve certain verification problems. Algorith-
mic refinement analysis of homogeneous contract hierarchies,
where all contracts are defined using the same formalism, has
been explored in the literature [11]–[13]. However, for greater
fidelity, it is often desirable to capture requirement hierar-
chies with heterogeneous models, by employing appropriate
formalisms at different levels of abstraction [14]. While efforts
in the literature [10], [14] have attempted to map contracts
across heterogeneous formalisms for checking refinement in
specific instances, a more general and systematic approach to
refinement checking of heterogeneous contract hierarchies for
traceability validation is still elusive.

This paper addresses these challenges by proposing a
novel graph-based model, termed heterogeneous hierarchical
contract network (HHCN), to organize and formalize the
heterogeneous set of requirements associated with a multi-
level, multi-viewpoint system design process. The traceability
validation problem can then be defined in terms of checking
refinement between contracts belonging to adjacent layers in
an HHCN, which may be represented using different for-
malisms. Secondly, we propose a method to rigorously map
contracts from an abstraction level to another in the HHCN
to perform refinement checking. These mappings, termed
contract embeddings, are orthogonal to the particular method
used to check refinement. Moreover, they ensure that the
outcome of refinement checking is preserved independently
of the level of abstraction at which the refinement is checked.
We show the effectiveness of our HHCN model and the
associated embeddings on the validation of the traceability of
a requirement hierarchy motivated by a lunar rover mission.

II. RELATED WORK

Architecture frameworks elucidating guidelines for system
design have been proposed in the literature [2], [15]. Derived
from current best practices, these frameworks outline general
design principles, such as explication and vetting of all design
assumptions and ensuring traceability of the design flow. How-
ever, they do not explicitly address requirement formalization
or algorithmic methods for traceability validation.

Modeling and verification frameworks based on formal
languages, e.g., TLA+ or the B-method, have been proposed
in the literature, which also leverage refinement relations [16]–
[18] to enable automated deductive reasoning and facilitate the
application of analysis techniques such as theorem proving
and model checking [19], [20]. Contract-based design aims
to encompass and generalize existing frameworks toward a
paradigm for compositional system modeling and design that
is orthogonal to the specific formalisms, used for capturing the
elements or aspects of a design, and the associated analysis
techniques [9]. Hierarchical contract networks (HCNs) were
first proposed as a foundation for contract-based hierarchical
system synthesis in terms of the stepwise refinement of a
system-level specification into an aggregation of components

from a pre-characterized library of implementations [12], [21].
However, in previous work, all the refinements in an HCN
were established between homogeneous contracts. In this
paper, we extend the HCN model to define heterogeneous
hierarchical contract networks (HHCNs) and provide a founda-
tion for rigorous requirement engineering with heterogeneous
contracts.

Analysis methods for heterogeneous system architectures
have been proposed in the literature by coordinating multiple
models of computation [22]–[24]. Other approaches represent
components as sets of behaviors and map these sets across
different formalisms through behavioral relations [25], later
augmented by vertical contracts [14]. Contracts extend be-
havioral models by specifying the properties of a component
in terms of a pair of sets, namely, the assumptions and the
guarantees [9], [10]. Consequently, we build on behavioral
relations and vertical contracts by further extending them to
support the analysis of generic HHCNs.

Our approach is founded on Galois connections, which have
been used to define mappings between behaviors at different
abstraction levels [26]. Using a Galois connection, a set of be-
haviors in a concrete formalism can be mapped to an abstract
formalism for efficient analysis. The result of the analysis can
then be used to derive constraints on the set of behaviors in the
concrete formalism [26], [27]. Conservative approximations
extend Galois connections to enable abstraction-based methods
for efficiently checking refinement preorders between sets
of behaviors defined in the concrete formalism [27]–[29].
However, attempts at directly extending the notion of Galois
connection from sets of behaviors to contracts has led to
obstacles. While a Galois connection on sets of behaviors can
be used to define an abstraction to map contract assumptions
and guarantees from a concrete formalism to an abstract for-
malism, the same Galois connection may not be used to define
a concretization map for contracts [30]. This paper overcomes
this obstacle by rather leveraging conservative approximations
to abstract and concretize contracts. Differently from previous
approaches, aiming to transform both the assumptions and the
guarantees of a contract, via the same abstraction function,
from a concrete domain to an abstract domain where contract-
based verification becomes tractable, our objective is, instead,
to extend the notion of refinement checking and enable its
effective evaluation between contracts defined in different
formalisms.

III. PRELIMINARIES

We introduce background notions on contract-based design,
Galois connections, and conservative approximations, which
are used throughout the paper.

A. Contract-Based Design

Assume-guarantee (A/G) contracts provide a rigorous al-
gebra for the construction of systems from a set of compo-
nents [9]. We define a contract C on a component M as
a triple C = (V,A,G). V is a set of variables. A, termed
the assumptions, and G, termed the guarantees, are sets of
behaviors over V , which we assume expressed in a formalism
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B, as further detailed below. M satisfies C, written M |= C, if
all its behaviors lie within the set G, given a set of assumptions
A, i.e., if M ⊆ G∪Ā, where Ā denotes the complement of A.
A contract is said to be saturated when G is replaced by G∪Ā.
Any contract is equivalent to its saturated form. Consequently,
in this paper, we assume that all contracts are saturated. A
contract C is consistent when the set of guarantees G ∪ Ā is
nonempty, i.e., there exists at least one implementation of C.
It is said to be compatible when the set of assumptions A is
nonempty, i.e., there is at least one valid environment for C.

We can compare two contracts C1 = (V,A1, G1) and
C2 = (V,A2, G2) through the refinement relationship, which
is a preorder on contracts. C1 refines C2, written C1 ⪯ C2,
whenever C1 has weaker assumptions and stronger guarantees,
namely, A1 ⊇ A2 and G1 ⊆ G2 [9]. To combine individual
contracts, we define the conjunction of two contracts C1 and
C2 as the greatest lower bound for the refinement relation,
written as C∧ = C1 ∧ C2 and given by the triple (V,A∧, G∧),
where A∧ = A1 ∪ A2 and G∧ = G1 ∩ G2. This operation
can be used to represent a combination of requirements that
must be satisfied simultaneously by a component. On the
other hand, the composition operation on contracts is used to
combine requirements associated with different components in
an architecture. Formally, the composition operation between
two contracts C1 and C2, written C1 ⊗ C2, is equal to the
contract (V,A⊗, G⊗), where A⊗ = (A1 ∩ A2) ∪ (G1 ∩G2)
and G⊗ = G1 ∩ G2. The composite contract delivers all
the guarantees promised by each individual contract, hence
the formula for the guarantees. The assumptions are instead
computed such that any valid environment, in the context
of each component, provides a suitable environment for the
other, i.e., supports its assumptions. Both conjunction and
composition are commutative and associative. We refer to the
literature [9] for further treatment of the notions mentioned
above. In this paper, we use contracts to capture requirements
precisely and rigorously check their consistency, compatibility,
and traceability by formulating and solving contract refinement
checking problems.

B. Galois Connections and Conservative Approximations

We recall the notion of Galois connection as a way to
transfer behaviors across heterogeneous formalisms. We con-
sider behaviors in two formalisms, denoted by B and B′,
characterized by the set of all possible behaviors B and
B′, respectively [31]. For example, if B is a continuous-
time formalism, B may include the set of trajectories of a
continuous-time system; if B′ is a discrete-time formalism, B′

may include the traces of a discrete-time system. Intuitively,
a Galois connection can be used to define mappings between
behaviors in B and behaviors in B′.

Definition 1 (Galois Connection). Let (B,≼B), (B′,≼B′) be
two partially ordered sets, characterizing formalisms B and
B′, respectively. A pair of functions α : B → B′ and γ :
B′ → B forms a Galois connection ⟨α, γ⟩ if and only if ∀A ∈
B, A′ ∈ B′,

α(A) ≼B′ A′ ←→ A ≼B γ(A′). (1)

We also say that ⟨α, γ⟩ is a Galois connection from B to B′.

