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Abstract—Semi-autonomous (SA) systems face the challenge
of determining which source to prioritize for control, whether it’s
from the human operator or the autonomous controller, especially
when they conflict with each other. While one may design an SA
system to default to accepting control from one or the other, such
design choices can have catastrophic consequences in safety-critical
settings. For instance, the sensors an autonomous controller relies
upon may provide incorrect information about the environment
due to tampering or natural fault. On the other hand, the human
operator may also provide erroneous input.

To better understand the consequences and resolution of this
safety-critical design choice, we investigate a specific application of
an SA system that failed due to a static assignment of control author-
ity: the well-publicized Boeing 737-MAX Maneuvering Characteris-
tics Augmentation System (MCAS) that caused the crashes of Lion
Air Flight 610 and Ethiopian Airlines Flight 302. First, using a repre-
sentative simulation, we analyze and demonstrate the ease by which
the original MCAS design could fail. Our analysis reveals the most
robust public analysis of aircraft recoverability under MCAS faults,
offering bounds for those scenarios beyond the original crashes. We
also analyze Boeing’s updated MCAS and show how it falls short of
its intended goals and continues to rely upon on a fault-prone static
assignment of control priority. Using these insights, we present Semi-
Autonomous MCAS (SA-MCAS), a new MCAS that both meets the
intended goals of MCAS and avoids the failure cases that plague both
MCAS designs. We demonstrate SA-MCAS’s ability to make safer
and timely control decisions of the aircraft, even when the human
and autonomous operators provide conflicting control inputs.

I. INTRODUCTION

Semi-autonomous (SA) systems—those that take both autono-
mous and manual inputs to control their actions—are ubiquitous
in the modern world, presenting applications in factories,
hospitals, transportation, and more. Often, the purpose of these
systems is to improve the safety and efficiency of tasks that take
substantial manual effort. Airplanes, for example, use SA control
to maintain safe flight while pilots perform other tasks. As a
consequence of SA systems’ close coupling with safety-critical
applications, there is a complicated trade-off between trusting
human and autonomous inputs. SA functionality is often included
in a system because humans are prone to making mistakes, but
autonomous systems are also imperfect. These autonomous
controllers serve as a safety-critical component of embedded
systems, and as such, their design should be closely scrutinized.

In order to handle these cases where there is conflict in control,
it is necessary for an SA embedded system to incorporate a
routine for resolving the conflict. Oftentimes, such a routine
is hard-coded to always “trust” the input from one entity over
the other. For instance, an autonomous system in the Boeing
737-MAX, the Maneuvering Characteristics Augmentation
System (MCAS), an embedded system controller, was originally
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given static priority to manually override the pilot’s control of
the aircraft during aircraft stall events. While this decision was
motivated by a lack of trust in pilot control during these safety-
critical stall events, it had dire consequences. In 2019, MCAS
mistakenly identified a stall event due to faulty sensor data, which
ultimately caused the crash of two Boeing 737-MAX aircraft:
Lion Air Flight 610 (JT610) and Ethiopian Airlines Flight 302
(ET302). These crashes prompted regulators to mandate Boeing
redesign the MCAS before the 737-MAX could fly again [1].
Among the numerous changes Boeing made, one removed the
static control priority from MCAS and gave it to the pilots [2].

In practical settings, the consequences from static assignment
of control priority in embedded systems is not well documented.
Leveraging the circumstances leading to Boeing creating two
versions of MCAS that have opposing static priority controllers,
we study the differences between their control failures under
various fault types (§ II-D). From our analysis, we conclude
that the redesign of MCAS takes an incorrect approach. We
find that giving one entity the capability to override control of a
safety-critical application creates a single point-of-failure, even
in the case of the current MCAS version. Rather than defaulting
the control to one entity, we argue for a dynamic control conflict
arbiter that chooses which entity to allow control based on the
aircraft’s situation. This removes the single point-of-failure from
MCAS, making the aircraft more tolerant of erroneous input
from either autonomous or manual control.

Following this embedded system controller design philosophy,
we propose a version of MCAS with a dynamic control arbiter,
which we call Semi-Autonomous MCAS (SA-MCAS). Unlike
the prior implementations of MCAS, SA-MCAS is capable of
providing safer control of the aircraft’s pitch in the presence
of erroneous input from both autonomous or manual control.
Through our investigation, we demonstrate that SA-MCAS can
select which operator to control the aircraft in the presence of
erroneous sensor readings or erroneous pilot control. We test the
robustness of SA-MCAS under a dataset of representative flight
scenarios under which MCAS may activate. Under these flight
scenarios, we subject SA-MCAS to numerous data, control, and
timing errors, summarized in § III.

Previously, there have been a few publicized analyses and
reports of MCAS [3], [4]. Mainly, these were conducted by
aeronautic enthusiasts and reporters who wished to demonstrate
how the crash occurred. They sparsely discuss the choices made
in the design of the embedded control logic without considering
or mentioning alternative designs. In contrast, we present the
first in-depth analysis of the control logic of MCAS, with the
goal of finding a design alternative with better overall safety.

Prior work on the resolution of control conflict of SA systems
is scarce. In the context of cars, there is some prior work on con-



flict resolution between autonomous controllers and drivers [5].
Alongside this line of work, there is research in sensor anomaly
detection [6]–[8], estimation [8], [9], and fault injection [10], [11].
While this work is somewhat relevant to our research, we focus
on arbitration of conflicting autonomous and manual control.

This paper makes the following novel contributions:
1) We build a MATLAB/Simulink template1 for simulating

control input for aircraft modeled in JSBSim [12]. We
provide the building blocks for easily creating and evaluating
new aircraft control systems. (§ V)

2) We model timing and control constraints on the aircraft,
determining the parameter boundaries for the recoverability
of safe control of the aircraft. We conduct this for Boeing’s
original (MCASold), new (MCASnew), and our (SA-MCAS)
versions of MCAS. Our analysis tweaks the MCAS response
time, the MCAS duration, the fixed time interval between
MCAS events, and the pilot’s reaction delay to MCAS.
(§ III and § VI)

3) For the first time, we model a comprehensive failure analysis
for both MCASold and MCASnew in the Boeing 737-MAX.
This model incorporates incorrect sensor data that MCAS
relies upon and dangerous flight control that leads to stalls.
Our analysis uncovers previously unseen flight scenarios
resulting in aircraft crashes due to erroneous control input,
in addition to the scenarios that occurred in the original
Boeing 737-MAX crashes. (§ III and § VI)

4) We propose SA-MCAS, which makes control decisions that
account for erroneous inputs from the pilot or autonomous
system. SA-MCAS is shown to improve the state-of-the-art,
loosening the constraints for recoverability of flights to safe
control in comparison to MCASold and MCASnew. (§ VII)

II. BACKGROUND & MOTIVATION

For better comprehension of the problem, we provide the
necessary knowledge for understanding the Boeing 737-MAX
crashes. We start with a basic explanation of longitudinal flight
dynamics. Such information is essential for understanding
why Boeing chose to include MCAS in the 737-MAX and for
understanding how MCAS impacts the aircraft’s control. We
then discuss the brief history of the MCAS implementation and
how its design flaws caused the crashes of JT610 and ET302.
Since these crashes, both the FAA and Boeing have introduced
new requirements for MCAS to avoid future accidents. We
analyze these new requirements to motivate our investigation.

