
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

MII: A Multifaceted Framework for
Intermittence-Aware Inference and Scheduling

Ziliang Zhang , Cong Liu, Member, IEEE, and Hyoseung Kim , Member, IEEE

Abstract—The concurrent execution of deep neural networks1

(DNNs) inference tasks on the intermittently-powered batteryless2

devices (IPDs) has recently garnered much attention due to its3

potential in a broad range of smart sensing applications. While4

the checkpointing mechanisms (CMs) provided by the state-of-5

the-art make this possible, scheduling inference tasks on IPDs is6

still a complex problem due to significant performance variations7

across the DNN layers and CM choices. This complexity is further8

accentuated by dynamic environmental conditions and inherent9

resource constraints of IPDs. To tackle these challenges, we10

present MII, a framework designed for the intermittence-aware11

inference and scheduling on IPDs. MII formulates the shutdown12

and live time functions of an IPD from profiling the data, which13

our offline intermittence-aware search scheme uses to find the14

optimal layer-wise CMs for each task. At runtime, MII enhances15

the job success rates by dynamically making scheduling decisions16

to mitigate the workload losses from the power interruptions and17

adjusting these CMs in response to the actual energy patterns.18

Our evaluation demonstrates the superiority of MII over the19

state-of-the-art. In controlled environments, MII achieves an20

average increase of 21% and 39% in successful jobs under the21

stable and dynamic energy patterns. In the real-world settings,22

MII achieves 33% and 24% more successful jobs indoors and23

outdoors.24

Index Terms—Embedded software, energy harvesting, real-25

time systems, tiny machine learning.26

I. INTRODUCTION27

INTERMITTENTLY-POWERED batteryless devices (IPDs)28

offer a promising pathway to zero carbon emissions and29

maintenance-free operations. Recent advances have enabled30

them to execute the deep neural network (DNN) inference31

tasks [1], [2], [3], [4], essential for the smart sensing and32

IoT applications. These devices harvest ambient energy from33

the environment and store it in capacitors. Once sufficient34

energy accumulates, IPD executes tasks using this energy35

until depletion. IPDs are typically equipped with two types36

of memory: 1) volatile memory (VM), which is fast but loses37

the data upon shutdown and 2) nonvolatile memory (NVM),38

which is slow but retains the data after shutdown [5]. Since,39

Manuscript received 6 August 2024; accepted 10 August 2024. This work
was supported in part by the U.S. NSF under Grant CNS 1943265, Grant
CPS 2230969, Grant CNS 2300525, Grant CNS 2343653, and Grant CNS
2312397; in part by the USDA/NIFA SCRI under Grant 2020-51181-32198;
and in part by the IITP funded by the Korean government (MSIT) under Grant
2021-0-00360. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2024 and appeared as part of the ESWEEK-
TCAD special issue. This article was recommended by Associate Editor S.
Dailey. (Corresponding author: Ziliang Zhang.)

The authors are with the University of California, Riverside, CA 92521
USA (e-mail: zzhan357@ucr.edu; congl@ucr.edu; hyoseung@ucr.edu).

Digital Object Identifier 10.1109/TCAD.2024.3443710

an IPD turns on and off across power cycles, it must store 40

intermediate computation results from VM to NVM before 41

powering off [6], [7], [8], [9]. 42

Existing research on IPDs primarily centers around check- 43

pointing mechanisms (CMs) that preserve the execution 44

progress across the power failures. Broadly, these mechanisms 45

fall into two types: 1) just-in-time checkpointing (JIT) and 46

2) static checkpointing (ST) using the atomic blocks. JIT [7], 47

[10], [11], [12] checkpoints the system state once at the end 48

of each power cycle, achieving faster speeds but demanding 49

a larger peak memory. On the other hand, ST [1], [3], [8], 50

[9], [12], [13], [14] transforms the program code into smaller 51

atomic blocks of various granularity (e.g., layers, filter, and 52

tiles for DNNs), with the checkpointing code at the end of 53

each block, offering a smaller peak memory but at the cost of 54

speed (Section II-B). 55

Although the existing studies have laid the groundwork 56

for executing the DNN inference tasks on IPDs, significant 57

challenges persist for the real-world deployment. First, the 58

layer-wise structural distinctions of DNNs lead to performance 59

heterogeneity across the layers, demanding an optimal CM 60

for each layer (Section III-A). However, the limited VM size 61

and intermittent power of IPDs make this particularly chal- 62

lenging due to the inevitable device shutdowns experienced 63

by some layers (the shutdown layers). Second, the real-world 64

environments present varying energy patterns, resulting in 65

different shutdown layers for the inference tasks at runtime. 66

Consequently, CMs choices considered to be optimal for one 67

environment may become the worst in another (Section III-B), 68

necessitating a runtime adaption of CMs. 69

Contributions: We present MII: multifacted framework for 70

intermittence-aware inference and scheduling. MII consists of 71

two parts: 1) offline and 2) online. The offline phase addresses 72

the first challenge which requires co-consideration of both 73

the shutdown layers and peak memory usage. Our offline 74

intermittence-aware search method identifies the optimal CM 75

for each layer under a given environment so that each task’s 76

execution time is minimized and the memory constraint is 77

met. The online phase addresses the second challenge, which 78

requires a low-overhead algorithm that quickly captures the 79

environment dynamics and makes adaptations accordingly. 80

MII’s online phase makes scheduling decisions dynamically, 81

aligns the task execution with the power cycles, and adapts 82

CMs according to the actual energy supply and usage patterns. 83

MII also introduces a proactive shutdown feature to mitigate 84

the wasted work problem in a mixed JIT and the ST system. 85

Compared to the existing work, MII achieves an optimal 86

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0009-0001-8566-6930
https://orcid.org/0000-0002-8553-732X

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 1. Same task execution over shutdown and live times. Environment
variation results in different response times.

execution of each inference task and adapts it to the runtime87

environment with its unique layer-wise CM design.88

We implemented MII on an Apollo4 Blue Plus board and89

tested it against eight DNNs trained from the six datasets.90

We evaluate MII in both the controlled and real-world91

environments and compare it with the three state-of-the-art92

methods [2], [3], [10]. MII achieves an average increase of93

21% and 39% in successful jobs than the other methods94

under stable energy patterns and dynamic energy patterns95

from the controlled environment. MII achieves 33% and 24%96

more successful jobs under indoor and outdoor real-world97

environments.98

II. BACKGROUND99

A. IPD and Intermittent Inference100

An IPD harvests energy from the ambient sources, e.g.,101

solar, wind, radio waves, and vibration. Once sufficient energy102

is accumulated, the IPD turns on and begins the program103

execution during the live time. Although energy harvesting104

can continue during this phase, the device typically consumes105

energy at a faster rate than it accumulates. When the energy is106

depleted, the IPD powers down, waiting for enough energy to107

be harvested (shutdown time) before restarting this process [6],108

[7], [8], [9]. Fig. 1 depicts an example of the task execution109

over the live and shutdown times. Several prior studies [2],110

[5], [12], [15], [16], [17] have enabled multiprogramming and111

priority-based scheduling of tasks on IPDs, with a timekeeping112

ability across power cycles using either the MCU’s deep sleep113

mode or external real-time clock (RTC). In this context, our114

focus is on the inference tasks that should run periodically115

for the practical use in areas, such as smart sensing, which116

periodically samples readings and runs inference tasks for the117

anomaly or object detection [1], [12], [18].118

An intermittent inference task refers to a task executing the119

forward propagation of a DNN under the intermittent power120

because of the on-off power cycles, modern IPDs are equipped121

with both VM and NVM. VM is typically SRAM which is122

fast but small (tens to hundreds of KB in most MCUs) and123

loses all the data when powered off. NVM, such as MRAM124

and FRAM, is larger and slower compared to VM, but it can125

maintain data when powered off. To fully utilize the speed of126

VM in DNN inference, the existing work [3], [19] loads all127

the necessary data to VM, including the input features map128

(IFM), weights (WEI), and output features map (OFM), and then129

performs the computations using the VM data. Before shutdown,130

the calculated OFM from this power cycle is checkpointed to131

NVM, and once the device reboots, IPD resumes the remaining132

inference computations by fetching the checkpointed data to133

VM.134

Fig. 2. Four types of CMs applicable to DNNs: blue is the data read back
to VM and yellow is the data checkpointed each time. (a) JIT checkpointing.
(b) ST-Layer (ST-L). (c) ST-Filter (ST-F). (d) ST-Tiled (ST-T).