If there exist distinct behaviors A1, A2 in B and A′ in B′,
such that A′ = α(A1) = α(A2), then we say that B′ is the
abstract formalism and B is the concrete formalism. Let A be
defined in B. We can leverage Definition 1 to efficiently derive
bounds for A as follows. We map A into an abstract domain
in B′ by defining a Galois connection ψ = ⟨α, γ⟩ from B to
B′ such that computing α(A) is more tractable. We can then
search for A′ such that α(A) ≼B′ A′ in the abstract formalism
and transfer A′ back to the concrete formalism by computing
γ(A′). By (1), γ(A′) acts as a bound for A in the concrete
formalism [26], [31].

As an example, let (B,≼B) be the set of real numbers
R, equipped with the standard ordering ≤, and (B′,≼B′) be
the set of integers Z, equipped with the standard ordering ≤.
Consider the functions αu : R→ Z, αu(r) := ⌈r⌉, γu : Z→
R, γu(s) := s, where ⌈.⌉ denotes the ceiling function. Then,
ψ1 = ⟨αu, γu⟩ is a Galois connection, satisfying the conditions
given in Definition 1. We observe that multiple elements in
R map to a single element in Z via αu. Therefore, we say
that αu(r) is the abstraction of r ∈ R, whereas γu(s) is a
concretization of s ∈ Z. Consider the interval T = (2, 3] in
R. We use ψ1 to find an upper bound of T . Because ∀r ∈ T ,
αu(r) = ⌈r⌉ = 3 holds, we observe that ∀r ∈ T , αu(r) ≤
s⊤ = 3 and s⊤ = 3 is an upper bound in Z. We can then
apply the concretization function γu to obtain γu(s⊤) = 3 and
use (1) to conclude ∀r ∈ T , r ≤ γu(s⊤) = 3 and T is bounded
by 3. To summarize, Galois connections can be leveraged to
design abstraction-based methods to efficiently derive bounds
on sets of behaviors. We recall below an equivalent definition
of Galois connections [31].

Theorem 1 (Equivalent Definition of Galois Connection).
Let (B,≼B) and (B′,≼B′) be as defined above. A pair of
functions α : B → B′ and γ : B′ → B form a Galois
connection ψ = ⟨α, γ⟩ if and only if

1) ∀A ∈ B, A′ ∈ B′ : A ≼B γ ◦α(A) and α ◦ γ(A′) ≼B′ A′.
2) α and γ are monotone functions, i.e., ∀A1, A2 ∈ B, if

A1 ≼B A2 then α(A1) ≼B′ α(A2). Similarly, ∀A′
1, A

′
2 ∈

B′, if A′
1 ≼B′ A′

2, then γ(A′
1) ≼B γ(A′

2).

Intuitively, Property (1) of Theorem 1 provides results on
the existence of bounds. Given A in the concrete formalism,
γ ◦ α(A) acts as a trivial upper bound for A. Analogously,
given A′ in the abstract formalism, α◦γ(A′) is a trivial lower
bound. Property (2) describes the effect of applying α and γ
to multiple (sets of) behaviors in each formalism, stating that
the ordering between them is preserved upon abstraction and
concretization. However, in the converse direction, α(A1) ≼B′

α(A2) need not imply A1 ≼B A2. For example, consider the
Galois connection ψ1 between R to Z defined above, and let
r1 = 2.8, r2 = 2.5. By inspection, we obtain αu(r1) ≤ αu(r2)
in the abstract formalism. However, in the concrete formalism,
r1 ≰ r2. Galois connections may not preserve the outcome
of checking the ordering ≤ from the abstract to the concrete
formalism [29]. Conservative approximations [27]–[29] were
introduced to transfer behaviors across sets B and B′, while
guaranteeing that ordering is preserved in either direction.
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Fig. 1: Tank control problem with heterogeneous requirements.

A conservative approximation Ψ relies on two abstraction
functions Ψ = (αl, αu) to transfer behaviors from B to B′.

Definition 2 (Conservative Approximation). Let (B,≼B) and
(B′,≼B′) be as in Definition 1. A pair of functions αl : B→
B′ and αu : B → B′ forms a conservative approximation if
∀A1, A2 ∈ B, αu(A1) ≼B′ αl(A2) implies A1 ≼B A2.

The notion of conservative approximation has been studied
in relation to Galois connections [29], producing an equivalent
definition in terms of a pair of Galois connections.

Definition 3 (Conservative Approximation [29]). Let (B,≼B)
and (B′,≼B′) be as in Definition 1. Let ⟨αu, γu⟩ be a Galois
connection from B to B′ and ⟨γl, αl⟩ be a Galois connection
from B′ to B. Ψ = (αl, αu) is a conservative approximation
from B to B′ if and only if, for all A′ ∈ B′, γu(A′) ≼B γl(A

′)
and for all A ∈ B, αl(A) ≼B′ αu(A).

To illustrate these definitions, consider a conservative ap-
proximation from R to Z [29], written ΨZ

R, composed of two
Galois connections ψ1 = ⟨αu, γu⟩ and ψ2 = ⟨γl, αl⟩. Let
αu : R → Z, αu(r) = ⌈r⌉, αl : R → Z, αl(r) = ⌊r⌋,
γu(s) = γl(s) = s, where r ∈ R, s ∈ Z. We can see that
∀r ∈ R, αl(r) ≤ αu(r) and ∀s ∈ Z, γu(s) ≤ γl(s). Therefore,
both conditions of Definition 3 are satisfied. Moreover, as re-
quired by Definition 2, for any r1, r2 ∈ R, if αu(r1) ≤ αl(r2),
then it is always true that r1 ≤ r2. In this paper, we use
conservative approximations to define abstract and concrete
contract embeddings. We will prove that resorting to con-
servative approximations is instrumental in defining contract
abstractions and concretizations that retain the outcome of
refinement checking independently of the formalism, abstract
or concrete, in which the check is performed.

IV. REQUIREMENT MODELING AND TRACEABILITY

We begin with an example to motivate our approach.

Example 1. We consider a control system for filling a tank
with fuel, as illustrated in Figure 1, and the following system
requirement set R = {R0, . . . , R5}:
R0: If the fuel level is less than 5, the valve shall be off.
R1: If the fuel level is less than 5, the fuel injector shall be

on.
R2(3): The voltage applied to the valve (fuel injector) in the

off condition shall be between V off
min and V off

max.

Fig. 2: Illustration of an HHCN G.

R4(5): The voltage applied to the valve (fuel injector) in the
on condition shall be between V on

min and V on
max.

For simplicity, we assume that R applies to the fuel level
and the on/off status of the valve and the fuel injector at each
instant. Additionally, we assume that the fuel level is measured
in steps of 1 m.

The requirements in Example 1 can be expressed using
different formalisms. For example, at the system level, they
may be concisely captured using arithmetic constraints over
discrete (integer) variables. At the component level, we may
use inequality constraints over continuous (real) variables,
such as the height of the fuel column and the actuation voltages
applied to the valve and fuel injector. In general, we assume
that system requirements can be expressed with a predefined
number of formalisms {B0, . . . ,BL−1}, e.g., chosen by the
designer to represent the system behaviors at different levels
of abstraction with sufficient accuracy, while making their
analysis tractable. We introduce contract networks (CNs) to
formalize sets of interrelated requirements.

Definition 4 (Contract Network). A contract network N is
defined recursively as follows:

• A contract term is an expression CN := C |CN,1 ∧
CN,2 |CN,1⊗CN,2 where C is a contract and CN ,CN,1,CN,2

are contract terms.
• The support of a contract term CN , denoted by supp(CN ) is

the set of contracts used to define the term. The support is
defined recursively as follows: supp(C) = {C}, supp(CN,1∧
CN,2) = supp(CN,1 ⊗ CN,2) = supp(CN,1) ∪ supp(CN,2).

• A contract network is a pair N = (CN ,CN ) where CN is a
contract term, CN is its support, and each contract in the
support is used in the term exactly once.