A. System Components
The components of the aircraft system that are of concern

to this work are summarized in Fig. 1. The Air Data Inertial
Reference Unit (ADIRU) is at the core of the flight control
system. It is information supplied from various sensors,
which enables the calculation of the airspeed, angle-of-attack
(AoA), altitude, position, and other inertial and environmental
information. As seen in Fig. 1, there is a redundant ADIRU
available in the Boeing 737-MAX.

The information from the ADIRU is passed along to the
flight control computer, which is responsible for actuating the
aircraft control surfaces. In the case of pitch control, it uses

1Available on GitHub: https://github.com/noah-curran/SA-MCAS.
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Fig. 1: The components of the Boeing 737-MAX aircraft pitch control
stability system. This was adapted from those found in [13].
the Mach information from the ADIRU to trim the horizontal
stabilizer (HS). The flight dynamics and control that govern this
process are described in the following subsection. Moreover,
the pilots can manually trim the HS and compete for control
of the aircraft with the flight control computer.

B. Longitudinal Flight Dynamics & Control
The longitudinal flight dynamics involve moments about

the aircraft’s Y -axis. The longitudinal equations2 describe the
physics of the angular velocity of the pitch (θ̇), the angular
acceleration of the pitch (q̇), the acceleration (U̇ ) in the
X-direction, and the acceleration (Ẇ ) in the Z-direction. These
equations can be reduced to state-space form as[

U̇ Ẇ q̇ θ̇
]⊺

=A
[
U W q θ

]⊺
+Bu, (1)

where A is the state matrix, B is the input matrix, and
u =

[
δe δp

]⊺
is the control vector. This is a linear system

that is controlled by the deflection of the elevator (δe) and
the change in the thrust (δp). To examine control design,
we can approximate the longitudinal dynamics using simple
models. For our purposes, we can focus on the short period
approximation [14]. For the short period approximation, the
response from θ and w are in the same phase, and the response
from u and q are very small. The resulting equation is

ẋsp=
[
ẇ q̇

]⊺
=Aspxsp+Bspδe. (2)

Here, we assume that the thrust remains constant in steady flight.
The control input of interest is the deflection of the elevator,
as this is what the pilot uses to directly impact the pitch of the
aircraft. The elevator is attached to the HS, which is what MCAS
controls in order to automatically trim the aircraft’s pitch.

C. MCAS
1) Why Was MCAS Necessary? During the design of an

aircraft, regulatory bodies will provide a type certificate once it
is deemed safe for flying in the air. If a newly designed aircraft
is the same type as a previously certified aircraft, the regulation
is expedited since certain preliminary prototypes are unnecessary.
Instead, just the parts of the aircraft that are changed need to

2See [14] for the full longitudinal equations.
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be tested. An additional benefit of this practice is the reduction
in the amount of training the pilots of the previous aircraft
require in order to operate the new aircraft. The type certificate
is amended in order to include the updates made.

During the design of the 737-MAX line of aircraft, Boeing
sought to certify it as a 737 variant to take advantage of this
certification amendment process. One such change was made
to the engines, in which the 737-MAX moved from the CFM56
engine to the LEAP-1B engine, which is larger and placed
farther forward on the wings of the aircraft. Testing revealed
that when the 737-MAX encountered high-pitch scenarios at low
airspeeds, the weight distribution of the new engines would push
the nose of the 737-MAX further upward and cause the aircraft
to gain a high Angle-of-Attack (AoA) and subsequently stall.3
To address this issue, Boeing would either need to (A) redesign
the entire aircraft type to accommodate the engines and follow
a long and expensive type certification process, or (B) use
some flight control mechanism to counter the problematic stall
behavior. Since the former option would compromise Boeing’s
goals to get the 737-MAX on the market quickly and reduce the
costs of pilot training, they provided the aircraft with MCASold,
a flight stabilization program that automatically pitches the
aircraft down to prevent a stall during high-AoA maneuvering.

2) How Does MCAS Work? In order to determine whether
a stall event is about to occur, MCAS observes the AoA of the
aircraft through a sensor. The AoA sensor is a swept vane that
is aerodynamically aligned with the aircraft in order to measure
the angle of the airflow passing the wing. While the 737-MAX
is equipped with two AoA sensors (one on both sides of the
nose of the plane), MCASold used just one of the sensors. In
response to a high AoA (defined as ∼17◦), MCASold provides
a nose-down control input to the HS to avoid a stall. At low
speeds, this nose-down deflection is 2.5◦ and at high speeds
it is 0.6◦ [3]. During the high-speed stall events, MCASold

checks for a high g-force in addition to the AoA. The g-force
check is omitted during low-speed flight.

3) What are the Functional Requirements of MCAS? For the
functional safety of any part aboard an aircraft, the FAA follows
ARP4761 and ARP4754 to provide an assurance level for the
design [15], [16]. In the case of MCAS, the FAA designated it
as a “hazardous failure” system, which should have a probability
of occurring at <10−7 per flight hour. In this case, “failure has
a large negative impact on safety or performance, or reduces
the ability of the crew to operate the aircraft due to physical
distress or a higher workload, or causes serious or fatal injuries
among the passengers.” These safety requirements assume an
undistracted pilot can respond to an issue within 3 seconds [3].

4) How Did MCAS Cause Deadly Accidents? The issues with
MCASold occurred due to design choices of its activation during
low-speed stall events. Because there was no g-force check and
only one AoA sensor was checked, a single-point-of-failure was
present. The g-force check is primarily to determine whether
pilots need assistance during high-speed events, which cause
the pitch control column to become too heavy and cumbersome
to control. Boeing’s initial disclosure of MCAS to the FAA ac-
counted for its necessity to activate during high-speed stall events.

3A stall is a flight event where there is not enough lift under the wing of the
aircraft, causing the aircraft to lose altitude. These normally occur when the
AoA is ≳17◦.

The failure analysis from Boeing’s disclosure demonstrated that
MCASold was less intrusive to the flight controls (and deemed
a low risk) due to the improbability of its failure and due to the
redundancy the g-force check provided during the high-speed
stall events. While the issues experienced during high-speed stall
events were a non-issue during low-speed stall events, a high
g-force could still be useful as a source of redundancy to detect
the stall event. The original authority MCASold was granted
to provide nose-down deflection to the HS was limited to 0.6◦.
However, after discovering issues during low-speed tests, Boeing
provided MCASold additional authority. In short, during low
speeds the pitch control surface of an aircraft requires more
deflection in order to yield the same response as during high
speeds, so Boeing increased the nose-down deflection amount to
2.5◦ for low-speed events. After making this substantial change
to MCASold, Boeing failed to notify the FAA and made no
mention of MCASold in the 737-MAX’s pilot manuals.

The increased likelihood of a dangerous event occurring
compounded with pilots inadequately prepared to handle an
erroneously engaged MCASold created a recipe for disaster.
Two deadly crashes followed: ET302 and JT610. During these
flights, the AoA sensor delivered faulty readings that made
MCASold believe the airplane’s AoA was too high. Consequently,
the nose of the aircraft was pushed down by MCASold. To
counteract MCASold, the pilot manually trimmed the HS and
pulled back on the column to actuate the elevator to undo the nose-
down deflection. MCASold again displaced the HS due to the
sensor’s incorrect readings, entering a state known as a “runaway
stabilizer”. After back-and-forth between MCASold and the pilot,
the HS was eventually displaced so much that elevator deflection
could not counter the effects of the much larger HS. Also, due to
aerodynamic factors, the manual HS hand-crank available in the
cockpit eventually would not budge. In both catastrophic cases,
the aircraft entered a steep nosedive and crashed. The two crashes
killed all 346 people onboard and resulted in the grounding of
all Boeing 737-MAX aircraft globally. While skilled pilots were
sometimes capable of landing aircraft that MCASold negatively
impacted, these instances were not reported to any regulatory
agencies until after the deadly crashes [17].