DNN inferences keep a large memory footprint during the 135

execution and have a magnitude more data than needed for 136

checkpointing [1], [3], [19]. For example, a tiny seven-layer 137

DNN performing a 32×32 pixel colored image classifica- 138

tion needs to checkpoint 9216 output features to NVM for 139

the largest layer, whereas the noninference tasks, such as 140

thermometer sensing and alarm, only need to checkpoint 141

less than ten outputs [9], [12], [14], [15], [16]. Despite the 142

large memory footprint, loading all the corresponding data 143

(including WEI) to VM during the inference is necessary, as 144

it significantly reduces the NVM accesses and results in up 145

to 51% less response time and 39% longer live time for the 146

same seven-layer DNN compared to the direct read and write 147

in NVM [1], [3].1 148

B. Checkpointing Mechanisms 149

State-of-the-art CMs fall into two categories: 1) JIT and 150

2) ST. JIT [7], [10], [11] makes a checkpoint of the entire 151

system’s states to NVM when the shutdown is imminent. The 152

device’s energy level, i.e., the capacitor voltage is constantly 153

polled and compared with a predefined voltage threshold 154

(the JIT threshold) that guarantees a successful checkpoint- 155

ing [11], [12]. When the capacitor voltage falls below the 156

JIT threshold, JIT checkpoints the system states to NVM 157

so that the IPD can be safely shut down without losing 158

its progress [10]. Although JIT enjoys fast execution speed 159

by checkpointing only once per power cycle, it demands a 160

substantial amount of the memory. JIT needs to checkpoint 161

both the IFM and OFM of the current layer since the previous 162

checkpoint may not have saved the previous layer’s OFM (the 163

current layer’s IFM). A detailed memory access pattern of JIT 164

is shown in Fig. 2(a). 165

ST entails transforming the original task into the atomic 166

blocks and performing a checkpointing at the end of each 167

atomic block [1], [3], [9], [12], [13], [14]. If a shutdown occurs 168

in the middle of a block, the IPD resumes from the last check- 169

point upon reboot and re-executes the block. Since, any code 170

with write-after-read (WAR) can disrupt idempotency, methods 171

have been studied to construct the atomic blocks to guarantee 172

the memory consistency and correct execution [8], [13], [20]. 173

In the context of DNNs, an inference task can be divided into 174

1This holds for IPDs that run CPU and SRAM at higher clock rates than
MRAM or FRAM, such as our platform. For others like MSP430, loading
WEI may be considered optional.

ZHANG et al.: MII: A MULTIFACETED FRAMEWORK FOR INTERMITTENCE-AWARE INFERENCE AND SCHEDULING 3

the atomic blocks of various granularities shown in Fig. 2(b)–175

(d).2176

1) ST-L (Layer): Due to its explicit IFM and OFM struc-177

tures, each layer of a DNN can be naturally modeled178

as an atomic block, achieving ST at the layer-level179

granularity. ST-L is generally the fastest among all the180

STs, but it needs to load all the IFM, WEI, and OFM181

of that layer, resulting in the largest peak memory size182

among all the STs.183

2) ST-F (Filter): In convolution layers, a filter is convolved184

across the IFM to compute a feature vector output. By185

rewriting each filter convolution into a separate atomic186

block, ST is attained at the filter granularity [1], [2].187

ST-F is generally slower than ST-L due to its finer-grain188

block size; however, ST-F requires less memory than189

ST-L by loading partial IFM and OFM. Note that, ST-F190

still needs to load the entire WEI of the layer for its191

filter-wise computation.192

3) ST-T (Tile): Inference can be further broken down193

by reorganizing into a tiled structure [3]. ST-T can194

be achieved by converting each tile’s execution into195

an atomic block. Hence, unlike ST-F, ST-T can do196

computation with only a portion of WEI, thereby further197

reducing the peak memory with a potentially longer198

execution time.199

C. Environmental Effects200

In the real-world scenarios, the dynamics of the environment201

lead to significant changes in the energy harvesting rate,202

resulting in different response times for the same task on203

an IPD. Fig. 1 illustrates this phenomenon under the solar204

energy. Compared to the case of the sunny light conditions,205

the shutdown time under the cloudy conditions is obviously206

longer due to the lower harvesting rate. The live time is shorter207

because the device still harvests energy while it is executing208

the inference task but the harvesting rate is lower.209

The variation of the environment is therefore the key chal-210

lenge in scheduling tasks on an IPD. Existing work addresses211

this in two categories: 1) energy prediction and 2) workload212

reduction. Energy prediction methods [15], [16], [17] assume213

a priori knowledge of the future energy patterns or predict214

based on the previous patterns. However, the prediction can215

never be perfect due to the sporadic nature of the environment,216

and the use of more complex models increases overhead.217

Conversely, workload reduction [2], [14], [23], [24], [25]218

reacts to environmental changes by reducing the workload219

(e.g., skipping some layers of DNNs, called “early termina-220

tion” [2]) as the harvesting rate reduces. Its limitations include221

the degradation in output quality, and the extra efforts and222

overhead to enable early termination. More importantly, in the223

DNN inference, the entire layer OFM has to be loaded in VM224

for an early-exit classifier or model to begin the execution [2].225

This makes it unable to keep the peak memory usage smaller226

2This approach of leveraging the DNN structure is motivated by iNAS [3],
which offers benefits over the general programming language-based [21] and
compiler-assisted [22] methods by ensuring that the blocks fit into the device
memory without requiring the extensive manual effort and code changes.

than the layer OFM, potentially limiting the IPD from running 227

the multiple inference tasks. 228

D. System Model 229

We consider an IPD equipped with a fixed-size capacitor 230

and a solar panel for energy harvesting, and with an RTC for 231

timekeeping. The system has m periodic DNN inference tasks. 232

Each task τi releases a job according to its period, and each job 233

performs one inference of the task’s DNN with the ηi layers. 234

Due to the nature of intermittent computing, we do not aim to 235

execute all the jobs of tasks; instead, we focus on maximizing 236

the number of jobs that successfully complete their execution. 237

If a job cannot finish before the start of the next period, it 238

continues executing in the next period and the next period’s 239

job is skipped to prevent the overloads. The system may have 240

other noninference tasks, e.g., the sensor and peripheral tasks, 241

but they are not the main focus of this article and their CMs 242

are statically determined as done in the prior work [12], [16], 243

[17], [18], [24]. 244

The system has Vipd KB of memory in VM for the inference 245

tasks. In practice, the DNN models for MCUs dynamically 246

allocate and free memory from the heap space for each layer’s 247

execution. Thus, Vipd essentially indicates the heap area size, 248

and for each task, the layer that uses the most heap memory 249

determines the peak memory usage of that task. 250

III. MOTIVATION 251

A. Checkpointing Tradeoff on Intermittent Inference 252

To understand the effect of CMs on the execution time 253

and memory usage of a DNN inference job, we set up an 254

experiment evaluating both the JIT and all the granularities 255

of ST (ST-L, ST-F, and ST-T) with three DNNs on the 256

MNIST and CIFAR10 datasets. Each DNN name is given by 257

“dataset name - # of layers.” We chose the DNNs and datasets 258

following the prior work [1], [2], [3] as they are used in the 259

real-world applications like the wildlife monitoring. We tested 260

the DNNs on an Apollo4 Blue Plus board due to its sufficient 261

VM size to run these DNNs under all the four CMs. 262

We first applied each CM to the entire DNN, as done 263

in the prior work [1], [2], [3] under the continuous power 264

from the USB. As shown in the top of Fig. 3, JIT yields 265

shorter execution times and consumes larger memory than ST, 266

whereas ST uses a small memory size at the cost of longer 267

execution time. This tradeoff occurs due to their inherent 268

differences in checkpointing. JIT loads the entire layer’s IFM, 269

OFM, and weights to the VM during execution. This results 270

in the peak memory size matching that of the largest layer 271

within the system. On the contrary, ST only fetches a portion 272

of the layer data as described in Fig. 2 so that it can maintain 273

a small memory footprint. However, it needs to checkpoint the 274

calculated results to NVM after each block. As the granularity 275

of ST decreases from the layer level to the tile level, we 276

observe an increase in inference latency and a decrease in peak 277

memory usage. 278

We further break down the overall inference execution 279

time into individual layers and characterize the layer-wise 280

performance. Fig. 3 bottom shows the layer-wise relative 281

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 3. Top: JIT versus STs of various granularity tradeoff space. Bottom:
layer performance heterogeneity under JIT and STs.