Intuitively, a CN is a set of contracts connected via
conjunction and composition operations, used to represent
the combination of different operational viewpoints on the
same component (conjunction) or requirements associated
with different components (composition). We now define het-
erogeneous hierarchical contract networks, which formalize a
requirement hierarchy in terms of refinement relations between
the contract terms of pairs of contract networks.

Definition 5 (Heterogeneous Hierarchical Contract Network).
A Heterogeneous Hierarchical Contract Network (HHCN)

with L levels is a graph G = (N,E), where N is a set of
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Fig. 3: HHCN Gtank for the system in Example 1.

contract networks and E is a set of directed edges, such that
the following properties hold:
• N is partitioned into L nonempty subsets N0, . . . ,NL−1,

where N0 is a singleton set, i.e., N0 = {N0
0 }.

• E consists only of edges between sets Nl and Nl+1, l =
0, . . . , L− 2, that is, E = {(N l

i , N
l+1
j ) : N l

i ∈ Nl, N l+1
j ∈

Nl+1, l = 0, . . . , L−2}. Edge (N l
i , N

l+1
j ) denotes that the

contract term of N l
i refines that of N l+1

j .
We denote by Cl

N,i the support set of contract network N l
i ∈

Nl defined in formalism Bl.

An illustration of an HHCN is shown in Figure 2. Intuitively,
an HHCN captures a layered set of requirements, associated
with different levels of abstraction. The operations {∧,⊗}
between contracts in Cl

N may be used to capture the system
architecture and the allocation of the system specifications to
the system components.

We now construct the HHCN for Example 1 as shown in
Figure 3. The system-level requirements are organized into
the contract network N0

0 over the integer variables V 0 =
{hd, µv, µf}, where hd is the fuel level, and µv and µf encode
the on and off states of the valve and fuel injector, respectively.
Requirement R0 ensures that, whenever hd ∈ {0, . . . , 4},
the valve remains off, i.e., µv = 0. Thus, we write contract
C0
0,0 = (V 0, A0

0,0, G
0
0,0) where A0

0,0 := (hd ∈ {0, . . . , 4})
and G0

0,0 := (µv = 0). We encode the on state of the fuel
injector with µf = 5. As a result, C0

0,1 has the assumptions and
guarantees A0

0,1 := (hd ∈ {0, . . . , 4}) and G0
0,1 := (µf = 5).

C0
0,0 and C0

0,1 must be simultaneously satisfied by the system;
therefore, they combine via conjunction.

At the component level, we define contracts capturing the
requirements on the valve and fuel injection control in N1

0

over the variables V 1 = {hc,Vv,Vf}, including the physical
height of the fuel column, the voltage applied to the valve and
the voltage applied to the fuel injector (in Volts), respectively.
To model R2 and R3, we take V off

min = 0 and V off
max = 1. To

model R4 and R5, we take V on
min = 5 and V on

max = 6. As shown
in Figure 3, we model the requirement on the valve controller
with contract C1

0,0 = (V 1, A1
0,0, G

1
0,0), where A1

0,0 := (0 ≤
hc < 5) and G1

0,0 := (0 ≤ Vv < 1). The requirement on
the fuel injection controller is captured by contract C1

0,1 =
(V 1, A1

0,1, G
1
0,1), where A1

0,1 := (0 ≤ hc < 5) and G1
0,1 :=

(5 ≤ Vf < 6). Contracts modeling the valve controller and the
fuel injection controller describe the operation of two parallel
control loops; therefore, they combine by composition.

The behavior of the overarching control algorithm is en-
coded by contract term C0

N,0 := C0
0,0 ∧ C0

0,1. Similarly,
contract term C1

N,0 := C1
0,0 ⊗ C1

0,1 specifies the behaviors
of the fuel injection and valve controllers. We ensure the
existence of feasible implementations by requiring that the
assumptions and guarantees of C0

N,0 and C1
N,0 are non-empty,

therefore, the contracts are consistent and compatible. For
traceability to hold, we would like to conclude that C1

N,0

refines C0
N,0. Generalizing, we state the HHCN traceability

validation problem as follows.

Problem 1 (HHCN Traceability Validation). Given an HHCN
G, ∀ l ∈ {0, . . . , L− 1},∀ i, j ∈ {0, . . . , |Nl| − 1}, prove the
following properties:
• The contract term Cl

N,i is consistent and compatible;
• If E = (N l

i , N
l+1
j ) ∈ E, then Cl+1

N,j refines Cl
N,i, where Cl

N,i

and Cl+1
N,j are the contract terms corresponding to the CNs

N l
i and N l+1

j . In other words, all refinement relations hold
along the edges of G.

If the contract networks in NL−1 reduce to a representation
of the system implementation, then traceability validation
includes the system verification problem, stated as follows.

Problem 2 (System Requirement Satisfaction). Given a sys-
tem implementation M , verify whether it satisfies all the
contract terms in NL−1, i.e., verify that ∀ CL−1

N,i , i ∈
{0, . . . , |NL−1| − 1}, M |= CL−1

N,i .

Traceability validation and system verification when all the
contracts in an HCN are expressed using the same formalism
have been explored in the literature [9], [10], [32]. In the
sequel, we focus on the problem of establishing refinement
relationships across levels of abstraction associated with het-
erogeneous formalisms.

V. CONTRACT EMBEDDINGS

Contract embeddings help establish refinement relationships
between contract terms on adjacent levels of an HHCN. As
shown in Figure 4, a conservative approximation Ψ is used to
define an abstract embedding ⋏Ψ and a concrete embedding
⋎Ψ. These are used to map a concrete contract CN upwards
in the abstract formalism, and to map an abstract contract C′

N

downwards in the concrete formalism, respectively, so that
we can transform the refinement checking problem between
heterogeneous contracts into a standard refinement checking
problem between homogeneous contracts.

A. Abstract and Concrete Embeddings

We define a conservative approximation Ψ by first identi-
fying the sets B and B′ (see Definition 3) that are used to
construct contract terms in formalisms B and B′.

Consider the set of variables V of a contract term CN . We
call S(V ) the value space of these variables, i.e., the set of
all possible values of the variables in V . Next, we define the
universe of possible behaviors B(V ) supported by the value
space S(V ). Intuitively, B(V ) is a set of sets, i.e., the set
containing all possible sets of behaviors which may be used
to write contracts in the formalism B.
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Fig. 4: Embedding-driven refinement checking for traceability.

Given two contracts C1 = (V,A1, G1) and C2 =
(V,A2, G2) such that A1, A2, G1, G2 ∈ B(V ), the assump-
tions and guarantees of C∧ = C1 ∧ C2 and C⊗ = C1 ⊗ C2

should also be representable in B(V ). Therefore, we require
B(V ) to be closed under unions and intersections, that is,
∀A1, A2 ∈ B(V ), A1 ∩ A2 ∈ B(V ) and A1 ∪ A2 ∈ B(V ).
Moreover, we require ∅ ∈ B(V ). Define Ω =

⋃
A∈B(V )A as

the collection of all possible behaviors in formalism B. We
impose the condition that B(V ) be closed under complements
( ¯ ) with respect to Ω, i.e., ∀A ∈ B(V ), Ω \ A ∈ B(V ).
In particular, as a σ-algebra possesses these desirable proper-
ties [33], possible choices of B(V ) include σ-algebras defined
over the sets of behaviors in formalism B.

Two elements in B(V ) and B(V ′) can be compared with
the subset relation ⊆, which is a partial order. Between two
partially ordered sets (B(V ),⊆), (B(V ′),⊆), we can define
functions αu, αl : B(V ) → B(V ′) and γu, γl : B(V ′) →
B(V ) which satisfy Definition 3 to create a conservative
approximation Ψ and use it to transfer contracts across B and
B′. Further details on this construction may be found in the
literature [9].