5) How Did MCAS Change After the Crashes? In response
to these crashes, Boeing proposed a redesigned MCASnew with
several changes [2]. First, MCAS will now check both the left
and right AoA sensors. If the AoA sensors exceed 17◦ when
the flaps are not up or if they disagree with one another more
than >5.5◦, MCASnew will not activate. Additionally, Boeing
introduced Mid-Value Select (MVS) to pick an AoA value when
they disagree within the acceptable range [4]. MCASnew will
store the previously selected AoA value and during the next
iteration it will pick the median between the stored, left, and
right AoA values. Second, MCASnew will only activate once
per sensed event rather than an unconstrained number of times,
preventing a runaway stabilizer. Lastly, when MCASnew does
engage, pilots can now override it and perform manual flight
at any time since it will not provide more input on the HS than
the pilot can put on the elevator. The final revision approved
by the FAA included an additional requirement to the flight
control computer, requiring an integrity monitor in order to stop
erroneously generated trim commands from MCASnew [18].



D. Analysis of the Revised MCAS Requirements

Boeing’s revised requirements for MCASnew made a major
pivot in control authority. MCASold was originally designed
with absolute authority; in fact, there was not even a switch
for cutting off its control of the HS in the event of a runaway
stabilizer. However, in MCASnew, there is a clear lack of trust
for autonomous control reversing control authority in favor of
the pilot. This change is notable, as it is contrary to Boeing’s
original goals of providing mechanisms to emulate the feel of
the 737-NG and reducing the amount of training required for
the pilot. Now, the pilot must learn how to safely counter the
MCAS in the event of additional problems occurring.

These additional problems are not completely unimaginable.
While the choice to use an agreement between the left and right
AoA sensors to validate their use is an improvement over the
single-point-of-failure, the AoA sensors are subject to the same
environmental factors and hence the two sensors may possibly
agree with each other on an incorrect value. This differs from
the case of MCAS activation at high-speed, which is contingent
on a high g-force value as well. Rather than seeking a source
of redundancy within an entirely separate system, Boeing chose
to consider just the unused AoA sensor.

Such scenarios where both the autonomous entity and a human
compete for control of a vehicle is called a semi-autonomous (SA)
system. Defaulting control authority to one entity in the case of
disagreement is a common trend in SA system design. While Boe-
ing designed MCASold and MCASnew with this default behavior,
one can see cases where the pilot is more trustworthy and others
where the MCAS is: there are instances in flight where either
the pilot or the autonomous system could be incorrect. On one
hand, sensor failures have and will continue to occur, and on the
other hand, pilots may not respond quickly or correctly enough
during chaotic flight scenarios. Thus, we argue that neither the
original design nor the redesign of MCAS is the right choice.

To back this claim, we reconstruct the behavior of MCASold

and MCASnew using information The Seattle Times [3] and
the FAA [18] reported to the public and conduct a preliminary
analysis (Fig. 2). Using the open-source flight dynamic simulator
JSBSim [12], we built a toolkit for running MCAS experiments
(see § V for more details of how it works). The preliminary analy-
sis is our first step to investigate the safety of the MCASnew. The
simple experiment runs a takeoff maneuver with either an injec-
tion of an erroneous AoA sensor at t=100s or a pilot beginning
to stall the aircraft with a high pitch at t=100s. While MCASnew

mends the original single-point-of-failure issue, it introduces a
new hazard related to pilot stalling that was not present with
MCASold. With an aggressive pitch-up control from the pilot, the
MCAS system will not start recovery until after it detects a stall
is occurring, i.e., the AoA exceeds ∼17◦. As a result, the flight
will still lose some altitude such as in Fig. 2c while MCASold

recovers the aircraft. On the contrary, MCASnew can only adjust
the HS once, which is not enough for recovery (cf. Fig. 2d).

However, this evidence just proves the possibility and does
not explicitly answer why or how the MCAS implementations
directly contribute to the crash of the aircraft. To formally
investigate these questions, we provide a framework for defining
the error model in § III, which incorporates various modes of
sensor failure as well as the timing deadlines that pilots must
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(a) Erroneous AoA values for 20
seconds with MCASold.
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Fig. 2: Simulation of the fault-tolerance of MCASold and MCASnew .
For each, we simulated 737-MAX takeoff using our custom toolkit
(§ V) built on top of JSBSim [12].
meet for aircraft recoverability.

III. ERROR MODEL

From our previous demonstration, we conclude that pitch
control of the aircraft is fallible through the input of either
the autonomous MCAS or the human pilot. In this section, we
provide a more general model for the behaviors that can cause
these control failures. We do not consider errors that are innate
to the flight compute platform itself, such as software bugs or
attack vectors that adversaries may exploit. We consider these
types of errors beyond the scope of our work, but individual
components of the flight platform may utilize a trusted platform
modules to verify the integrity of the controller on boot [19] or
mathematical verification [20] to ensure the correctness of the
estimators used in Alg. 1. Moreover, the estimators used in Alg. 1
will undergo certification by the FAA, so such safety-critical
implementation concerns should be resolved during this process.

A. Erroneous Sensor Data
Like any sensing system, those utilized by an aircraft may

incorrectly measure the environment, and these sensors can
present the erroneous data in a number of different ways. Here,
the models for how these measurement errors manifest are
discussed in mathematical terms. We use xs(t) to denote the
ground-truth airplane sensor data at time t, and xs(t) to denote
the erroneous airplane sensor data at the same time t. Since
we are considering the particular case of MCAS, we can further
simplify xs(t) to include the left and right AoA sensor readings.
Our model incorporates Gaussian noise that is typically present
in sensor measurements as part of xs(t).

Our selection of sensor errors is representative of those
errors that would occur in the real-world; we do not consider
errors that are theoretically possible but have no known way of



occurring in the real world. Moreover, we do not consider any
combination of the errors mentioned in this section. In practice,
the more dominant error will have its effects impact the system,
so we consider our evaluation of the failures in isolation.

1) Sudden Error. A sudden error is defined as
xs(t)=δ, (3)

where δ is a constant value. This error is agnostic of the current
sensor value, making it the most simple sensor error. The erro-
neous data from the AoA sensor in ET302 was due to a sudden
error, which may occur due to a jam caused by a bird strike.

2) Delta Error. For a delta error, we again assume a constant
value δ and characterize the error as

xs(t)=xs(t)+δ. (4)
The delta error is simply an offset to the actual sensor value,
in which the constant value δ is added to the existing sensor
data. The erroneous data from the AoA sensor in JT610 was
due to a delta error, akin to a miscalibrated sensor.