execution time of the DNN inference under different CMs282

for all three DNNs. As depicted in the figure, each layer283

experiences a different execution time depending on the CM284

used, which is not consistent with the general expectation that285

JIT is faster than ST. For instance, when executing CONV4,286

which has a large IFM and small OFM, JIT takes longer287

execution time and yields worse performance compared to288

ST-F and ST-L (the left-most red text) because JIT has to289

checkpoint the entire IFM of CONV4. ST-F achieves the best290

performance (the top green text) due to the small OFM of291

CONV4, which reduces the checkpointing overhead of ST-F.292

However, if we choose ST-F as the CM across all the layers of293

the job, it gives the worst performance for the layer CONV0,294

which has a large OFM and small WEI (the bottom red text).295

This is because the large OFM of CONV0 results in ST-F296

having a greater checkpointing overhead than the other CMs.297

Obs. 1: For DNN inference tasks, relying on a single CM, as298

done in the prior work may result in suboptimal performance,299

thereby requiring an optimal CM choice for each layer.300

We therefore advocate a layer-wise adoption of different301

CMs. Although it may seem straightforward to choose the302

optimal CM for each layer, solving such a problem under an303

intermittent power condition is challenging. Fig. 4 compares304

the cumulative live time of each layer, i.e., the time that305

the device is live for inference and checkpointing, under the306

intermittent power with a 2 mF capacitor and 12 400 lux307

lighting condition. As depicted, the optimal CM choice under308

the continuous power (“no-shutdown” in the legend) becomes309

often suboptimal under the intermittent power which causes310

the device to shut down at least once (“shutdown”). Also, the311

optimal CM chosen under the continuous power can make a312

layer trapped in the endless loop of re-execution. For instance,313

ST-L is the optimal CM for the CONV4 layer of CIFAR10-7314

under the continuous power. However, ST-L makes it unable315

to checkpoint before shutdown under the intermittent power316

resulting in infinite execution time.317

Obs. 2: Due to shutdown, the optimal CM choice for each318

layer of an interference task under the intermittent power may319

diverge from the one made under the continuous power.320

Fig. 4. Total live time of layers in the presence of shutdown.

Fig. 5. Top: live time per power cycle when running CIFAR10-7 in various
light conditions (CIFAR10-12 and MNIST-7 have the same pattern). Bottom:
the shutdown layers of all three DNNs in two light conditions.

B. Intermittent Inference Under Environment Variations 321

To find out how the change in energy harvesting patterns 322

affects the inference performance, we first focus on the live 323

time of an IPD, which directly affects the response time of an 324

inference task as discussed in Section II-C. We use the same 325

three DNNs and run them each separately in various light 326

conditions. The top part of Fig. 5 shows the average live time 327

per power cycle when running the CIFAR10-7 model under 328

different CMs and light conditions. From the results, we find 329

that live time varies significantly with the light conditions, 330

and that under the same light condition, the live time is only 331

marginally affected by CMs and tasks. For example, under 332

38 325 lux lighting, the live time in each power cycle for all 333

three DNNs is 1236ms. On the other hand, if we change the 334

lighting to 29625 Lux, the live time per power cycle changes 335

to 743 ms. Some fluctuations may be observed depending on 336

the CMs or tasks, but they are within the 6% and 7% range 337

of the live time. 338

To further explore the effect of CMs and environment 339

conditions on the intermittent inference, we characterize the 340

shutdown layers, which are the subset of layers of an inference 341

job that experience the shutdowns during their execution. The 342

tables at the bottom of Fig. 5 depict the shutdown layers of 343

each DNN job in two representative light conditions. The 344

shutdown layers of each DNN vary significantly with the CM 345

used and the given light condition. Recall our discussion in 346

Section III-A and with Fig. 4. The optimal CM when the 347

layer does not shut down becomes often suboptimal or even 348

the worst if a shutdown occurs for that layer. Vice versa, if 349

we choose the optimal CM assuming that the layer always 350

experiences a shutdown, such a CM will likely perform worse 351

when there is no shutdown. 352

From the above two experiments on the live time and 353

shutdown layers, the following observation can be made. 354

Obs. 3: While both live time and shutdown layers play 355

significant roles in determining the optimal CMs, they can vary 356

ZHANG et al.: MII: A MULTIFACETED FRAMEWORK FOR INTERMITTENCE-AWARE INFERENCE AND SCHEDULING 5

Fig. 6. Overview of the proposed MII framework.

drastically with environmental conditions. Consequently, there357

is a strong need for runtime adaptation with low overhead.358

IV. MII DESIGN OVERVIEW359

Fig. 6 presents the overview of our MII framework,360

designed to address the two key challenges elaborated with361

our observations in Section III. We illustrate each challenge362

in a separate paragraph and propose the MII’s solutions.363

Motivated by Obs. 1 and 2, MII introduces an offline phase364

to tackle the challenge of finding a layer-wise optimal CM365

solution under a given environment, while considering the366

possible device shutdowns and device memory constraints. We367

opt for an offline solution because the profiling of the DNN368

execution time and memory footprint on a perlayer basis is369

feasible only in an offline setting. In 1 , the offline phase370

models the energy supply pattern of a given environment371

condition e into the cumulative shutdown time Se(n) and372

cumulative live time Le(n) functions, where n is the number373

of power cycles. In 2 , the offline intermittence-aware CM374

search finds the optimal CMs for the layers of each task to375

minimize their execution time while adhering to the device376

memory constraint.377

Stemming from Obs. 3, actual energy supply patterns can378

vary drastically at runtime, which requires a timely adaption379

of CMs to cope with changing environmental conditions.380

Therefore, MII presents an online phase to tackle this chal-381

lenge. The MII scheduler in 3 takes into account the CMs382

found at the offline phase and updates the offline Se(n) and383

Le(n) to their online versions, Se′(n) and Le′(n) based on the384

online shutdown and live times, and ŝ and l̂ collected using385

an on-board RTC. The scheduler harmonizes task execution386

with the power cycles, makes scheduling decisions based on387

the online energy pattern, and employs the proactive shutdown388

to mitigate the wasted work problem in a mixed JIT and the389

ST system. Finally, we introduce the online adaption method390

in 4 , which adapts the CMs according to the latest Se′(n)391

and Le′(n) using a linear heuristic search for each scheduled392

inference task.393

V. OFFLINE PHASE394

A. Modeling Shutdown and Live Time Patterns395

Before conducting the offline CM search, we model the396

energy supply pattern of a given environmental condition e397

based on the profiling and formulate it into the shutdown and398

live time functions, Se(n) and Le(n).399

Fig. 7. Cumulative shutdown time Se(4) and live time Le(4) of an intermittent
inference task τ1.