Example 2. In the HHCN Gtank for Example 1, the value
space of V 0 = {hd, µv, µf} is S(V 0) = Z × V × V, where
V = {0, 5} is the set of the possible values for µv and
µf . The value space of V 1 = {hc,Vv,Vf} is, instead,
S(V 1) = R3. These spaces support the set of possible
behaviors B(V 0) = 2Z×V×V and B(V 1) = σ(R3), i.e., the
Borel sigma algebra on R3 [33]. Between (B(V 0),⊆) and
(B(V 1),⊆) we can construct a conservative approximation
ΨD

C by defining functions αu, αl, γu, γl as follows [29], [34]:

αu(A) := g(A),

αl(A) := g(A) \ g(B(V 1) \A),
γu(A

′) = γl(A
′) := g−1(A′),

(2)

where g = ⌊.⌋ is the floor function, g(A) and g−1(A) are the
image and preimage of A under g, and B(V 1) ⊆ B(V 1) is
the set of all the behaviors whose image under g is contained
in g(A), i.e., B(V 1) =

⋃
X{X ⊆ B(V 1) : g(X) ⊆ g(A)}. By

Definition 3, ΨD
C = (αl, αu) is a conservative approximation

between the continuous set B(V 1) and the discrete set B(V 0).

In Example 2, many behaviors in B(V 1) may map to a
single behavior in B(V 0). For example, A1 = [1.9, 3) and
A2 = [1.7, 3) map to the same set αu(A1) = αu(A2) =

{1, 2}. However, the converse is not true. Therefore, B0 is the
abstract formalism and B1 is the concrete formalism.

Given a conservative approximation Ψ between the set of
possible behaviors in the concrete domain B(V ) and the
abstract domain B(V ′), we define abstract and concrete
embeddings between contract terms CN and C′

N .

Definition 6 (Contract Embeddings). Let CN = (V,A,G) and
C′
N = (V ′, A′, G′) be contract terms such that A,G ∈ B(V )

and A′, G′ ∈ B(V ′). Let Ψ = (αl, αu) be a conservative ap-
proximation consisting of Galois connections ψ1 = ⟨αu, γu⟩,
defined from B(V ) to B(V ′), and ψ2 = ⟨γl, αl⟩, defined
from B(V ′) to B(V ). The abstract embedding of CN , written
⋏Ψ(CN ), is given by

⋏Ψ(CN ) = (V ′, αl(A), αu(G)). (3)

The concrete embedding of C′, written ⋎Ψ(C
′), is given by

⋎Ψ(C
′
N ) = (V, γl(A

′), γu(G
′)). (4)

For brevity, we write ⋎Ψ and ⋏Ψ as ⋎ and ⋏, unless
required by the context. Contract embeddings preserve the
outcome of refinement checking across formalisms, that is,
the refinement checking operation, performed either in the
abstract formalism B′ or the concrete formalism B, as shown in
Figure 4, produces the same outcome. This property is proved
in the following result.

Theorem 2. Let CN and C′
N be two contract terms as in

Definition 6. The abstract embedding of CN refines C′
N if and

only if CN refines the concrete embedding of C′
N . That is,

⋏(CN ) ⪯ C′
N ←→ CN ⪯ ⋎(C′

N ). (5)

Proof. From Definition 6, we obtain ⋏(CN ) =
(V ′, αl(A), αu(G)) and ⋎(C′

N ) = (V, γl(A
′), γu(G

′)). Thus,
by definition, ⋏(C) ⪯ C′ means αl(A) ⊇ A′, αu(G) ⊆ G′.
By Definition 3, since ⟨γl, αl⟩ is a Galois connection from
B(V ′) to B(V ), we have ∀A′ ∈ B(V ′), A ∈ B(V ):

γl(A
′) ⊆ A↔ A′ ⊆ αl(A). (6)

Similarly, ⟨αu, γu⟩ forms a Galois connection from B(V ) to
B(V ′). Therefore, ∀G ∈ B(V ), G′ ∈ B(V ′), we have

αu(G) ⊆ G′ ↔ G ⊆ γu(G′). (7)

Therefore, combining these two equations, we obtain
(αl(A) ⊇ A′, αu(G) ⊆ G′) ↔ (A ⊇ γl(A

′), G ⊆ γu(G
′)),

i.e., ⋏(CN ) ⪯ C′
N ←→ CN ⪯ ⋎(C′

N ).

We illustrate this theorem on our running example and show
the traceability validation of the requirement set R.

Example 3. Consider checking the refinement between con-
tracts C0

N,0 and C1
N,0, shown in Figure 3, computed as follows:

A0
N,0 = (hd ∈ {0, . . . , 4})

G0
N,0 = (hd ∈ {0, . . . , 4}) →

((µv = 0) ∧ (µf = 5))

A1
N,0 = (0 ≤ hc < 5)

G1
N,0 = (0 ≤ hc < 5) →(
(0 ≤ Vv < 1) ∧ (5 ≤ Vf < 6)

)
We perform refinement checking in both the formalisms B0
and B1, assuming an obvious mapping of variables in V 1 to
variables in V 0: hc to hd, Vv to µv , and Vf to µf .
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In the discrete formalism, we compute αl(A
1
N,0) and

αu(G
1
N,0). Let Ah = [0, 5). We have g(Ah) = ⌊[0, 5)⌋ =

{0, . . . , 4} and, from (2), αl(A
1
N,0) = g(Ah)\g(B(V 1)\Ah).

We have B(V 1) =
⋃

X{X ⊆ B(V 1) : g(X) ⊆ {0, . . . , 4}} =
[0, 5), that is, B(V 1) = [0, 5) is the largest possible interval
whose image under the floor function equals {0, . . . , 4}. We
then obtain g(B(V 1)\Ah) = g([0, 5)\[0, 5)) = g(∅) = ∅.
Therefore, αl(A

1
N,0) = {0, . . . , 4}\∅ = {0, . . . , 4}.

Next, we find αu(G
1
N,0). From the definition above, the

expression for G1
N,0 is equivalent to hc /∈ [0, 5) ∨ (Vv ∈

[0, 1) ∧ Vf ∈ [5, 6)). By applying αu to each term in G1
N,0

and noting that the image distributes under the disjunction of
sets, we obtain:

αu(hc ∈ (−∞, 0) ∪ [5,∞)) = hd ∈ ⌊(−∞, 0)⌋ ∪ ⌊[5,∞)⌋
= hd ∈ {. . . ,−2,−1} ∪ {5, 6, . . .} = hd /∈ {0, . . . , 4}.

We can compute αu(Vv ∈ [0, 1) ∧ Vf ∈ [5, 6)) in a similar
way. Combining these expressions, we obtain αu(G

1
N,0) =

(hd /∈ {0, . . . , 4}) ∨
(
(µv = 0) ∧ (µf = 5)

)
and, for the

abstract embedding of the contract C1
N,0,

αl(A
1
N,0) = (hd ∈ {0, . . . , 4})

αu(G
1
N,0) = (hd /∈ {0, . . . , 4}) ∨

(
(µv = 0) ∧ (µf = 5)

)
.

(8)

Because A0
N,0 = (hd ∈ {0, . . . , 4}) and G0

N,0 can be written
as G0

N,0 = (hd /∈ {0, . . . , 4}) ∨
(
(µv = 0) ∧ (µf = 5)

)
,

after variable mapping, we observe that αl(A
1
N,0) ⊇ A0

N,0

and αu(G
0
N,1) ⊆ G0

N,0, which prove that ⋏(C1
N,0) ⪯ C0

N,0.
In the converse direction, we have γu = γl = g−1(A′)

for any set A′ ∈ B0. To compute γl(A
0
N,0), the preim-

age of the set A′
hd

= {0, . . . 4} under the floor func-
tion is γl(A

′
hd
) = [0, 5), therefore, γl(A

0
N,0) = (0 ≤

hc < 5). We can compute γu(G
0
N,0) in a similar way,

by noting the ranges A′
hd

= {0, . . . , 4}, A′
v = {0}, and

A′
f = {5}, for the variables in G0

N,0. Thus, we obtain
γl(A

′
hd
) = [0, 5), γl(A′

v) = [0, 1), and γl(A
′
f ) = [5, 6).