3) Gradual Error. The gradual error is the most sophisticated
of the three, incorporating a function f(t) as part of error. The
gradual error is generalization of the delta error, replacing δ
with f(t):

xs(t)=xs(t0)+f(t). (5)
Furthermore, in contrast to the delta error, the x-intercept of
the function is replaced with the sensor value at the start of
the error, t0. While the function f(t) can be any function,
we choose a few standard functions: the linear (f(t) = at),
quadratic (f(t) = at2+ bt), and logarithmic (f(t) = alog(t))
functions, where a and b are predefined coefficients. This error
replicates how a drifting sensor failure may occur over time.

B. Dangerous Pilot Behavior

The scope of MCAS’s authority for counteracting pilot
control is exclusively within the aircraft’s pitch axis in the
downward direction. The pilot controls the pitch by either
manually cranking the HS or moving the control column
to adjust the elevator. See § II-B for a brief introduction to
longitudinal flight dynamics and control of the aircraft.

For a pilot to provide dangerous control to the aircraft, we
consider two avenues through which this may occur. First, the
pilot could continuously pitch the aircraft up. S/he does it by
pulling back the control column, which in turn commands a
consistent input to δe in Eq. (2). Eventually, the aircraft’s AoA
will exceed ∼17◦, causing the aircraft to stall and experience
a significant decline in altitude before entering a nosedive.

Second, the aircraft may have a major failure that demands
the pilot to respond quickly. During such an event, the FAA
guidance states that a pilot should respond within 3s [3].
However, if the pilot were to take longer to recognize and
respond to the occurrence of such an issue, they may risk losing
control of the aircraft and cause an accident. In fact, FAA flight
handbooks refer to reaction times of 4s as common [21]. A
major failure could refer to a correct MCAS activation that
requires the pilot to re-adjust the aircraft accordingly, or an
incorrect MCAS activation that the pilot must counteract.

1) Modeling the Timing Constraint of Aircraft Recovery.
To characterize whether a pilot is performing a timely control
of an aircraft, we use

τ=τsensing+τaction, (6)

and constrain the success of evading failure with
tstart bad event+τ≤τdeadline. (7)

FAA mandates that a well-trained pilot’s sensing of a major
failure, τsensing , should be < 3 s [3]. However, we cannot
assume the pilot will always be able to have such quick sensing
of a failure, especially if they are overwhelmed with other
tasks/warnings to attend to. As previously mentioned, the FAA
accepts that it is common for pilots to require >4s to react [21].

The time it takes a pilot to complete the aircraft recovery
action from a perceived failure is modeled with

τaction=xstab offset∗
RPD

RPS
(8)

where we model how long it would take for the pilot to move
the HS xstab offset degrees. This movement is dictated by
the number of rotations per second (RPS) the pilot can turn
the hand crank and the number of rotations per degree (RPD)
required to move the HS (which is 18 in a 737 [22]). We note
that while the pilot in the physical world may apply a variable
RPS, our investigation in § VI models a constant RPS during
pilot response to MCAS events. After recovering from the event,
the simulated pilot will stop rotating the hand crank.

The deadline of aircraft recovery, τdeadline, is calculated:

τdeadline=min

{
tcurrent+

h
v(t+τ)

tlast MCAS fire+τMCAS c.d.

(9)

In the first term, we determine whether the altitude, h, of
the aircraft will reduce to 0 before recovery is completed. Its
catastrophic nature makes it a hard deadline. We model the
velocity trajectory of the aircraft, v(t), using the velocity of
a falling object with initial velocity v0:

dv

dt
=

1

m

∑
F (v); v0<vt (10)

mandated by the vertical forces of drag (D= 1
2ρACdv

2), lift
(L= 1

2ρAClv
2), gravity (G=mg), and thrust (T ) [23]:∑

F (v) = G + D sin(c) − L cos(c) − T sin(c), (11)
with climb angle c, and the terminal velocity:

vt=

√
T sin(c)−G

1
2ρACdsin(c)− 1

2ρAClcos(c)
. (12)

obtained by setting dv
dt =0, v=vt and solving for vt. In other

words, we find the velocity when it is no longer changing.
Finally, we integrate dv

dt on the interval [v0,v(t)] and find the
velocity at time t [24]:

v(t)=vttanh

(
tanh−1

(
v0
vt

)
− t(T sin(c)−G)

vtm

)
. (13)

The second term of Eq. (9) relates to the next MCAS
activation. For MCASold and MCASnew, it offsets the HS 2.5◦

with a cooldown of 11s if the AoA remains higher than 17◦;
otherwise, MCAS will not activate again. During the case of
successive MCAS triggers, the pilot must achieve higher than
RPD ∗ xstab offset

τMCAS c.d.
= 18 ∗ 2.5

11 = 4.09 RPS of the trim wheel
in order to counter the MCAS. Sustaining a high RPS for a
period of multiple seconds is impractical due to the physical
strain it would cause. Alternatively, during MCAS activation,
the pilot may attempt to physically halt the trim wheel when
MCAS activates, but this similarly requires the pilot to hold
a large amount of weight for a period of time.



Fortunately, the HS cooldown time is not a hard deadline.
The pilot failing to undo the HS displacement once will not lead
to catastrophic failure; it is the result of missing it multiple times
that leads to the catastrophic failure of crashing the aircraft. This
makes the task more similar to an (m,k)-firm guarantee. When
evaluating this aspect of the timing constraints, we assume RPD
and xstab offset are static values built into the design of the
aircraft and thus are not free to change. This assumption is consis-
tent with the implementation of MCAS in the Boeing 737-MAX.

IV. SEMI-AUTONOMOUS MCAS (SA-MCAS)

Following our preliminary analysis of the differences between
MCASold and MCASnew (Fig. 2), we propose Semi-Autonomous
MCAS (SA-MCAS), an MCAS that does not give static authority
to one control input over the other. Unlike Boeing’s MCAS,
SA-MCAS uses a Synthetic Air Data System (SADS) arbiter
to cross-validate the sensor readings to first determine whether
the pilot or autonomous control input is correct and then decide
which of the two is allowed to control the pitch of the aircraft.

The SADS is a mechanism that was not originally employed
in the 737-MAX, but it has appeared in advanced commercial
aircraft such as the Boeing 787 [25] and UAVs [26]. It precisely
estimates air data that the ADIRU also supplies, making it
an additional source of redundancy. In the wake of JT610 and
ET302 crashes, a U.S. congressional committee outlined clear
evidence that the use of a SADS in the 737-MAX may have
improved its safety and reliability [27], but the benefits of its
inclusion have neither been shown empirically nor has Boeing
added one to the 737-MAX.

Moreover, while SADS estimates a sensor’s measurement
without directly using that sensor, it may use other sensors’
measurements that may also have measurement inaccuracies. This
is a mature tool, so there are many ways for a SADS to estimate
air data [28]. Our novelty is to add an arbiter that is responsible
for choosing the synthetic data that will be used in the previously
mentioned cross-validation step. We show that, indeed, SADS
presents itself as a promising tool in combination with an arbiter.

We note that while MCASnew similarly uses a cross-validation
check to ensure consistency between both AoA sensors, it fails to
consider instances where both may be incorrect at the same time.
Functionally, it only checks to see if the measurements of two
AoA sensors are different from one another by >5.5◦. Therefore,
if both sensor measurements are incorrect, yet still similar, the
failure is never noticed. For SA-MCAS, the incorporation of
a SADS arbiter and its multiple independent estimations of the
AoA measurements ensures that this issue will never arise.