Recall that the execution of a job of an inference task τi 400

can take multiple power cycles as illustrated in Fig. 7. We 401

denote the shutdown time of τi during the jth power cycle 402

in an environment condition e as ŝe
i,j, and the live time as 403

l̂ei,j. During each ŝe
i,j, the IPD remains off, only harvesting 404

energy. Conversely, during each l̂ei,j, the IPD powers on and 405

starts consuming the capacitor’s energy to execute τi while still 406

harvesting energy. Given the IPD’s fixed capacitor size, we 407

make the assumption A1 about the shutdown time as below. 408

A1: The duration of shutdown in the jth power cycle is solely 409

affected by the environment condition e, not by any task 410

on the IPD. Hence, for ease of presentation, we use ŝe
j 411

to denote the shutdown time for the jth power cycle. 412

This is a valid assumption because at the beginning of the jth 413

power cycle, the voltage level of the IPD’s capacitor is at the 414

power-off voltage regardless of the type of tasks executed in 415

the previous power cycle, and the IPD turns on only when it 416

reaches the power-on voltage, the timing of which is affected 417

by the energy harvesting rate. Hence, with A1 and the profiled 418

ŝe
j data, we can represent the shutdown time as a function of 419

the number of power cycles. 420

Definition 1 (Cumulative Shutdown Time): Se(n) gives the 421

cumulative maximum shutdown time over the n consecutive 422

power cycles in an environment condition e. Given N � n 423

shutdown time profiles, Se(n) can be obtained by 424

Se(n) = max
1≤k≤N−n+1

n+k−1∑

j=k

ŝe
j . (1) 425

Fig. 8 top plot gives an example of Se(n) in various real- 426

world environment conditions (the x-axis indicates n). Static 427

and dynamic light are collected under a controllable artificial 428

light source, whereas sunny and cloudy are collected under the 429

natural sunlight under two different weather conditions. For 430

each condition e in this figure, Se(n) determines a conservative 431

estimate of the total time required to charge the IPD for 432

the execution across the n power cycles. Note that, Se(n) is 433

nonlinear, e.g., Se(n+ 1) ≤ Se(n)+ Se(1). 434

Unlike the shutdown time, the live time of an inference 435

task, l̂ei,j, depends not only on the energy harvesting rate of 436

the environment e but also on the energy consumption rate of 437

the system. As shown in Section III-B with Fig. 5, the energy 438

harvesting rate is the dominant factor in the live time per power 439

cycle, while the variation due to the type of tasks or CMs 440

is relatively small (less than 7% of the live time per power 441

cycle). We therefore make the following assumption A2. 442

A2: While turned on, the energy consumption rate of the IPD 443

is the same for all the tasks. 444

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 8. Top: cumulative maximum shutdown time Se(n) under different
environment condition e. Bottom: cumulative minimum live time Le(n) for
CIFAR10-12 inference task τC12.

Strictly speaking, this assumption is not necessarily true445

because tasks may have different memory and I/O access446

patterns. However, since our work focuses on DNN inference447

tasks that do not involve direct I/O access and the energy448

harvesting rate has a much higher impact on the device’s live449

time per power cycle, we find A2 works well in practice. With450

A2, we use l̂ej to denote the live time for the j-th power cycle451

and derive a live time function Le(n), similar to Se(n).452

Definition 2 (Cumulative Live Time): Le(n) gives the cumu-453

lative minimum live time over the n consecutive power cycles454

in an environment condition e. Given N � n live time profiles,455

Le(n) can be obtained by456

Le(n) = min
1≤k≤N−n+1

n+k−1∑

j=k

l̂ej . (2)457

Unlike Se(n), Le(n) captures the minimum cumulative time.458

This allows us to have a conservative estimate of the time459

available for the task execution over the n power cycles. We460

can use Le(n) to find out how many power cycles are needed to461

execute a job of a task, assuming no other tasks are executing462

in the system. For instance, if a job has the execution time of463

t units, finding n that satisfies Le(n − 1) < t ≤ Le(n) tells us464

the number of power cycles involved. Hence, we can derive465

an inverse function, Le(t), which gives the number of power466

cycles for the t units of execution.467

Fig. 8 bottom illustrates Le(n) during one job execution of468

the CIFAR10-12 inference task under the same four real-world469

environments. Obviously, it takes the least number of power470

cycles in the sunny condition. Both Se(n) and Le(n) are stored471

in the device’s NVM so that the scheduler can access them472

for the online adaptation.473

The execution time and memory usage of each layer of a474

task τi are affected by the CM choice and whether the layer475

experiences shutdown during the execution (Section III-B).476

Therefore, for each layer k of τi, we record two lists477

of execution times with JIT, ST-L, ST-F, and ST-T:478

(aJIT
i,k , aST-L

i,k , aST-F
i,k , aST-T

i,k) represent times without shutdown479

(“alive”) and (dJIT
i,k , dST-L

i,k , dST-F
i,k , dST-T

i,k) denote times with shut-480

down (“dead”). We also record the maximum memory usage481

of the kth layer of τi under four CMs: 1) (vJIT
i,k ; 2) vST-L

i,k ; 3)482

vST-F
i,k ; and 4) vST-T

i,k). For ease of reference, we introduce the483

functions ai(x, k) and di(x, k) to obtain the execution times of484

the τi’s layer k under a given CM x when the layer is alive485

Algorithm 1: Minimize Task Execution Time
1 ετi [0][1 · · ·Vipd]← 0; cmτi [0][1...Vipd]← ∅;
2 for V ∈ {1 · · ·Vipd} do
3 for k ∈ {1 · · · ηi} do
4 minε ←∞; mincm ← ∅;
5 for x ∈ {JIT, ST-L, ST-F, ST-T} do
6 if vi(x, k) > V then
7 continue; /* Ignore CM violating mem limit */;
8 end
9 val← ετi [k − 1][V]+ ai(x, k) /* No shutdown */;

10 if Le(val)
= Le(ετi [k − 1][V]) then
11 val← ετi [k − 1][V]+ di(x, k); /* Shutdown */;
12 end
13 if minε > val then
14 minε ← val; mincm ← x;
15 end
16 end
17 ετi [k][V]← minε ;
18 cmτi [k][V]← cmτi [k − 1][V] ∪ mincm;
19 end
20 end

or dead respectively. We also introduce a function vi(x, k) for 486

the memory usage. 487

B. Offline Intermittence-Aware CM Search 488

Our goal is to determine layer-wise CMs to minimize the 489

solo execution time of a task τi across the power cycles, i.e., 490

when τi runs without the temporal interference from the other 491

tasks, while ensuring that the collective peak memory usage 492

of all the tasks stays within the IPD’s memory constraint, 493

Vipd. We solve this problem through a two-level dynamic 494

programming approach. 495

First, we minimize each task τi’s execution time under a 496

memory constraint V . Let us define ετi [k][V] as follows: 497

ετi [k][V] = τi
s collective execution time from 498

layers 1 to k, while not exceeding the 499

memory constraint V . 500

cmτi [k][V] = CMs achieving ετi [k][V]. (3) 501

As each layer uses nonzero memory, ετi[k][0] = ∞ and 502

cmτi [k][0] = ∅ for all k ≤ ηi. The execution time of the 503

layers 1 to k can be found by considering the occurrence of 504

shutdowns. The peak memory usage of a task τi is determined 505

by the layer that uses the most memory among all the 506

layers. Hence, we can compute ετi [k][V] and cmτi [k][V] using 507

Algorithm 1. 508

Algorithm 1 iterates over the memory size V from 1 to 509

Vipd, and for each V , iterates over the layers from 1 to ηi. 510

For each layer k, it considers four CMs (line 5). Recall that 511

the peak memory usage of τi is determined by the layer with 512

the maximum usage, not by the summation of all the layers. 513

Hence, if the use of a CM x for the kth layer violates the 514

memory constraint V , that CM x should be ignored (line 6). 515

If the kth layer has no shutdown, the cumulative execution 516

time up to the layer k is calculated by summing ετi [k− 1][V] 517

and ai(x, k) (line 9). If a shutdown occurs during the layer k, 518

the total number of power cycles up to the layer k − 1 will 519

be different from the number up to the layer k (obtainable 520

using the pseudo-inverse function Le(t)), and di(x, k) needs 521

ZHANG et al.: MII: A MULTIFACETED FRAMEWORK FOR INTERMITTENCE-AWARE INFERENCE AND SCHEDULING 7

Algorithm 2: MII Online Scheduler

1 Input: Se′ (n), Le′ (n), l̂ and tprev in NVM;
2 tstart ← RTC_now(); ŝ← tstart − tprev;
3 /* Power Cycle Harmonizing (PCH) */;
4 Qtasks ← Tasks arrived by tstart but not finished their jobs;
5 for ∀τi ∈ Qtasks do
6 Assign_Priority(τi); /* LST */;
7 end
8 /* CMs Adaptation */;