Combining these expressions, we find γu(G
0
N,0) = (hc /∈

[0, 5)) ∨ (Vv ∈ [0, 1) ∧Vf ∈ [5, 6)). Again, we can observe
that A1

N,0 ⊇ γl(A
0
N,0) and G1

N,0 ⊆ γu(G
0
N,0), i.e., C1

N,0 ⪯
⋎(C0

N,0). Finally, we obtain ⋏(C1
N,0) ⪯ C0

N,0 ↔ C1
N,0 ⪯

⋎(C0
N,0), consistently with Theorem 2. The traceability be-

tween system requirements and component-level requirements
is validated.

We note that the traceability validation problem can be
solved algorithmically and can be automated. Contract embed-
dings need not be computed every time, but can be instantiated
from a library of predefined functions and encoding templates,
which enhances the scalability of the approach. Further, the
refinement checking problems can be formulated as satisfia-
bility modulo theory (SMT) problems for appropriate theories,
e.g., the theory of linear integer arithmetic [35] for checking
⋏(C1

N,0) ⪯ C0
N,0 in this example.

B. Properties of Contract Embeddings

The bidirectional implication in (5) resembles (1). More-
over, as discussed below, contract embeddings enjoy a set of
properties that are analogous to the properties stated for a
Galois connection in Theorem 1. We then term the pair of
embeddings ⟨⋏,⋎⟩ in (5) a quasi-Galois connection between

contracts in formalisms B and B′. In fact, in this section, we
show that such a quasi-Galois connection does not coincide,
in general, with a Galois connection. We start by recalling
the properties of the Galois connections associated with a
conservative approximation, used in our embeddings.

Proposition 1. Let Ψ = (αl, αu) be a conservative approxi-
mation composed of Galois connections ψ1 = ⟨αu, γu⟩, from
B(V ) to B(V ′), and ψ2 = ⟨γl, αl⟩, from B(V ′) to B(V ).
Then, ∀A ∈ B(V ) and ∀A′ ∈ B(V ′),
• αu, αl, γu, and γl are all monotone functions;
• A ⊆ γu ◦ αu(A) and αu ◦ γu(A′) ⊆ A′;
• A′ ⊆ αl ◦ γl(A′) and γl ◦ αl(A) ⊆ A.

Proof. The proof of the first two statements proceeds straight-
forwardly from Theorem 1. The third statement may be
obtained by renaming the functions in Theorem 1 and noting
that ψ2 = ⟨γl, αl⟩ is defined from B(V ′) to B(V ).

Once we define functions αl, αu, γl, γu which constitute
a conservative approximation Ψ, we can construct contract
embeddings ⋏,⋎ with the following properties.

Theorem 3. The following properties hold for ⋏ and ⋎:
1) ⋏ and ⋎ preserve contract consistency and compatibility,

i.e., if CN is consistent (compatible), then so is ⋏(CN ).
The same holds for ⋎(C′

N ).
2) ⋏ and ⋎ are monotone, that is, if CN,1 ⪯ CN,2,

C′
N,1 ⪯ C′

N,2, then ⋏(CN,1) ⪯ ⋏(CN,2) and ⋎(C′
N,1) ⪯

⋎(C′
N,2).

3) CN ⪯ ⋎(⋏(CN )) and ⋏(⋎(C′
N )) ⪯ C′

N .

Proof. Property (1) can be proved by using the property
of Galois connections [31]. If A is a nonempty set, then
αu(A) is nonempty. Similar statements can be made for
αl, γl, γu. Therefore, if the assumptions A are nonempty, the
contract is compatible, and so is the abstract embedding ⋏(C).
Similarly, if the guarantees G are nonempty, then the contract
is consistent as is ⋏(C).

We can prove (2) by noting that αu, γu, γl, and αl are all
monotone functions (by Theorem 1), that is, they preserve
set inclusion. Thus, by CN,1 ⪯ CN,2, we obtain A1 ⊇ A2 and
G1 ⊆ G2. Then, by monotonicity, we obtain αl(A1) ⊇ αl(A2)
and αu(G1) ⊆ αu(G2), that is, ⋏(C1) ⪯ ⋏(C2). Similarly,
C′
1 ⪯ C′

2 → ⋎(C′
1) ⪯ ⋎(C′

2).
To prove (3), note that ⋏(⋎(CN )) =

(V, γl(αl(A)), γu(αu(G))). From Proposition 1, we
get γl ◦ αl(A) ⊆ A and G ⊆ γu ◦ αu(G).
Therefore, by definition, C ⪯ ⋎(⋏(C)). Similarly,
⋏(⋎(C′

N )) = (V ′, αl(γl(A
′)), αu(γu(G

′))). From
Proposition 1, we get αl(γl(A

′)) ⊇ A and αu(γu(G
′)) ⊆ G′,

and therefore, ⋏(⋎(C′
N )) ⪯ C′

N .

Despite the resemblance between (5) and (1) and between
Theorem 3 and Theorem 1, ⟨⋏,⋎⟩ in (5) only form a quasi-
Galois connection, that is, for the functions αl, αu, γl, γu, it
is necessary that at least one of αu ̸= αl and γu ̸= γl
hold. If we require αu = αl = α and γu = γl = γ
simultaneously, leading to only one Galois connection ⟨α, γ⟩
to construct contract abstractions and concretizations of the
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form ᾱ(CN ) = (V ′, α(A), α(G)) and γ̄ = (V, γ(A′), γ(G′)),
respectively, then Theorems 2 and 3 may not hold, in general,
and ⟨ᾱ, γ̄⟩ may not satisfy (5). To prove this result formally,
we start by recalling the following basic result stating that
inverse relations between sets preserve set inclusion [36].

Proposition 2. Let S and S ′ be any two sets. Let f1 ⊆ S×S ′
and f2 ⊆ S × S ′ be two relations, and f−1

1 and f−1
2 be the

corresponding inverse relations. If f1 ⊆ f2, then, f−1
1 ⊆ f−1

2 .

We now state a corollary of this proposition.

Proposition 3. Let αl : B(V ) → B(V ′) and αu : B(V ) →
B(V ′) be functions such that ∀A ∈ B(V ), αl(A) ⊆ αu(A). If
both αl, αu are also bijections, then, ∀A′ ∈ B(V ′), we have
α−1
l (A′) ⊆ α−1

u (A′). Similarly, let γu, γl : B(V ′) → B(V )
be such that ∀A′ ∈ B(V ′), γu(A

′) ⊆ γl(A
′). If both γu, γl

are also bijections, then, ∀A ∈ B(V ), γ−1
u (A) ⊆ γ−1

l (A).

We are now ready to prove the main result of this section,
i.e., a quasi-Galois connection on contracts coincides with
a Galois connection only under very stringent conditions on
the constituent functions and the sets of behaviors B(V ) and
B(V ′). Specifically, requiring that the quasi-Galois connection
only use two functions, α and γ, is equivalent to requiring the
existence of an isomorphism between B(V ) and B(V ′).

Theorem 4. Let a conservative approximation Ψ = (αl, αu)
from B to B′ be composed of Galois connections ψ1 =
⟨αu, γu⟩ and ψ2 = ⟨γl, αl⟩. Then, we obtain that αu = αl = α
and γu = γl = γ simultaneously if and only if all of these
functions are bijections and α−1

u = γu, γ−1
u = αu, α−1

l = γl,
and γ−1

l = αl hold. Moreover, because α and γ are monotone,
αu = αl and γu = γl hold simultaneously if and only if
both α : B(V ) → B(V ′) and γ : B(V ′) → B(V ) are
isomorphisms.