There are a few strategies that can be used after the cross-
validation step determines that the sensor measurements are incor-
rect. This stage of the process is extremely important: we cannot
employ a strategy that allows the arbiter to become a new single
point of failure. Instead of directly using the estimated measure-
ment from the SADS, the arbiter can use the previous data that
was determined correct temporarily. For instance, we can just use
the previous sample directly or extrapolate the correct data using
flight models. However, these strategies may have unpredictable
outcomes without rigorous validation or if the measurements fail
for an extended period of time. A more predictable strategy is
to drop the measurements completely. In doing so, the arbiter no

Algorithm 1: SA-MCAS activation using the SADS arbiter
technique.

Function do_activate_SA_MCAS():
Sl, Sr← ADIRU_left(), ADIRU_right()
SSADS← SADS(Sl, Sr)
Scorrect← arbiter(Sl, Sr , SSADS)
return is_stall(Scorrect)

Function SADS(Sl, Sr):
w← model_free_wind_triangle(Sl, Sr)
m← model_flight_dynamics(Sl, Sr)
SSADS←∅
/* Internal SADS consistency check. */
for sw∈w, sm∈m same sensor do

if |sw−sm|<ε then
SSADS←SSADS∪sw

return SSADS

Function arbiter(Sl, Sr , SSADS):
Scorrect←∅
/* External SADS consistency check. */
for sl∈Sl, sr∈Sr , sSADS ∈SSADS same sensor do

if |sl−sSADS |<ε then
Scorrect←Scorrect∪sl

else if |sr−sSADS |<ε then
Scorrect←Scorrect∪sr

return Scorrect

longer becomes a single point of failure; instead, the arbiter pre-
vents MCAS from making any choice since it has no data to use.

Algorithm and Deployment. The full algorithm for SA-
MCAS activation is presented in Alg. 1. To ensure SA-MCAS
does not become a new single-point-of-failure, it is built with
two layers of consistency checking.

First, there is an internal consistency check in SADS(),
which follows the estimation of air data using the
model-free [29] and flight dynamic model-based [28],
[30] methods, model_free_wind_triangles and
model_flight_dynamics, respectively. Because there is
a diversity in estimation methods, there are duplicate estimations
of the same air data measurements from these two methods.
For example, the AoA (α) can be estimated with the model-free
method α = tan−1(uv ) and with the model-based method
α= f(CL,M,h). The goal of the internal consistency check
is to ensure that potentially erroneous ADIRU sensors involved
in the estimation methods are not impacting the final estimation.
The input to SADS() includes the left ADIRU sensor data,
Sl, and the right ADIRU sensor data, Sr. Its output is the set
of estimated sensor data, SSADS .

On the other hand, determining which air data measurements
are incorrect is left to the second, external consistency check,
which occurs during the arbiter() step. If the SADS()
estimate is ε distance away from the physical measurement of the
left or right ADIRU, the measurement is passed on to the final
step. If the difference exceeds ε, the measurement is dropped. In
this work, the value of ε is selected based on the typical Gaussian
noise of each sensor measurement. A tight bound is selected to
err in favor of false-negatives since the effects are in the spirit
of the design choices of Boeing aircraft. For more conservative
bounds, we would recommend utilizing conformal prediction for
creating a dynamic uncertainty quantification of the estimated
sensor states [31]. The input to arbiter() includes the left
and right ADIRU sensor data, Sl and Sr, respectively, and the
SADS() estimated sensor data, SSADS . The output is the set of
sensor data that passes the external consistency check, Scorrect,



meaning the sensor data that is similar enough to the estimates.
In the final step of the algorithm, the air data passed on,

Scorrect, is used to check whether a stall is occurring or
whether the airplane is at risk of stalling. If it is, SA-MCAS
activates control on the HS. Similar to Boeing’s implementation
of MCAS, SA-MCAS is deployed on the flight control computer
of the 737-MAX. This was previously shown in Fig. 1; as seen
in the figure, no modification to the communication architecture
is necessary to incorporate SA-MCAS.

Challenges. This study is the first public exploration of the
consequences of the designs of the MCAS’s ability to recover
under faults. As a result, during the development of SA-MCAS
we encountered several challenges that lead to the primary
contributions of this paper. We raise the following technical
questions:

❶ How can we streamline the design and evaluation of MCAS
without a physical aircraft? (§ V)

❷ Which control inputs from MCAS and the human pilot
threaten the safety of the aircraft? (§ VI)

❸ Does SA-MCAS mitigate the issues present in MCASold

and MCASnew, and does it satisfy the timing constraints for
recovering the aircraft? (§ VII)

V. MCAS SIMULATION

This section addresses CHALLENGE−❶. Using a real airplane
as a testbed for evaluation of SA-MCAS is unrealistic/infeasible
due to the high cost of purchasing the aircraft, renting or building
a storage facility, and hiring pilots. Moreover, our analysis
demands us to stress the limits of the aircraft and put it into
hazardous situations that may ultimately crash it. Thus, the
natural solution is to employ a widely-used flight simulation
engine. Aerospace companies have custom flight simulators for
testing their internal products, but they are usually unavailable
to researchers. As a result, open-source flight simulators, such as
JSBSim [12], are popular among academic researchers. In partic-
ular, JSBSim has been vetted by NASA, validating its accuracy of
modeling real flight maneuvers [32]. The JSBSim flight simulator
enables us to accurately model the Boeing 737-MAX’s flight and
control dynamics. Furthermore, because of the ease of modeling
control loops in MATLAB Simulink, an integration of JSBSim
to MATLAB was developed for this purpose [33]. However, its
functionality was limited to just a few hard-coded control inputs
and no account for pilot control or autonomous systems.

To overcome this inflexibility, we made an extension to the
JSBSim Simulink module, which includes several user-definable
features. Our extension enables the user to select any flight
sensor input/output to/from JSBSim, provides a pilot simulation
module with customizable scripts for controlling the aircraft,
and an MCAS module for easy integration of new MCAS
designs. Furthermore, switching between scripts and different
MCAS designs is configurable before simulation execution,
allowing for automated simulation runs without any additional
manual effort. Where possible, we have merged features into
JSBSim, while other features specific to our toolkit are provided
as a separate GitHub repository (see Footnote 1).

In addition to these features, we provide a module for injecting
sensor errors into the JSBSim sensor data. This module is capable
of injecting the three different types of erroneous data in § III-A.

Maneuver Performed in Crash Ref.
Accelerate • N/A

Climb • [34]
Descend [34]

Level-Turn [35]
Climb-Turn [34], [35]

Descend-Turn [34], [35]
Holding Pattern [36]

Takeoff • [34], [37]
Landing [34]

TABLE I: Simulated flight maneuvers. We denote those that occur
during the crashes of JT610 and ET302.

Parameter Range

Ta
ke

of
f Liftoff Indicated Airspeed (kts) [160, 200]

Transition to Cruise-Climb Altitude (ft) [2000, 4000]
Cruise-Climb Indicated Airspeed (kts) [220, 300]

Level-Off Altitude (ft) [5000, 15000]

L
an

di
ng Initial Altitude (ft) [1000, 5500]

Descent Rate (ft/minute) [600, 960]
Final Approach Indicated Airspeed (kts) [130, 150]

TABLE II: Parameter ranges used for validation of maneuvers.