9 if Se′ (1) < ŝ ∨ Le′ (1) > l̂ then
10 Update Se′ (n) and Le′ (n); /* Stored in NVM */;
11 for ∀τi ∈ Qtasks do
12 cmτi ← Online_Adaptation(τi);
13 end
14 end
15 /* Task Scheduling*/;
16 while Qtasks
= ∅ do
17 τi ← Pick_Highest_Priority(Qtasks);
18 if cmτi
= JIT then
19 Check_Proactive_Shutdown();
20 end
21 Run(τi);
22 if τi completed its job then
23 Qtasks ← Qtasks \ τi;
24 end
25 end
26 /* Qtasks = ∅ or JIT threshold or Proactive Shutdown triggered */;
27 Save the states of JIT tasks to NVM;
28 tprev ← RTC_now(); /* Store in NVM */;
29 l̂← tprev − tstart; IPD Shutdown;

to be used instead (line 11). Once the algorithm finishes,522

ετi [ηi][Vipd] gives the minimum execution time of τi under the523

memory constraint.524

The next step is to minimize the collective sum of solo525

execution times of all the m tasks under the device’s memory526

constraint. The memory usage of the system � is determined527

by adding up the peak memory usage of each task τi ∈ �. Let528

us define E�[i][V] as the minimum sum of the solo execution529

times of the i tasks (from τ1 to τi) in � with the memory530

constraint of V , and CM�[i][V] as the corresponding CM531

information. This can be solved by dynamic programming with532

the following recurrence relation:533

E�[i][V] = min
1≤j≤V−1

E�[i− 1][j]+ ετi [ηi][V − j] (4)534

and with j found for E�[i][V]535

CM�[i][V] = CM�[i− 1][j] ∪ {cmτi [ηi][V − j]}. (5)536

The initial conditions are537

E�[0][1 · · ·Vipd] = 0, E�[1][1 · · ·Vipd] = ετ1 [η1][1 · · ·Vipd], and538

CM�[0][1 · · ·Vipd] = ∅, CM�[1][1 · · ·Vipd] = cmτ1 [η1][1 · · ·Vipd].539

For all the m tasks in �, the solution is given by E�[m][Vipd]540

and CM�[m][Vipd]. We use CM�[m][Vipd] as the initial CM541

settings of the tasks when the system is deployed. Also, we542

store each task’s peak memory usage corresponding to the543

solution as Mτi in the device’s NVM since it will be used as544

guidance by the online adaptation.545

C. MII Online Scheduler546

The main goal of our scheduler is to make task scheduling547

decisions based on the environment condition at runtime e′.548

Fig. 9. MII online scheduler with three tasks. Each task τi is characterized
by (execution time and period). PCH delays the execution of τ2’s second job.
Proactive shutdown is shown by hatched gray boxes.

The pseudocode of the scheduler is given in Algorithm 2, 549

which begins upon each reboot. Upon start, the scheduler uses 550

the onboard RTC to compute the online shutdown time of the 551

current power cycle, denoted as ŝ, by taking the difference 552

between the timestamp recorded at the previous shutdown, 553

tprev, and the current timestamp at the start, tstart (line 2). It 554

also estimates the online live time l̂, calculated at the end of 555

the final power cycle (line 29). These ŝ and l̂ are used to 556

determine the condition to trigger the online CM adaptation, 557

presented in the next subsection. The other components of the 558

scheduler are explained below. 559

Power Cycle Harmonizing (PCH): An arbitrary arrival of 560

periodic tasks is one of the reasons causing runtime deviations 561

from the power cycle used by our offline search. To address 562

this issue, our scheduler introduces PCH, which harmonizes 563

the task execution with the power cycle. PCH forces the 564

scheduler to take into account only the tasks that have either 565

arrived by tstart or those that have not finished their job 566

execution within their periods (line 4, Qtasks). Therefore, the 567

execution of any task that arrives during the live time of 568

the current power cycle is deferred to the next power cycle, 569

allowing the CM choices of the tasks not to be disrupted by 570

newly arriving tasks. Fig. 9 gives an example of the scheduling 571

behavior with PCH. For the nth power cycle, the start of 572

execution for all the three tasks is harmonized to the end of 573

ŝn, ensuring that the n+ 1 power cycle begins when the IPD 574

turns off. 575

Task Scheduling: For the tasks found by PCH, Qtasks, 576

our scheduler uses a variant of the least slack time (LST) 577

scheduling policy to dynamically change the task priorities, 578

with each task’s period as its deadline (lines 5 and 6). Our 579

LST variant checks slack time at the boundary of each layer 580

execution to mitigate the overhead of the standard LST. The 581

reason behind the use of LST is the following. Since, DNN 582

inference jobs are relatively long, their response times can be 583

easily greater than their periods and the unscheduled jobs are 584

skipped from the execution. If we use the other policies like 585

EDF which is a job-level fixed-priority policy, a long-running 586

job may dominate the live time over the multiple power cycles 587

as its priority does not change until completion, leading to 588

starvation to the other jobs and resulting in a disproportionate 589

number of successful jobs per task compared to their periods. 590

In other words, the use of LST can help achieve fairness in 591

skipped jobs across tasks, as we will show in our evaluation. 592

After updating CMs with the online adaption (lines 9–12), 593

the scheduler proceeds to execute the tasks in Qtasks in the 594

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

priority order and remove it from Qtasks upon successful job595

completion (lines 16–25).596

Proactive Shutdown: With ST, an IPD may shut down597

during the execution of an atomic block and re-execute it in598

the next power cycle. The re-executed portion is called wasted599

work [1], [6], [12], [13]. Although existing work mitigates this600

by voluntarily shutting down the IPD after a fixed number of601

calculations [3], it no longer works in a multitask system with602

a mixture of JIT and ST because the JIT threshold can be603

triggered at any time of atomic block execution. To address this604

problem, we propose a proactive shutdown method. Proactive605

shutdown can be triggered by the scheduler before running any606

task τi that uses ST as its CM (line 19). The scheduler proceeds607

with τi’s execution only if the stored energy is enough to608

execute at least a single block of τi. Otherwise, it makes the609

device shut down (line 26). This can also be triggered when610

no other task to execute (Qtasks = ∅) or the JIT threshold611

is met. The overhead of the proactive shutdown is negligible612

since it only requires an ADC reading at the end of each ST’s613

block. Furthermore, for any JIT-enabled IPDs, ADC reading614

is already a prerequisite [7], [10], [11], [26].615

One might have a concern that the proactive shutdown616

turns the IPD off earlier and shortens the shutdown time ŝ617

(Fig. 9 hatched gray boxes), which might affect the condition618

to trigger the online adaption. However, since the online CM619

adaption is triggered only when ŝ reaches a larger value620

than expected (explained in the next subsection), unnecessary621

online adaptations are effectively prevented.622

D. Online CM Adaption623

To enable online CM adaptions, MII maintains Se′(n) in624

NVM, which is an online version of the cumulative shutdown625

time Se(n) and initialized as Se′(n) = Se(n). Also, Le′(n), an626

online version of the live time Le(n), is also maintained in627

NVM and initialized as Le′(n) = Le(n). Both Se′(n) and Le′(n)628

are given as input to the scheduler since they are essential629

to quantify the deviation between the online environment630

condition e′ and the profiled environment condition e.631

Recall Definitions (1) and (2). If the IPD follows Se′(n) and632

Le′(n), both ŝ ≤ Se′(1) and l̂ ≥ Le′(1) hold for one power cycle633

(n = 1), indicating no shift of environment. Otherwise, either634

ŝ > Se′(n = 1) or l̂ < Le′(1) (line 9), meaning a potential635

shift of environment; hence, the scheduler first updates Se′(n)636

and Le′(n) with ŝ and l̂ (line 10), and then triggers the online637

adaptation (line 12). Since the direct use of the offline search638

algorithm (Section V-B) for the online adaption introduces a639

huge overhead, we take a heuristic approach presented below640

to find a near-optimal solution by using the offline solution’s641

pertask memory usage, Mτi , as a constraint for τi.642

The online adaptation is done individually for each task643

τi ∈ Qtasks to update task’s CM list cmτi [0 · · · ηi]. It initializes644

cmτi [1 · · · ηi] as follows: for each layer k of τi, cmτi [k] =645

arg minx ai(x, k), where x ∈ {JIT, ST-L, ST-F, ST-T} ∧646

vi(x, k) ≤ Mτi . This discards any CM that causes the memory647

usage to exceed Mτi , and chooses the CM giving the mini-648

mum execution time without considering the shutdown during649

the execution. It also uses a vector variable ετi[1 · · · ηi] to650

keep track of each layer’s execution time corresponding to651

Fig. 10. Five controlled energy patterns represented as the lighting in a unit
of illumination (lux). E1 and E2 are static lighting, whereas E3, E4, and E5
are dynamic lighting.