Proof. From Definition 3, if αu = αl = α and γu = γl = γ,
we get that both ⟨α, γ⟩ from B to B′ and ⟨γ, α⟩ from B′
to B are Galois connections. Then, from Proposition 1, we
obtain A′ ⊆ α ◦ γ(A′) and α ◦ γ(A′) ⊆ A′, that is, ∀A′ ∈
B(V ′), A′ = α◦γ(A′). In a similar way, we get A ⊆ γ◦α(A)
and γ ◦α(A) ⊆ A, thus, ∀A ∈ B(V ), γ ◦α(A) = A. From the
properties of the composition of images under a function [37]
and the relation ∀A′ ∈ B(V ′), A′ = α ◦ γ(A′), we obtain
that α is an injection and γ is a surjection. From the other
relation ∀A ∈ B(V ), γ ◦ α(A) = A, we obtain that γ is an
injection and α is a surjection. As α, γ are both injections and
surjections, they are bijections. Thus, they are both invertible.
Then, A′ = α◦γ(A′) implies that α = γ−1 and γ ◦α(A) = A
implies γ = α−1. Moreover, because the functions α, γ are
both monotone and bijective, they are an isomorphism.

In the converse direction, from Proposition 3, note that
γ−1
u (A) ⊆ γ−1

l (A). Because we are given γ−1
l = αl and

γ−1
u = αu, we get αu(A) ⊆ αl(A). However, from Defi-

nition 3, αl(A) ⊆ αu(A). Therefore, we can conclude that
∀A ∈ B(V ), αu(A) = αl(A). In other words, αu = αl = α.
We can use a similar argument to show that γu = γl = γ.

In summary, the contract embeddings form a quasi-Galois
connection, which coincides with a Galois connection if and

Fig. 5: Illustration of a multi-agent lunar mission

only if there exists an isomorphism between the possible
set of behaviors in the abstract and concrete formalisms. A
pair of distinct Galois connections, composing a conservative
approximation is necessary to define non-trivial contract ab-
stractions and concretizations. We exploit embeddings to solve
the traceability validation and system verification problems.

C. HHCN Traceability Validation

We solve Problem 1 by first checking the consistency and
compatibility of each contract network in the HHCN G using
methods developed in the literature. In fact, on each level
of abstraction, depending on the nature of the formalism,
we can reason about contract consistency, compatibility, and
refinement, using different techniques, e.g., model check-
ing [13], [38], simulation-based falsification [32], [39], or
satisfiability modulo theories [21], [35]. Next, we validate the
cross-level refinement by constructing the abstract or concrete
embeddings and checking refinement between contract terms
on adjacent levels in the formalism (abstract or concrete)
suitable to the problem at hand.

For example, given an HHCN G and contract network
NL−1

k ∈ NL−1, we can abstract it to the level L − 2 by
computing the abstract embedding of the contract term CL−1

N,k

given by ⋏ΨL−2
L−1

(CL−1
N,k ). Then, we check that this abstract

embedding refines the contract terms of the parents of NL−1
k

using tools suitable for the formalism BL−2. If refinement
is established for every parent-child pair, then traceability is
guaranteed, as shown in Example 3. A similar approach can
be used to solve Problem 2.

VI. CASE STUDY

We consider a requirement hierarchy inspired from future
lunar missions featuring multi-agent, autonomous rovers [40].
As shown in Figure 5, three identical rovers, LR1, LR2, LR3,
with mass M , drive in a straight line on the lunar surface
led by rover LR1. The mission-level requirements, shown in
Figure 6, stipulate each rover to autonomously drive for a
predetermined distance D from their starting position in a
straight line to their destination. The team leader LR1 is ahead
of the other two followers, LR2 and LR3, and serves as the
reference point for the inter-rover distances d12 and d13. The
requirements also specify the driving direction of the rovers
and require them to stop upon reaching their destinations.

These mission-level requirements are specialized into the
system kinematic requirements, which impose an upper bound
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Fig. 6: Requirement hierarchy including mission-level and system-
level layers in a multiagent lunar mission [40].

on the velocity and acceleration of each rover, and the system
formation requirements, which specify constraints on the inter-
rover coordination. For example, the formation requirements
constrain the permissible error margin ∆max in the inter-rover
separation distances d12 and d13. We denote the set of all
requirements by R. In our case study, D = 5 m, ∆max =
0.25 m, ∆T = 0.25 m, d12 = 4 m, d13 = 6 m, M = 25 kg.

A. Modeling the Rover Dynamics and Control

As shown in Figure 5, each rover is modeled as a block
on a rough surface, with coefficient of friction ρi. The force
F applied by the wheels causes a longitudinal acceleration
while the friction offered by the lunar regolith is described
by the equation Ffric = −ρ · v, where v is the longitudinal
velocity, resulting in linear time-invariant dynamics. Each
rover’s architecture consists of a plant, evolving according
to the rover’s dynamics, a local controller, and an actuator.
Measurement of the rover states xi, i = 1, 2, 3, is carried out
by error-free sensors. Further, we assume that the state xi is
instantaneously communicated to all rovers with zero delay
at an update frequency equal to the controller frequency. The
force F has a maximum limit Fmax.

The control task of rover LR1 is to drive to its destination
in a straight line, whereas the task of LR2 and LR3 is to
drive straight, while following LR1 at longitudinal distances
d12 and d13, respectively. A local controller for each rover can
be designed, for example, using the LQR approach [41].

B. Modeling Requirements with an HHCN

As shown in Figure 6, the MissionRequirements spec-
ify the goals of the system in terms of desirable con-
figurations at discrete points, such as the start and end
states of the rovers. At this level, such configurations can
be modeled by a set of propositional variables such as
desti, which models “LRi is at its destination.” Require-
ments such as “eventually LRi is at its destination” can be
well represented in linear temporal logic with finite traces
(LTLf ) [42], [43]. For each rover, LTLf formulas can be

Fig. 7: HHCN Grover for the requirement set R in Figure 6.

defined over a set of time-varying propositional variables
V ′ = {desti, diri, stopi, leadi, domi, i ∈ {1, 2, 3}}, where
each proposition is derived from MissionRequirements in
Figure 6. We introduce additional propositional variables domi

to signify that the requirements apply only when the lunar
rovers arrive on the lunar surface.

On the other hand, the system-level requirements, including
the formation and kinematic requirements, involve functions
of the continuously evolving system state variables xi =
(xi, yi, vi, zi)

T , i ∈ {1, 2, 3}, where xi is the longitudinal
displacement of the rovers, yi is their transverse displacement,
and vi, zi are their longitudinal and transverse velocities,
respectively. These requirements are better specified in a
continuous-time formalism, such as bounded-time signal tem-
poral logic (STL) [44]. In this case, STL formulas are defined
over the set V =

⋃3
i=1{xi, yi, vi, zi}. The semantics of

LTLf [43] and STL [44] define the set of allowed behaviors
as traces at the mission and system levels, respectively. Multi-
ple continuous-time traces can produce the same discrete-time
trace, meaning that LTLf can be considered as the abstract
formalism B′ and STL as the concrete formalism B. We
construct an HHCN Grover from the requirement set R as
shown in Figure 7.

1) Modeling mission-level requirements with LTLf con-
tracts: We express the LTLf contracts over the set of
variables V ′. Because the requirements apply only when the
propositional variables domi are asserted, we include the
LTLf formula G (∧3i=1domi), where G is used for globally, in
the assumptions of every mission-level contract. The guaran-
tees of the contract capturing MissionSuccessRequirement

are given by ∧3i=1 F desti, where desti is asserted when the
ith rover reaches its destination and F stands for eventually.
The guarantees of DirectionRequirement are denoted by
G (∧3i=1diri), where diri is asserted when the ith rover drives
in the correct direction. FinalVelocityRequirement can be
formalized with guarantees G

(
∧3i=1(desti → stopi)

)
, that is,

the ith rover must always stop once it reaches its destination.
Finally, the guarantees of LeaderRequirement can be written
G lead1, i.e., LR1 always leads the formation.