A. Simulation Creation Process

Next we describe how to create simulations in our toolkit.
Step 1: Initializing the input/output parameters. Before

designing the rest of the simulation, the user must specify the
air data they want provided throughout the simulation. This
air data may be flexibly used and changed in other simulation
components. To request the air data, the user provides an XML
file with the simulator directory paths in which JSBSim stores
each air data measurement. The user also initializes the erroneous
sensor measurements with the time intervals they occur and the
characteristics of the errors as defined in § III-A. This is to be
defined within a JSON file.

Step 2: Building the MCAS module. We next integrate
a specified MCAS design into the simulation. Using output
parameters from the previous time step (which also may have
been altered by the measurement error module), we define
the specific conditions for MCAS activation behavior. For our
implementations of Boeing’s versions of MCAS, we refer to
publicly available materials to develop a best-effort replica. For
instance, we refer to [3] for MCASold and [2] for MCASnew.
We additionally refer to sources such as [4], [18] to replicate
finer details. Our implementation is without access or knowledge
of proprietary information that has not been made available
publicly.

Step 3: Scripting the pilot behavior. Finally, we provide
several pilot flight maneuvers as part of the toolkit, such as
takeoff, landing, and turning. To create a flight maneuver module,
it takes the initialized sensor measurements as input and monitors
them for user-defined conditions that trigger the next step for
the maneuver. Since this is a simulated pilot, it lacks some of
the finer feel and touch of a real pilot. However, we design
these maneuvers using aircraft manuals that make suggestions
for typical choices in flight (see the references in Tbl. I). While
environmental conditions impact some aspects of each flight
maneuver (such as the timing of a specific step), the steps pilots
follow are usually the same. We validate our simulation of these
flight maneuvers in the following subsection.



(a) Takeoff. (b) Landing. (c) Level turn.
Fig. 3: Simulated aircraft traces of typical Boeing 737-MAX maneuvers.

B. Example Simulation Scenarios
Internal states from the JSBSim flight simulator are fed

into our pilot-emulation toolkit, which makes decisions and
generates control commands based on the thus-provided states.
This setup simulates the pilot controlling the plane towards a
high-level goal while considering the flight conditions.

Several flight scenarios (Tbl. I) are used to verify that the
overall simulation functions as expected. Takeoff and landing
scenarios are targeted for closer study, as these were the
scenarios in which real-world MCAS-related mishaps occurred.
We demonstrate the trace of the flight path for a few of these
scenarios in Fig. 3.

225 takeoff simulations and 100 landing simulations were
conducted. Flight parameters were varied in each simulation
(summarized in Tbl. II) to cover a broad range of possible takeoff
and landing profiles. Following this process, we determine that
our simulation of pilot behavior is sufficient for investigating
dangerous flight scenarios. The flying traces are shown to
accurately draw the path of the desired maneuver. Furthermore,
we verify the effect of injected errors to the AoA sensor on the
flight path, as seen in the preliminary study presented in Fig. 2.

C. Case Study: Simulation of JT610
In order to verify the accuracy of simulating flights impacted

by incorrect sensor data and to understand how sensor failures
impacted the real flight on JT610, we model the delta error that
impacted the MCAS decision-making during JT610. The flight-
data recorder (black box) for JT610 was successfully recovered
by the Indonesian government, and while the raw data was never
publicly released, detailed graphs of the data are available for
analysis [17], [38]. We use the pilot simulation framework de-
scribed in § V to model the decisions made by the pilots in JT610,
following the same takeoff procedure. Likewise, we modeled
the same AoA delta error that the left AoA sensor encountered,
which had δ≈15◦ for the entire flight from takeoff until crash.
Before takeoff, the error in the left AoA sensor was more variable,
but because it was before takeoff it did not impact the operation
of the airplane. Thus, we do not model this in our simulation.

As mentioned before, the black box data from JT610 was
never publicly released, but we were able to acquire the
flight path of JT610 from Flightradar24 [39]. We overlay this
recovered data with our simulation of JT610 in Fig. 4. The
overlay on the simulation demonstrates the capability of our
toolkit to accurately model MCAS misfires in the presence
of incorrect sensor values. In Fig. 4a, the simulation is shown
to closely overlap with the true flight path of JT610. Since
we are capable of providing an accurate simulation of real
piloting of aircraft experiencing sensor failures, we provide a
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(a) Pilot attempts to counter the
MCAS misfires, similar to the
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Fig. 4: Simulations of the flight JT610, alongside a delta injection
with δ=15◦. The simulated flights are plotted against the flight path
of JT610.
deeper investigation of how our proposed error model from
§ III impacts the simulated aircraft in the following section.

Before this deeper investigation, our case study reveals a
more interesting pattern that warrants a closer inspection. The
pilot of JT610 was capable of maintaining an altitude of ∼5250
ft. for ∼7 mins. If an immediate action was not taken by the
pilot, JT610 would have entered a nosedive almost immediately
(simulated in Fig. 4b). In fact, the pilot recovered the aircraft 21
times in a row before becoming overwhelmed and handing off
responsibility to the co-pilot, who ultimately failed to recover
the aircraft after the hand-off. Ultimately, the crash of JT610
was a combination of MCAS repeatedly activating and the
pilot becoming too tired to manually fight against MCAS
automatically trimming the HS. In other words, this case study
underscores the pilot’s capability of manually recovering an
aircraft from rare false-positive activation of MCAS.

Conclusion for CHALLENGE−❶: We provide an
open-source MCAS toolkit built on the JSBSim flight
simulator and MATLAB Simulink. We verify the
correctness and usefulness of the simulations and
include guidelines for using this toolkit.

VI. STRESS TESTING BOEING MCAS

Using the erroneous sensor injection tool included as part
of our simulation toolkit presented in § V, we try to cause
failures on MCAS to reveal the precise conditions under which
dangerous control of the aircraft is possible. Moreover, we have
the pilot cause a stall in order to evaluate whether MCAS can
mitigate the dangerous control. Such stress testing incorporates
the error model from § III. Doing so leads to a conclusion for
CHALLENGE−❷.



(a) Sudden error flight paths. (b) Delta error flight paths.

(c) Gradual error flight paths. (d) Pilot-induced stall flight paths.

(e) Pilot can have some variability in their response time and exerted
effort on the HS hand-crank. This figure examines the impact of
this variability on aircraft recovery. The recoverability of the flight
is not dictated by the pilot’s reaction speed and rotation of the HS.

Fig. 5: Summary of the stress test simulation for MCASold.

A. Methodology for Stress Tests

For the sudden and delta errors, we conduct three stress
tests for each error: (1) δ∈ [0,90] for time range t∈ [100,150],
pilot reacts after 5s; (2) δ=18◦ for time range t∈ [100,tend],
tend∈ [110,180], pilot reacts after 5s; and (3) δ=18◦ for time
range t∈ [100,150], pilot reacts ∈ [0,10]s. For each stress test,
we perform a parameter sweep using binary search in order to
find the boundary for which the aircraft is no longer recoverable.
The ranges for these test are chosen based on the physical
limitations of the aircraft and pilot. For instance, while δ may
theoretically be higher than 90◦, the aircraft will never pitch
high enough for this to be the case.

For the gradual errors, we conduct three experiments, one
for each of linear, quadratic, and logarithmic functions. The
controlled settings for these stres tests are, respectively, (1)
f(t) = at where a ∈ [0, 3] and pilot reaction after 5s; (2)
f(t) = alog(t) where a ∈ [0,500] and pilot reaction after 5s;
and (3) f(t)=at2 where a∈ [0,3] and pilot reaction after 5s.