cmτi [1 · · · ηi]. Then, it takes the following steps to take into 652

account the effect of shutdown for each τi. 653

1) Start with the first power cycle n = 1. 654

2) Find a layer K that experiences a shutdown in the power 655

cycle p. Such a layer K satisfies:
∑K−1

k=1 ετi [k] ≤ Le′(n) 656

and
∑K

k=1 ετi [k] > Le′(n). 657

3) If K is found, this means the layer K is a shutdown 658

layer. Hence, update ετi [K] = minx di(x, K) and cmτi = 659

arg minx di(x, K). 660

4) Repeat steps 2 and 3 until K reaches ηi. 661

This method takes a linear search approach, much faster 662

than the offline algorithm. However, its optimality may be 663

compromised due to its reliance on the Mτi determined offline. 664

Nonetheless, by incorporating Le′(n) which is continuously 665

updated for the current environment e′, this approach offers 666

substantial benefits as we will demonstrate in the evaluation. 667

VI. MII IMPLEMENTATION 668

Energy Source: For the continuous power source, we used 669

an X-NUCLEO-LPM01A. For the intermittent energy source, 670

we harvested energy using an LTC3588 energy harvester and 671

solar cells of 1.5 W peak power. We regulated the input voltage 672

of IPD to 1.8 V and stored the harvested energy in a set of 673

capacitors with the size of 1 mF. During the operations, the 674

capacitor’s voltage range is 2.87 to 4.03 V. 675

Evaluation Hardware: We chose the Ambiq Apollo4 Blue 676

Plus evaluation board that has an ARM Cortex-M4 MCU, 2 677

MB MRAM as NVM, an on-board RTC unit for timekeeping,3 678

and an on-board ADC for the capacitor voltage monitoring. 679

DNN Setup: We selected eight DNN models and categorized 680

them into three test cases (TCs) based on their dominant 681

layers. Details of these DNNs are found in Table I. 682

Our current implementation did not use the hardware accel- 683

eration for the DNN execution. However, since MII performs 684

all the computations in the VM for both the JIT and ST, it can 685

be safely adapted to the hardware acceleration features that 686

usually require direct access to the data in the VM, e.g., TI’s 687

low energy accelerator (LEA). We leave such extensions as 688

part of the future work. 689

VII. CONTROLLED ENVIRONMENT EVALUATION 690

A. Evaluation Setup 691

Controlled Energy Patterns: We conducted a three months 692

study of the lighting condition changes inside a greenhouse 693

environment and identified six distinct energy patterns 694

(E0–E5) that can capture more than 97% of the lighting 695

3The RTC circuit ran with its own dedicated capacitor and it did not
deplete during the experiment. For more reliable timekeeping, techniques like
“persistent clocks” [27] can be considered.

ZHANG et al.: MII: A MULTIFACETED FRAMEWORK FOR INTERMITTENCE-AWARE INFERENCE AND SCHEDULING 9

TABLE I
DNNS CONFIGURATION

Fig. 11. System runtime breakdown when running four DNNs of TC1 under
the continuous (the left) and intermittent (the right) power.

conditions during daytime. Apart from E0, the continuous696

power, E1 to E5 are all the intermittent power, and their energy697

patterns in one hour are shown in Fig. 10.698

Baseline Configuration: We compare MII against the three699

established and state-of-the-art methods: QuickRecall [10]700

which is a JIT checkpointing-only system, iNAS [3] which701

uses ST-T with a tile size determined offline, and Zygarde [2]702

which uses ST-F and an early-exit model comprising manda-703

tory and optional layers. For a fair comparison, we adjusted704

several settings of each method: in QuickRecall, we deter-705

mined the JIT threshold to ensure the successful checkpointing706

of all the JIT tasks in the system. In Zygarde, we set the707

first layer of each model as a mandatory layer since at least708

one layer OFM is needed for the early exit. Also, we marked709

an inference result from a mandatory job as successful if it710

matched the result of a complete job. It is worth noting that711

the evaluation of Zygarde subsumes SONIC [1], which also712

focuses on the intermittent DNN inference, because Zygarde713

extends SONIC’s APIs and has shown to outperform SONIC.714

In iNAS, we derived appropriate tile parameters by balancing715

the peak memory usage and execution time. Although a716

larger tile size can shorten execution time by improving the717

data reuse, it increases peak memory size, leading to out-of-718

memory if multiple tasks are executed concurrently.719

Test Cases and Job Generation: The evaluation encom-720

passes eight DNNs in three TCs given in Table I. To evaluate721

the performance of individual and combined TCs that represent722

different task sizes, we consider four scenarios: (A) All TC1:723

all the four DNNs in TC1; (B) TC1+TC2: two DNNs (C7724

and M7) selected from TC1 and one model (FC4) from TC2;725

(C) TC2+TC3: one model (autoencoder) from TC2 and one726

model (DSCNN) from TC3; and (D) TC1+TC3: two DNNs727

(C7 and C12) from TC1 and one model (MBV1) from TC3.728

Each model is executed by a distinct task on FreeRTOS. We729

schedule the tasks with specific periods, as will be shown by730

the number of generated jobs in the later sections. We scale731

task periods w.r.t. the energy pattern because less lighting732

causes the sensor to sample fewer readings.733

Fig. 12. Finished jobs by running each TC separately in E1–E5. MII only
uses offline phase to search CMs under E1.

System Overhead: To evaluate the overhead of MII’s run- 734

time scheduler and other noninference tasks, we profiled the 735

execution time of each software component when running 736

all the TC1 models on one downsampled image. The IPD 737

first took a picture from the camera, stored a downsampled 738

version in NVM, and then processed the image by running the 739

inference of each DNN sequentially. Fig. 11 shows the runtime 740

breakdown of the described workload under both continuous 741

power provided and an intermittent power source following E1 742

energy pattern. The overhead of the MII scheduler is composed 743

of only 1.1% under the continuous power and 3.2% under the 744

intermittent power of the entire system runtime. 745

B. Offline Effectiveness 746

CM Search Algorithm: To evaluate the effectiveness of 747

our offline search across various energy patterns, we use 748

the offline searched optimal CMs found from the energy 749

pattern E1 and apply these CMs to E2–E5. During a one- 750

hour period, we measure for each inference task how many 751

jobs execute successfully (denoted as finished jobs). For a 752

level comparison, Zygarde’s finished jobs are captured by 753

executing the complete DNN inference without relying on the 754

early-exit feature. This feature will be assessed in the online 755

evaluation in Section VII-C. The results in Fig. 12 showcase 756

that, for E1, MII outperforms QuickRecall, Zygarde, and iNAS 757

by completing 41%, 18%, and 40% more jobs, respectively. 758

This is somewhat expected since the CMs are searched 759

using E1. Although QuickRecall finished 7% more jobs on 760

average than MII for smaller DNNs from TC1 in E2–E4, it 761

suffers from the out-of-memory when running large DNNs and 762

finishes the least TC2-3 inference jobs across all the baselines. 763

Interestingly, even when the IPD runs inference tasks using 764

the E1-optimized CMs for E2–E5, MII still achieves 10% and 765

28% more jobs than Zygarde and iNAS, respectively. These 766

results show that the CMs searched by MII in a single energy 767

pattern demonstrate efficacy across all the examined energy 768

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 13. Left: successful jobs of four TCs combinations with six energy patterns. Task periods are scaled with the energy pattern and are indicated by the
numbers above green dashed lines. Right: response time of TCs under one stable energy pattern. (a) TC1 all DNNs (C7, C12, M7, and H5) successful jobs
in the continuous (E0) and intermittent power (E1–E5). (b) TC1 (C7 and M7) and TC2 (FC4) successful jobs in the continuous (E0) and intermittent power
(E1–E5). (c) TC2 (AutoEncoder) and TC3 (DSCNN) successful jobs in the continuous (E0) and intermittent power (E1–E5). (d) TC1 (C7 and C12) and TC3
(MBV1) successful jobs in the continuous (E0) and intermittent power (E1–E5).