2) Modeling system-level requirements with STL con-
tracts: We adopt bounded-time STL, where the mission hori-
zon T = 2400 s is specified by DestinationRequirement

in Figure 6. The state of each rover xi should lie in a set
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D = {x : x ∈ [0, 10], y ∈ [−5,+5], v ∈ [−0.2, 0.2], z ∈
[−0.01,+0.01]}. The assumptions G[0,T ] ∧3i=1 (xi ∈ D) are
incorporated in every contract in N1

0 . Other assumptions are
conjoined with this formula as necessitated by the context.

a) System formation requirements: The guarantees of
contract C1

0,0 for DriveStraightRequirement are given by
G1

0,0 := G[0,T ]∧3i=1 (|yi−yi,init| ≤ ∆T ), where ∆T = 0.1m.
yi,init is the initial position of the ith rover in the transverse
direction. Intuitively, the guarantee of C1

0,0 formalizes the
notion that rovers LR1, LR2, and LR3 must not drift from
their initial positions along the transverse direction by a
margin greater than ∆T . The FinalVelocityRequirement

can be formalized with the contract C1
0,1 guarantees G1

0,1 :=
F[0,T−t]G[0,t] ∧3i=1 (|vi| < ϵ) stating that eventually the
velocities of all the rovers should be less than the tolerance ϵ =
10−6 m/s for a period of t seconds continuously, signifying
that the rovers have stopped. The DestinationRequirement

can be modeled by contract C1
0,2 with guarantees G1

0,2 :=
∧3i=1F[0,T ](xi ≥ D + xi,init), i.e., each rover must drive a
distance D from its initial state.

We further model FormationRequirement LR 1 LR 2

and FormationRequirement LR 1 LR 3 by noting that the
formation, i.e., the inter-rover separation, depends on the
different coefficients of friction ρi between each rover and
the lunar regolith. Thus, we include the in-situ measurements
of ρi given by the ActualFrictionRequirement in the
assumptions. The assumptions for contracts C1

0,3 and C1
0,4

modeling the two formation requirements are then given by
A1

0,3 := G[0,T ](∧3i=1(xi ∈ D)) ∧ (ρ2 = ρm,2) and A1
0,4 :=

G[0,T ](∧3i=1(xi ∈ D))∧(ρ3 = ρm,3), respectively, where ρm,i,
with i ∈ {2, 3}, is the measured friction coefficient of the
ith rover. The guarantees G1

0,3 and G1
0,4 capture the distance

constraints, namely, G1
0,3 := G[0,T ]

(
|x1 − x2 − d12| ≤ ∆max

)
and G1

0,4 := G[0,T ]

(
|x1 − x3 − d13| ≤ ∆max

)
.

b) System kinematic requirements: We encode the
SystemKinematicRequirements with a single contract C1

0,5.
The maximum acceleration applied by the rover wheels is a
property of the hardware actuators which we can capture by
introducing the constraint (a ≤ amax) throughout the mission,
i.e., A1

0,5 := G[0,T ](∧3i=1(xi ∈ D)) ∧ (a ≤ amax), where
amax = 0.005 m/s2. The guarantees of C1

0,5 require that
the maximum velocity requirement be always satisfied, i.e.,
G1

0,5 := G[0,T ] ∧3i=1 (vi ≤ vmax), where vmax = 10 cm/s.
3) Constructing Grover: As shown in Figure 7, the mission-

level contracts C0
0,0, . . . ,C

0
0,3 apply to the mission planner;

therefore, we use the conjunction operation to combine them
into contract term C0

N,0 of contract network N0
0 , i.e., C0

N,0 =
∧3i=0C

0
0,i. Contracts C1

0,0, . . . ,C
1
0,5 on the system level can be

categorized into 3 groups. C1
0,3 and C1

0,4 specify the slippage
control and can be conjoined to ensure correct spacing between
rovers. C1

0,0 specifies the lateral control. Finally, C1
0,1,C

1
0,2

and C1
0,5 can be conjoined to specify the longitudinal control.

The contract term of the network N1
0 is given by composition

C1
N,0 = (C1

0,0)⊗ (C1
0,3 ∧ C1

0,4)⊗ (C1
0,1 ∧ C1

0,2 ∧ C1
0,5).

C. Mappings Between Continuous and Discrete Domains
We first characterize the value space S(V ′) and the set of

possible behaviors B(V ′) at the mission level. Each variable

Fig. 8: Illustration of the construction of the event set E for the
trace ρc satisfying µSTL = F(0.1,0.2)G[0,0.6)(y ≥ 0.5).

in V ′ is discrete-time and Boolean-valued, with values in
B = {0, 1}. Thus, S(V ′) = B15. Next, to identify the universe
of possible behaviors B(V ′), we note that each behavior at
the mission level can be described with discrete-time traces.
Therefore, B(V ′) must contain all the sets of discrete-time
traces corresponding to the LTLf formulas which may be
used to write contracts. To ensure that B(V ′) is closed under
unions, intersections, and complements, we select B(V ′) as
the σ-algebra over all possible discrete-time traces, i.e., the
product σ-algebra [33]. Similarly, the value space for the
system-level requirements is S(V ) = R|V | = R12. In a manner
analogous to the discrete-time formalism, we choose B(V ) as
the product σ-algebra on S(V ). We now define a conservative
approximation ΨCT

DT = (αl, αu) between these domains.
We interpret the satisfaction of an LTLf formula µLTL

over discrete-time traces. A discrete time trace ρd is a function
ρd : N→ S(V ′) that maps a time index k to a vector of values
for the variables V ′. For v′ ∈ V ′ and k ∈ N, we denote by
ρd(v

′) the projection of the trace on the variable v′, and by
ρd(v

′, k) the value of v′ at k. A trace ρd satisfies µLTL if a
set of events implied by the satisfaction semantics of LTLf

occur as k varies between 0 and the mission horizon N . For
example, the LTLf formula G dom is satisfied by a trace ρd
if ρd(dom, k) = 1 ∀k ∈ {0, . . . , N − 1}.

Given a trace ρd, we define the event set E′
e,ρd

=
{(ev′ , k)|v′ ∈ V ′, k ∈ N, ρd(v′, k) = 1}. ev′ is said
to be the symbolic label for the event “v′ is asserted.”
For example, if µLTL = G dom, we can write E′

e,ρd
=

{(edom, 0), (edom, 1), . . . , (edom, N − 1)}, where ρd is the
discrete-time trace which satisfies µLTL. The event label set is
the set of all labels defined as Ev(E′

e,ρd
) = {ev′ |∃v′ ∈ V ′, k ∈

N s.t. (ev′ , k) ∈ E′
e,ρd
}. For example, given µLTL = G dom

and ρd which satisfies µLTL, Ev(E′
e,ρd

) = {edom}.
Similarly, the satisfaction of an STL formula µSTL is

defined over continuous-time traces. A continuous time trace
ρc is a function ρc : R≥0 → S(V ) that maps the continuous
time to a vector of values for the variables V . For v ∈ V and
t ∈ R≥0, ρc(v) is the projection of the trace on v, and ρc(v, t)
is the value of v at time t. ρc satisfies an STL formula µSTL

if a set of events implied by the satisfaction semantics of STL
occur as t varies between 0 and the mission horizon T . For
example, as shown in Figure 8, ρc(y, t) = sin(πt) satisfies
µSTL = F(0.1,0.2)G[0,0.6)(y ≥ 0.5).

Given a trace ρc, an event threshold Γv ∈ R, and a time
t such that ∃ εa, εb : 0 < εb < t, εa > 0 such that ∀τ ∈
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[t− εb, t] : ρc(v, t) < Γv and ∀τ ∈ [t, t+ εa] : ρc(v, t) ≥ Γv ,
i.e., if ρc crosses the event threshold at time t, then we
say that an event has occurred at time t with duration (at
least) εa. Analogous to the discrete-time case, we define the
event set Ew,ρc

= {(wv, t, εa) | v ∈ V, t ∈ R≥0,∀τ ∈
[t, t + εa] : ρc(v, τ) ≥ Γv}. wv is called the symbolic
label for the event “ρ(v) crosses the event threshold Γv .” For
example, in Figure 8, ρc crosses the event threshold Γy = 0.5
at time t = 0.16 for a duration of εa = 0.66, therefore,
Ew,ρc

= {(wy, 0.16, 0.66)}. Similarly to the discrete-time
case, we define the event label set as Ev(Ew,ρc

) = {wv|∃v ∈
V, t ∈ R≥0, εa > 0, s.t. (wv, t, εa) ∈ Ew,ρc

}. For example, in
Figure 8, Ev(Ew,ρc) = {wy}. We leverage a correspondence
between the event sets Ew,ρc and E′

e,ρd
to define ΨDT

CT below.