The goal of these stress tests is to see whether MCAS will
incorrectly activate (i.e., actives when no stall is occurring).
When MCAS incorrectly activates, the pilot is providing a
normalized elevator input of -0.1 and their reaction is to re-trim
the HS at a rate of 3.5 RPS.

To incorporate dangerous pilot behavior, we perform two sep-
arate stress tests. (1) We simulate a pilot pitching up the aircraft
∈ [20,90]◦ in order to cause a stall. 5s after the stall occurs
(i.e., MCAS correctly activates), the pilot begins recovery of the
aircraft, which follows a pitch-down of the aircraft to gain speed,
then a pitch-up followed by trimming the HS. (2) We simulate a
pilot’s recovery time in order to test the timing aspect of the re-
covery. The pilot pitches up the aircraft 50◦ to cause a stall. After
MCAS activates, we vary the recovery reaction time ∈ [0,10]s.

We provide further investigation into the impact that the
variable pilot behavior may have on the timing analysis. Our
analysis is shown in Fig. 5e. The x axis is the pilot reaction
time, τsensing , in the range of 0.1 to 7s. The y axis is the

Stress Test
MCAS MCASold MCASnew SA-MCAS

Sudden Val 17◦ No failure No failure
Sudden Duration 140.5450s No failure No failure
Sudden Recovery 2.7991s No failure No failure

Delta Val 13.8750◦ No failure No failure
Delta Duration 140.5450s No failure No failure
Delta Recovery 2.7991s No failure No failure
Gradual Linear 1.5000 No failure No failure
Gradual Log 222.5000 No failure No failure

Gradual Quadratic 1.4999 No failure No failure
Stall Pitch 51.5497◦ 46.2531◦ 51.5497◦

Stall Recovery 5.6333s 3.9084s 5.6333s

TABLE III: Summary table of the results from our stress test of each
MCAS. Each row is associated with a particular stress test. Details
on these tests are reported in § VI-A. Each entry is the lower bound
for failure, and the higher numbers are better.
component of τaction that is under the pilot’s control, the RPS
of the HS hand-crank, which is in the 0.1 to 4 RPS range.

B. Stress Test of MCASold

The summary of the results for the stress test of MCASold

may be found in Fig. 5 and the first column of Tbl. III.
1) Sudden & Delta Sensor Errors. For the variant of these

tests that increase the measurement error incrementally, the
plane was irrecoverable when the error is large enough to start
triggering MCASold, i.e., the measurement error causes the AoA
value to exceed 17◦. This is primarily due to the simulated pilot
responding too late. For the tests that stress the measurement
error duration, the results are similar; after MCASold activates
a third time, the pilot is unable to recover the aircraft. This
result is consistent with what was observed in the crashes of
JT610 and ET302 — after the third activation, MCASold has
displaced the location of the HS substantially enough to make
the aircraft irrecoverable. Finally, we observe that no matter the
response time of the pilot, the flight cannot be recovered if a
measurement error is sustained for a long enough period of time.

2) Gradual Sensor Errors. For the case of the gradual sensor
measurement error, MCASold is only capable of preventing a



(a) Sudden error flight paths. (b) Delta error flight paths.

(c) Gradual error flight paths. (d) Pilot-induced stall flight paths.

(e) Pilot can have some variability in their response time and exerted
effort on the HS hand-crank. This figure examines the impact of
this variability on aircraft recovery. The recoverability of the flight
is dictated by the pilot’s reaction speed and rotation of the HS.

Fig. 6: Summary of the stress test simulation for MCASnew.

crash when the log function and the linear function are param-
eterized with a<222.5 and a<1.5, respectively. The quadratic
case only has successful recovery when a<1.5. This means that
a moderately gradual drift in measurement error may incorrectly
invoke MCASold and cause the aircraft to be irrecoverable.

3) Pilot Stalling. Our investigation into pilot stalling reveals
that with the assistance of MCASold the factor most important
is the pilot’s reaction time. When the pilot has a reaction time
of 5s, all pitch angles from 20◦ to 50◦ have recoverable stall
events. On the other hand, with a pitch angle of 50◦, the stall
event is recoverable when the pilot reacts in at most 5.63s.
After 5.63s, none of the flights are recoverable.

4) Deadline & Timing Analysis. The stall recovery test
demonstrates that an MCASold-assisted recovery of the stall
is only possible when the pilot reacts within ∼5.63s. We
investigate this further in Fig. 5e. We find that the pilot reaction
time is the main contributor to aircraft recovery. Interestingly,
it is inconsequential how much effort the pilot exerts toward
recovery, i.e., the number of rotations per second on the
hand-crank that adjusts the HS. Also, notably, the sudden and
delta errors clearly are irrecoverable when the pilot reacts to
the incorrect MCASold activation too late (e.g., our set 5s for
the experiments). If the pilot responds quickly, recovery is still
possible. The pilot, therefore, has stricter reaction constraints for
safe recovery of the aircraft when MCASold falsely activates.

C. Stress Test of MCASnew
The summary of the results for the stress test of MCASnew

may be found in Fig. 6 and the second column of Tbl. III.
1) Sensor Errors. For MCASnew, all flight paths are recovered

for the sensor measurement error tests. This is consistent with
Boeing’s claims and is unsurprising since our stress tests only
cause measurement error in one of the two AoA sensors. In other
words, just comparing the difference between the two sensor
measurements is sufficient. However, if both AoA sensors have a
similar measurement error, MCASnew is not sufficient. Trivially,
this is not detectable nor recoverable by MCASold since it only

uses one of the AoA sensors. In § VII we show how SA-MCAS
is capable of recovery against this class of measurement error.

2) Pilot Stalling. Consistent with our initial investigation in
Fig. 2, we find that because MCASnew is functionally only
allowed to activate once, there are stall events during a high
pitch-up that render the flight unrecoverable. With MCASold,
these flights were recoverable because of its repeated assistance.
Moreover, with the fixed pitch angle set to 50◦, the stall event
is only recoverable if the pilot responds in ∼ 3.9s. This is
∼31% decrease in the total time the pilot had previously to
recover from a similar stall event with MCASold.

3) Deadline & Timing Analysis. For MCASnew, the amount
of time that the pilot has to respond to a stall event is reduced
by nearly 2s. While there are clear gains from eliminating the
pathway for these errors to occur, enforcing such restrictions on
the MCAS activation places burdens on the pilot. We conduct
an in-depth analysis of the pilot’s influence toward recovery
in Fig. 6e. The results are consistent with those we observe in
Fig. 5e. It also demonstrates that the time the pilot can respond
to recover the aircraft is consistently reduced.

Conclusion for CHALLENGE−❷: We demonstrate a
series of control threats outside of those that caused the
original 737-MAX crashes. We also demonstrate that
the new Boeing MCAS design is susceptible to the newly
identified control threats from the pilot. Our analysis
unveils precise upper bounds for aircraft recoverability
during erroneous MCAS events.

VII. EVALUATION OF SA-MCAS
With an available simulator for streamlining the design and

evaluation of MCAS programs (§ V) and well-defined failure
scenarios (§ VI), we must consider a solution that merges
the strengths of both MCASold and MCASnew. Unlike the
prior versions of MCAS, our solution, SA-MCAS, does not
incorporate a static assignment of control authority during control



(a) Sudden error flight paths. (b) Delta error flight paths.