patterns compared to the other methods. This underscores the769

robust generality of our search algorithm.770

Peak Memory: Fig. 14 shows the peak memory usage when771

applying the CMs obtained from the MII’s offline methods772

under the E1 energy pattern. MII can effectively reduce773

the peak memory compared to QuickRecall and Zygarde.774

QuickRecall consistently accesses the layer’s IFM, OFM, and775

weights, resulting in the highest peak memory. Although776

Zygarde often needs to load the entire layer’s OFM for an early777

exit, its memory usage is still smaller than QuickRecall. iNAS778

has the smallest because it only loads partial IFM, weights, and779

OFM in each power cycle; however, it suffers from increased780

execution time. MII’s reduction in peak memory, compared781

to QuickRecall and Zygarde, is due to that MII can choose a782

non-JIT CM or finer-grained ST for a large layer by imposing783

the memory constraint.784

C. Online Scheduling and Adaption Effectiveness785

Successful Jobs: The left part of Fig. 13 illustrates the786

number of successful jobs in four combinations of TC1–TC4,787

with the total number of generated jobs indicated by green788

dashed lines. If an optimal solution exists for each online789

energy pattern (E1–E5), its number of successful jobs is upper-790

bounded by the green dashed lines. Hence, the gap in each791

subplot between the green line and each bar represents the792

deviation between each baseline and the optimal solution.793

Although it does not reach the optimal performance MII still794

Fig. 14. Peak memory usage. MII uses E1 to search CMs.

achieves on average a 21% increase of successful jobs in 795

stable energy conditions (E1 and E2) and on average 39% 796

successful jobs increase under dynamic energy conditions 797

(E3–E5) compared to the other methods. When comparing 798

these results with the offline evaluation, MII’s online phase 799

significantly improves the job success rates over the other three 800

methods. Specifically, for (A) TC1 all in E1, there is a 56% 801

increase in successful jobs, thanks to the online scheduler and 802

adaptation of MII. 803

In addition to the MII’s significant improvement in total 804

successful jobs, the following two observations can be made. 805

1) The LST variant of MII mitigates starvation of short- 806

period jobs and helps achieve fairness across tasks. For 807

example, in Fig. 13(b) E5, when using MII, the short- 808

period task C7 can complete up to 94% of its generated 809

jobs, and the long-period tasks M7 and FC4 complete 810

99% and 84% of their generated jobs. On the other hand, 811

when using Zygarde, which uses an EDF variant, one 812

of the long-period tasks M7 completes 95% while the 813

other two tasks complete only 73% and 58% of their 814

jobs, showing a much higher discrepancy in successful 815

jobs per task than MII. 816

ZHANG et al.: MII: A MULTIFACETED FRAMEWORK FOR INTERMITTENCE-AWARE INFERENCE AND SCHEDULING 11

Fig. 15. Observed wasted work under execution with E1.

Fig. 16. Real-world solar energy pattern.