Definition 7. Consider two event sets E and E′. Let the event
label mapping PE be a bijective map PE : Ev(E)→ Ev(E′).
Let T and N be the continuous and discrete time horizons,
respectively. We partition the interval H = [0, T ) into N sub-
intervals H =

⋃N−1
k=0 τk, such that, for all k, the length of each

interval is equal, i.e., ||τk||1 = ||τk+1||1 and each interval is
non-overlapping with its neighbors, namely, τk ∩ τk+1 = ∅.
Intuitively, each interval τk corresponds to a single discrete-
time step k. ΨDT

CT = (αu, αl) is defined as:

αu(E) =
⋃
k

{(PE(wi), k) : (∃(wi, t, ϵa) ∈ E : [t, t+ ϵa] ∩ τk ̸= ∅)}

αl(E) =
⋃
k

{(PE(wi), k) : (∃(wi, t, ϵa) ∈ E : [t, t+ ϵa] ⊇ τk)}.

We adopt this conservative approximation to validate the
traceability for Grover. By Theorem 2, it suffices to check any
one of the relations ⋏(CN ) ⪯ C′

N or CN ⪯ ⋎(C′
N ). In our

case, we check ⋏(CN ) ⪯ C′
N by showing that ⋏(CN ) ⪯̸ C′

N is
infeasible, thus reducing refinement checking to a satisfiability
problem in the abstract formalism. We attempt to solve the
satisfiability problem using a falsification method. That is, we
falsify αl(A) ⊇ A′ or αu(G) ⊆ G′. From Section VI-B3,
C′
N = C0

N,0 and CN = C1
N,0. Consequently, the falsification

problem reduces to searching for continuous traces which
satisfy C1

N,0 but whose representations in the discrete domain
do not satisfy C0

N,0. Through simulation, we identify a trace
ρc, associated with an event set E, such that ρc |= CN ,
i.e., ρc ⊆ GN . Using the conservative approximation ΨDT

CT ,
we compute αl(E), which corresponds to a trace ρd on the
discrete level. If ρd ̸|= C′

N , i.e., ρd ⊈ G′
N , we conclude

GN ⊈ G′
N , and consequently, ⋏(CN ) ⪯̸ C′

N .

D. HHCN Traceability Validation

We simulate the continuous-time behaviors of the 3 rovers
using MATLAB. As shown in Figure 9, the trace ρc satisfies
the guarantees of CN when the rovers drive in the desired
region D, i.e., the contract term CN is consistent and compat-
ible. Consequently, the system behaviors shown in Figure 9
satisfy the requirements at the system level.

To check the traceability, we resort to the method given in
Section VI-C. To instantiate the conservative approximation
in Definition 7, we use the continuous-time mission horizon
T = 2400 s and the discrete-time horizon N = 1000 from

(a) Longitudinal displacement
x1, x2, x3

(b) Inter-rover spacing error
∆12 = x1 − x2 − d12,∆13 =
x1 − x3 − d13

(c) Longitudinal velocities v1, v2, v3
violate DirectionRequirement

(d) Lateral displacement
∆T,1 = y1 − y1(0),
∆T,2 = y2 − y2(0),
∆T,3 = y3 − y3(0)

Fig. 9: Simulation results: Continuous-time trace ρc for the au-
tonomous multirover lunar mission.

Section VI-B. Therefore, we get τ0 = [0, 2.4), . . . , τ999 =
[2397.6, 2400).

Next, we construct the event mapping PE . In the sequel,
ρc(xi, t) is the position of the ith rover at time t and ρc(vi, t)
the velocity of the ith rover at time t. To define the event
sets on the continuous-time level, we define the event label
wdom,i for the event (ρc(xi, t), ρc(vi, t)) ∈ D at some time t,
i.e., the ith rover is within the set D defined in Section VI-B.
We define wdest,i as the event label for the threshold crossing
ρc(xi, t)−D−xi,init ≥ 0, i.e., wdest,i signifies the arrival of
the ith rover at its destination. wdir,i is the event label which
encodes the driving direction of the rovers and is asserted
if and only if the rovers have a non-negative longitudinal
velocity, i.e., if and only if ρc(vi, t) ≥ 0. To encode the
arrival of the rovers at the destination, we define wstop,i

as the threshold crossing |ρc(vi, t)| ≤ ϵ. Finally, we label
wlead as the event corresponding to ((ρc(x1, t)− ρc(x2, t) ≥
0)∧(ρc(x1, t)−ρc(x3, t) ≥ 0)), capturing the event that rover
LR1 be ahead of LR2 and LR3. On the discrete-time level,
we define edomi as the event when the ith rover arrives on the
lunar surface, i.e., edomi

occurs if and only if domi is asserted.
Similarly, we define edesti as the event of arrival of the ith

rover at its destination, i.e., when desti is asserted. Similarly,
ediri occurs when the rovers drive in the correct direction, i.e.,
diri is asserted. Then, the event label mapping PE is given
by PE(wdom,i) = edomi , PE(wdest,i) = edesti , PE(wdir,i) =
ediri , PE(wstop,i) = estopi

, and PE(wlead) = elead1
.

On the continuous-time level, between t = 115 s and
t = 230 s, we see that the longitudinal velocities of all the 3
rovers become negative (red rectangle in Figure 9c). Therefore,
the continuous-time event set corresponding to the trace ρc(vi)
is Edir = {(wdir,1, 0, 115), (wdir,2, 0, 115), (wdir,3, 0, 115),
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(wdir,1, 230, 2170), (wdir,2, 230, 2170), (wdir,3, 230, 2170)}.
By computing αl(Edir) from Definition 7, we find that
αl(Edir) = {(edir1 , 0), (edir2 , 0), (edir3 , 0), . . . , (edir1 , 46),
(edir2 , 46), (edir3 , 46), (edir1 , 96), (edir2 , 96), (edir3 , 96), . . . ,
(edir1 , 999), (edir2 , 999), (edir3 , 999)}. However, on the
discrete-time level, the guarantee of C′

N contains the LTLf

formula G(∧3i=1diri). As discussed in Section VI-C, the
only satisfying trace ρd(diri) for this formula corresponds
to the event set E′

dir = {(edir1 , 0), (edir2 , 0), (edir3 , 0), . . . ,
(edir1 , 999), (edir2 , 999), (edir3 , 999)}. As a result, we find
that αl(Edir) ̸= E′

dir, i.e., the mapped representation of the
continuous-time event set Edir is not equal to the discrete-
time event set E′

dir. Therefore, we have constructed a trace
ρc which satisfies CN , but its mapping violates C′

N . We can
conclude that ⋏(CN ) ⪯̸ C′

N , i.e., requirement traceability is
violated for the HHCN Grover. To summarize, HHCN-based
requirement validation can assist the rigorous analysis of
the requirements, enabling rigorous cross-level refinement
checking across different levels of abstraction.

VII. CONCLUSIONS

We addressed the formal modeling and analysis of require-
ment hierarchies by introducing heterogeneous hierarchical
contract networks (HHCNs). We formalized the problem of
requirement traceability validation in terms of refinement
checking between contract terms on adjacent levels of an
HHCN. For cross-level refinement checking, we leveraged
conservative approximations to introduce abstract and concrete
embeddings of contracts, which ensure that refinement is
preserved independently of the formalism. We applied our
method to a case study derived from autonomy requirements
for a lunar rover mission. In the future, we plan to further
explore the software implementation of contract embeddings
and their connection to abstraction-based verification methods
in symbolic control and abstract interpretation.
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