(c) Gradual error flight paths. (d) Pilot-induced stall flight paths.

(e) Pilot can have some variability in their response time and exerted
effort on the HS hand-crank. This figure examines the impact of
this variability on aircraft recovery. The recoverability of the flight
is not dictated by the pilot’s reaction speed and rotation of the HS.

Fig. 7: Summary of the stress test simulation for SA-MCAS.

conflicts. Here, we evaluate our implementation of SA-MCAS.
By doing so, we seek a conclusive answer to CHALLENGE−❸.
The summary of the results for the stress test of SA-MCAS may
be found in Fig. 7 and the third column of Tbl. III. SA-MCAS
is implemented using Alg. 1, which was detailed in § IV.

A. Sensor Errors.
For sensor errors of any type (i.e., sudden, delta, or gradual

errors), SA-MCAS provides the correct control of the aircraft’s
HS in every single modeled sensor measurement error scenario
that we outlined in § VI-A. Unlike MCASold, SA-MCAS is
capable of preventing sensor measurement errors from causing
dangerous MCAS control. Furthermore, because Alg. 1 has two
layers of internal and external redundancy, SA-MCAS can prevent
erroneous activation when both AoA sensors have measurement
error. This was not possible with either MCASold or MCASnew.

B. Dangerous Pilot Behavior.
To evaluate SA-MCAS on dangerous pilot behavior, we simi-

larly use our simulated pilot maneuvers from § VI-A. Comparing
the results in Fig. 7e to MCASnew, SA-MCAS does not reduce
the amount of time the pilot has to respond in order to success-
fully recover the aircraft. Here, the results mirror the strengths
of MCASold. These simulations demonstrate that SA-MCAS’s
ability of utilizing the strengths of the prior MCAS versions,
and hence enabling an overall safer autonomous control system.

C. Deadline & Timing Analysis.
Reverting the decision to only allow MCAS to activate

once, SA-MCAS returns to the stall-prevention capabilities
of MCASold. Thus, the pilot has nearly 2s more time than
MCASnew to react to a stall event with SA-MCAS, a ∼44%
increase. The FAA guidelines say that the pilot should react
to a major failure within 3s, but their flight training materials
say that it is likely for a pilot to take even longer to respond.
For instance, in the crashes of JT610 and ET302 the pilots
were distracted and could not respond within 3s. The benefit

of providing the pilot with more time to respond cannot be
understated: in realistic scenarios for a safety-critical system
it can be between life and death.

Conclusion for CHALLENGE−❸: We present the
evaluation of SA-MCAS, an MCAS that is capable of
resolving control conflicts between the manual and
automatic input. It is less susceptible to the previously
identified control threats, increasing the upper bounds
on the conditions for aircraft recoverability.

VIII. DISCUSSION

Below we discuss limitations of our work and potential
directions for addressing them. For the cases where iterative
improvements to SA-MCAS may be available, we leave these
as future work.

Prevention of Dangerous Pilot Input is Effective in a
Limited Scope of Conditions. As we alluded to in § VII-B, there
is a limited scope of conditions where SA-MCAS is incapable
of recovering an aircraft from dangerous input. Generally, these
simulations involve a pilot reaction time greater than 6s. In
order to overcome this limitation, MCAS would require greater
control authority, which the FAA would need to first approve.
Given the constraint of how MCAS is currently allowed to
operate, such a drawback may be acceptable. As mentioned in
§ VII-C, SA-MCAS improves the state-of-the-art by improving
the maximum pilot reaction time by nearly 2s while avoiding
sensor failures and being capable of handling multiple sensors
failing at once.

Passenger Trust. In the aftermath of the Boeing 737-MAX
crashes, passenger trust towards the 737-MAX aircraft has
slowly recovered. The main contributor to this revival of trust
has been from dropping MCAS as a tool that is capable of
having authority to autonomously control the pitch of the aircraft.
However, Boeing continues fall under scrutiny due to arising
safety concerns for the 737-MAX. One drawback of our work



is its assumption of regaining the trust of such passengers with
a dynamic authority SA-MCAS. However, we note that the
airline industry is not the only one facing this challenge—the
autonomous vehicle industry has faced several controversies
due to issues in the self-driving algorithms that lead to deadly
accidents.

While restoring public trust in autonomous systems is outside
the scope of this paper, we acknowledge the drawback that this
issue presents to SA-MCAS. In order to regain this trust, we
propose that a system such as SA-MCAS should be introduced
in such a way that would (1) educate the pilot on its autonomous
functions and limitations so the pilot will not over-trust MCAS,
and (2) give the pilot the capability to disable SA-MCAS in
the event that issues with the algorithm arise. Before ever being
put into the air, SA-MCAS should also go through hundreds
of simulated flight hours with real pilots in order to establish
trust with regulation agencies such as the FAA. While this
may be seen as contradictory to our original motivation, it may
still be a necessary measure. In fact, our argument is about the
controller capabilities and conflict, e.g., with respect to MCAS
itself. If the pilot chooses to disable MCAS altogether, then
this is outside the scope of our goals.

IX. CONCLUSION

In this paper, we introduced SA-MCAS, a system for deciding
who to trust when a human pilot and the autonomous MCAS mod-
ule of the Boeing 737-MAX are in disagreement. Our analysis of
the control risks of MCASold and MCASnew shows the need for
an MCAS that can arbitrate control. We demonstrate SA-MCAS’s
capability of providing the correct control input in all cases of
injected erroneous sensor values as well as many instances of
dangerous pilot behavior, matching the best performance of both
MCASold and MCASnew. Our results suggest that it would be
beneficial for the flight control computer of a Boeing 737-MAX
to include a system like SA-MCAS, serving as an integrity
checker that achieves the FAA’s flight directive [18].

REFERENCES

[1] Federal Aviation Administration. (2019) Emergency Order of Prohibition.
[Online]. Available: https://web.archive.org/web/20230417205843/https:
//www.faa.gov/news/updates/media/Emergency Order.pdf

[2] Boeing. (2019) 737 MAX Software Update. [Online]. Available: https://
www.boeing.com/commercial/737max/737-max-software-updates.page

[3] D. Gates and M. Baker, “The Inside Story of MCAS: How Boeing’s 737
MAX System Gained Power and Lost Safeguards,” The Seattle Times, 2019.

[4] P. Lemme. (2021) Mid-Value Select (MVS): Goldilocks
in the House of MCAS. [Online]. Available: https:
//www.satcom.guru/2021/01/mid-value-select-mvs-goldilocks-in.html

[5] C.-Y. Chen, “Context-Aware Detection and Resolution of Data Anomalies
for Semi-Autonomous Cyber-Physical Systems,” Ph.D. dissertation,
University of Michigan, 2022.

[6] L. Xue, Y. Liu, T. Li, K. Zhao, J. Li, L. Yu, X. Luo, Y. Zhou, and G. Gu,
“SAID: State-Aware Defense Against Injection Attacks on In-Vehicle
Network,” in USENIX Security Symposium, 2022.

[7] F. Guo, Z. Wang, S. Du, H. Li, H. Zhu, Q. Pei, Z. Cao, and J. Zhao,
“Detecting Vehicle Anomaly in the Edge via Sensor Consistency and
Frequency Characteristic,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 6, 2019.

[8] N. T. Curran, A. Ganesan, M. D. Pesé, and K. G. Shin, “Using Phone
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