2) If we ignore the correctness of inference results of817

jobs, Zygarde has executed more jobs than MII in most818

cases due to its early-exit feature, which executes only819

a mandatory portion of the job. However, if a task uses820

a large DNN model, this feature makes Zygarde suffer821

from the low accuracy, resulting in a lower number of822

successful jobs. Therefore, in Fig. 13(d)-E5, although823

Zygarde achieves 2% more successful jobs than MII for824

a small DNN task C7, it achieves 30% and 10% less825

successful jobs than MII for the large DNNs tasks C12826

and MBV1, respectively.827

Response Time: The right side of Fig. 13 showcases the828

response time of DNN inference tasks under one stable energy829

pattern (E1 or E2). Although the response time is not the830

major optimization objective of MII (successful job is), MII831

tends to yield more preferable results overall, with a shorter832

average response time and a smaller variation. QuickRecall833

suffers from the out-of-memory issue when executing a large834

model, such as AutoEncoder and MBV1. Hence, although835

it gives a shorter response time for small models (A-E1 in836

the figure), it completes 35%, 40%, and 22% less successful837

jobs on average compared to MII for TC1+TC2, TC2+TC3,838

and TC1+TC3, respectively. Zygarde often gives a shorter839

response time due to its early-exit feature, but it comes at the840

cost of low accuracy.841

Wasted Work: We characterize the amount of wasted work842

by profiling the number of output features discarded during the843

shutdown. Fig. 15 depicts the wasted work of each DNN when844

running the four combinations of TCs under the E1 energy845

pattern. Both Zygarde and iNAS show some wasted work due846

to the issue discussed in Section V-C. For QuickRecall, since847

it uses JIT, it obviously has zero wasted work. However, to848

ensure that JIT successfully checkpoints all the tasks’ largest849

layers, a higher JIT threshold is required for QuickRecall850

compared to MII, i.e., 3.7 V versus 3.3 V. MII has zero wasted851

work while keeping a smaller JIT threshold because of our852

proactive shutdown technique (Section V-C) as well as the853

ability to avoid using JIT for the large layers.854

VIII. REAL WORLD EVALUATION855

Experiment Setting: The IPD was deployed in two settings:856

1) lab window side (Lab) and 2) greenhouse (GH). We857

evaluated the system under the sunny and cloudy conditions,858

TABLE II
SUCCESSFUL JOBS OF MII COMPARED TO ZYGARDE

both occurring within a single day. The lighting changes for 859

each setting are depicted in Fig. 16. In Lab, the IPD was 860

positioned under the direct sunlight with minimal interference. 861

However, in GH, IPD faced consistent interference from the 862

leaf shades and plant shadows. To demonstrate effectiveness 863

in common smart sensing applications, all the TC1 DNNs 864

listed in Table I were selected for the experiment and ran 865

continuously from 6 AM to 6 PM on a day (Fig. 16). 866

A comparison setup, running the same set of DNNs with 867

Zygarde [2], was placed adjacent to the experimental setup. 868

Successful Jobs: Table II presents the percentage difference 869

in the number of successful jobs executed by MII compared to 870

Zygarde. In the GH Clody setting, MII outperformed Zygarde 871

for all the three DNNs, executing 61%, 9%, and 6% more 872

jobs than Zygarde. However, for H5 in the same setting, MII 873

completed 7% fewer jobs. It was mainly due to that, although 874

Zygarde executed only mandatory layers under the cloudy 875

condition, it still managed to produce around 95% of the 876

inference results that matched the results of H5’s complete 877

inference. However, this favorable outcome for Zygarde is 878

largely confined to the small models with inherently low 879

accuracy, which are not substantially affected by the accuracy 880

degradation of early exits. Overall, MII outperformed Zygarde 881

by an average of 33% more successful jobs in the Lab and 882

24% in the GH. 883

IX. RELATED WORK 884

A. Intermittent Computing 885

In the context of the IPD software systems, the prior work 886

has focused on issues, such as memory inconsistency [5], [6], 887

[8], [10], [23], task idempotency [7], [8], [11], [13], [20], and 888

sensing/computation task coordination [9], [12], [14], [25]. 889

There are numerous studies on the IPD hardware improve- 890

ment [26], [28] and energy harvesting circuits [21], [29]. 891

Emergent research about running machine learning work- 892

loads on the IPDs is still in its very early stage. Existing work 893

focuses on learning [19] as well as the inference tasks [1], 894

[2], [3], [4], [13], [20], [25] on the IPDs. However, none of 895

these has studied the tradeoff between the JIT [7], [10], [11] 896

and ST [1], [3], [8], [9], [12], [13], [14] CMs as well as 897

the different granularity of the atomic blocks in ST for the 898

DNN inference tasks. Although there have been some attempts 899

to co-use the JIT and ST in the same system [12], [25], 900

they use ST exclusively for the peripheral access and JIT for 901

the computational tasks, meaning that when applied to the 902

inference tasks, all will be governed by JIT. 903

Recent work [26] has proposed to put the device into the 904

sleep mode and trigger JIT checkpointing only when no more 905

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

energy is available. While this has the potential to improve the906

standard JIT method used in MII, depending on the leakage907

current in the sleep mode, it can increase the recharge time of908

the capacitor. For example, in our evaluation platform, using909

its default deep sleep mode results in at least 58% more time910

to fully recharge under the E2 energy pattern.911

B. Real-Time Scheduling on IPD912

Supporting task scheduling on the IPDs has been consid-913

ered a big challenge because the environment fluctuations914

lead to varying task response times [9], [14]. Existing915

work has approached this issue in two ways: 1) energy916

prediction [15], [16], [17], which analyses the supply energy917

pattern and makes scheduling decisions accordingly and 2)918

workload reduction [2], [14], [23], [24], [25], which reactively919

changes the amount of workload with respect to the environ-920

ment variations. Specifically, Celebi [15] leverages the energy921

prediction approach and presents both the offline and online922

schedulers to meet the task deadlines on the IPDs. Zygarde [2]923

trains a DNN to be early exit-able at every layer and splits924

the layers into mandatory and optional parts. It then schedules925

either only mandatory layers or both the types of layers based926

on the ambient conditions. However, none of the existing work927

has studied the effect of the execution patterns given different928

CMs. MII addresses these limitations.929

X. CONCLUSION930

This articles presents MII: a multifaceted framework for931

the intermittent inference and scheduling. The design of MII932

originated from the three key observations in Section III933

and divided into the offline and online phases. MII is934

compared with the three representative state-of-the-art meth-935

ods [2], [3], [10] through a controlled environment evaluation936

as well as a real-world field study. The results show that MII is937

able to achieve the performance efficiency in the intermittent938

DNN inference, adaptability to environment changes, and939

applicability to the real-world scenarios. Future work includes940

the consideration of different learning tasks, such as deep941

reinforcement learning on the IPDs.942

REFERENCES943

[1] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence beyond the edge:944

Inference on intermittent embedded systems,” in Proc. ASPLOS, 2019,945

pp. 199–213.946

[2] B. Islam and S. Nirjon, “Zygarde: Time-sensitive on-device deep infer-947

ence and adaptation on intermittently-powered systems,”‘Proc. ACM948

Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 3, pp. 1–29,949

Sep. 2020.950

[3] H. R. Mendis, C. K. Kang, and P. Hsiu, “Intermittent-aware neural951

architecture search,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s,952

pp. 1–27, Sep. 2021.953

[4] C.-K. Kang, H. R. Mendis, C.-H. Lin, M.-S. Chen, and P.-C. Hsiu,954

“Everything leaves footprints: Hardware accelerated intermittent deep955

inference,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,956

vol. 39, no. 11, pp. 3479–3491, Nov. 2020.957

[5] M. Buettner et al., “Dewdrop: An energy-aware runtime for computa-958

tional RFID,” in Proc. NSDI, 2011, pp. 1–14.959

[6] B. Lucia and B. Ransford, “A simpler, safer programming and execution960

model for intermittent systems,” in Proc. PLDI, 2015, pp. 1–11.961

[7] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, 962

D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during 963

intermittent supply for energy-harvesting systems,” IEEE Embed. Syst. 964

Lett., vol. 7, no. 1, pp. 15–18, Mar. 2015. 965

[8] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long- 966

running computation on RFID-scale devices,” in Proc. ASPLOS, 2011, 967

pp. 1–12. 968

[9] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently 969

powered batteryless sensors,” in Proc. 15th ACM Conf. Embed. Netw. 970

Sens. Syst., 2017, pp. 1–13. 971

[10] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan, “QuickRecall: 972

A HW/SW approach for computing across power cycles in transiently 973

powered computers,” J. Emerg. Technol. Comput. Syst., vol. 12, no. 1, 974

pp. 1–19, Aug. 2015. 975

[11] D. Balsamo et al., “Hibernus++: A self-calibrating and adaptive system 976

for transiently-powered embedded devices,” IEEE Trans. Comput.- 977

Aided Design Integr. Circuits Syst., vol. 35, no. 12, pp. 1968–1980, 978

Mar. 2016. 979

[12] K. Maeng and B. Lucia, “Supporting peripherals in intermit- 980

tent systems with just-in-time checkpoints,” in Proc. PLDI, 2019, 981

pp. 1–16. 982

[13] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution 983

without checkpoints,” Proc. ACM Program. Lang., vol. 1, pp. 1–30, 984

Oct. 2017. 985

[14] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe 986

efficient intermittent computing,” in Proc. OSDI, 2018, pp. 1–17. 987

[15] B. Islam and S. Nirjon, “Scheduling computational and energy harvest- 988

ing tasks in deadline-aware intermittent systems,” in Proc. RTAS, 2020, 989

pp. 95–109. 990

[16] M. Karimi et al., “Real-time task scheduling on intermittently pow- 991

ered batteryless devices,” IEEE Internet Things J., vol. 8, no. 17, 992

pp. 13328–13342, Sep. 2021. 993

[17] M. Karimi, Y. Wang, and H. Kim, “Energy-adaptive real- 994

time sensing for Batteryless devices,” in Proc. RTCSA, 2022, 995

pp. 205–211. 996

[18] A. Bukhari, S. Hosseinimotlagh, and H. Kim, “OpenSense: An open- 997

world sensing framework for incremental learning and dynamic sensor 998

scheduling on embedded edge devices,” IEEE Internet Things J., vol. 11, 999

no. 15, pp. 25880–25894, Aug. 2024. 1000

[19] S. Lee, B. Islam, Y. Luo, and S. Nirjon, “Intermittent learning: On- 1001

device machine learning on intermittently powered system,” Proc. ACM 1002

Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 4, pp. 1–30, 1003

Sep. 2020. 1004

[20] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable 1005

intermittent programs,” SIGPLAN Notice, vol. 51, no. 10, pp. 514–530, 1006

Oct. 2016. 1007

[21] A. Colin, E. Ruppel, and B. Lucia, “A reconfigurable energy storage 1008

architecture for energy-harvesting devices,” in Proc. ASPLOS, 2018, 1009

pp. 767–781. 1010

[22] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed 1011

high-performance intermittent computation with power failure immu- 1012

nity,” in Proc. RTAS, 2022, pp. 40–54. 1013

[23] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, 1014

and J. Hester, “InK: Reactive kernel for tiny batteryless sen- 1015

sors,” in Proc. 16th ACM Conf. Embed. Netw. Sens. Syst., 2018, 1016

pp. 41–53. 1017

[24] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for 1018

periodic and reactive intermittent execution,” in Proc. PLDI, 2020, 1019

pp. 1005–1021. 1020

[25] M. Surbatovich, N. Spargo, L. Jia, and B. Lucia, “A type system for safe 1021

intermittent computing,” Proc. ACM Program. Lang., vol. 7, Jun. 2023, 1022

pp. 736–760. 1023

[26] K. Akhunov, E. Yildiz, and K. S. Yildirim, “Enabling efficient 1024

intermittent computing on brand new microcontrollers via 1025

tracking programmable voltage thresholds,” in Proc. 11th Int. 1026

Workshop Energy Harvest. Energy-Neutral Sens. Syst., 2023, 1027

pp. 16–22. 1028

[27] J. Hester et al., “Persistent clocks for batteryless sensing 1029

devices,” ACM Trans. Embed. Comput. Syst., vol. 15, no. 4, pp. 1–28, 1030

2016. 1031

[28] A. Colin, G. Harvey, B. Lucia, and A. P. Sample, “An energy- 1032

interference-free hardware-software debugger for intermittent 1033

energy-harvesting systems,” in Proc. ASPLOS, 2016, pp. 1–13. 1034

[29] P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, 1035

“Design optimization and implementation for RF energy harvesting 1036

circuits,” IEEE J. Emerg. Select. Topics Circuits Syst., vol. 2, no. 1, 1037

pp. 24–33, Mar. 2012. 1038

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

