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Abstract—This paper presents a novel approach to the safety
verification of hybrid systems by synthesizing neural barrier
certificates (BCs) via counterexample-guided neural network
(NN) learning combined with sum-of-square (SOS) based ver-
ification. We learn more easily verifiable BCs with NN poly-
nomial expansions in a high-accuracy counterexamples guided
framework. By leveraging the polynomial candidates yielded
from the learning phase, we reformulate the identification of
real BCs as convex Linear Matrix Inequality (LMI) feasibility
testing problems, instead of directly solving the inherently NP-
hard non-convex Bilinear Matrix Inequality (BMI) problems
associated with SOS-based BC generation. Furthermore, we
decompose the large SOS verification programming into several
manageable sub-programmings. Benefiting from the efficiency
and scalability advantages, our proposed approach can synthesize
barrier certificates not amenable to existing methods and handle
more general hybrid systems.

Index Terms—Safety verification, Hybrid system, Polynomial
neural barrier certificate, Counterexample guidance

I. INTRODUCTION

Cyber-physical systems (CPS) seamlessly integrate physi-
cal components and software systems, allowing modeling

as hybrid systems that describe the interaction of discrete
transitions and continuous dynamics. With widespread appli-
cations in safety-critical domains such as air traffic control,
automotive systems, and unmanned aerial vehicles, the safety
verification of hybrid systems has garnered significant atten-
tion. In principle, the goal of safety verification is to assess
whether a system, starting from an initial region, evolves into
states that violate the desired safety properties.

Ensuring the safety of hybrid systems poses a formidable
challenge. Many research efforts have been devoted to barrier
certificate generation to handle the safety verification problem.
A barrier certificate is a real function of state that separates
the unsafe region from all system trajectories starting from a
set of initial states [1]. As the existence of barrier certificate
provides a safety guarantee, the problem of safety verification
can be converted to barrier certificate synthesis. Compared
with reachable set computation [2], barrier functions give more
exact results over an infinite horizon.
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Barrier certificates (BCs) must consistently evaluate to
nonnegative or negative values, regardless of their specific
type. The conventional computational approach involves for-
mulating a sum-of-squares (SOS) program for BC generation,
which results in a bilinear matrix inequality (BMI) problem, a
known NP-hard challenge [1], [3]. To make this problem more
tractable, convex SOS relaxation techniques are employed,
which convert the non-convex BMI problem into a convex
Linear Matrix Inequality (LMI) one by fixing certain multi-
pliers. Nonetheless, this approach may introduce conservatism
in the verification conditions, potentially rendering solutions
to the original BMI problem inaccessible within the derived
LMI framework. Recently, data-driven methods that integrate
BC learning with verification processes have emerged as a
promising alternative. Zhao et al. initially developed neural
BCs for continuous systems [4]. Peruffo et al. [5] made the
pioneering effort to synthesize neural BCs for switch hybrid
systems using a Counterexample-Guided Inductive Synthesis
(CEGIS) [6] engine. However, their method was constrained
by high-dimensional tasks due to limitations of the interval-
based dReal [7] verifier. Zhao et al. [8] addressed scalability
issues in solving neural BCs by substituting the less scalable
SMT solver with an SOS-based verification approach, yet their
method remains inadequate for handling hybrid systems.

This paper focus on synthesizing polynomial neural BC
for each location in more general hybrid system encom-
passing guard conditions and reset functions. We propose
a novel counterexample-guided framework that incorporates
high-accuracy counterexamples refinement. In the BC learn-
ing phase, we employ interpretable polynomial NNs [9] to
capture high-order nonlinear relationships among input vari-
ables through polynomial transformations and expansions, to
facilitate more efficient acquisition of highly expressive and
easily verifiable polynomial BCs of arbitrary degrees. During
the verification phase, we convert the inherently non-convex
BMI problem of BC generation into a convex LMI feasibil-
ity problem and further decompose large SOS programming
into several manageable sub-programmings, which not only
reduces computational time but also enhances the potential to
identify more solutions beyond the reach of existing methods.

The main contributions of this paper are summarized as
follows:

• Our proposed novel counterexample-guided framework
combines polynomial neural BC learning and efficient
SOS-based verification, which generates easily verifiable
BC refined by high-accuracy counterexample set con-
structed by computing a minimum-volume ellipsoid.
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• The SOS-based BC verification approach guarantees for-
mal soundness, offering lower computational complexity
than non-convex BMI problem and uncovering more fea-
sible solutions compared to conventional LMI relaxation
method for BC generation.

• We implement a tool named SynHbc and evaluate its
performance on a series of benchmarks. The experi-
ments demonstrate our SynHbc proves superior effec-
tiveness and practicality compared with conventional
BMI and LMI-based methods, as well as state-of-the-art
counterexample-guided neural BC synthesis approaches.

The rest of the paper is organized as follows. We start by
defining hybrid systems and safety in Section II. Section III
illustrates how to transform the problem of barrier certificate
generation into a BMI-solving problem. Section IV introduces
the framework for synthesizing polynomial neural barrier
certificates of hybrid systems. Section V presents experimental
evaluations of our algorithm over a set of benchmark exam-
ples. Section VI reviews related work, and we discuss the
limitations and conclude the paper in Section VII.

II. PRELIMINARIES

Notations. Let R be the real numbers field and N be
the natural numbers. Let the symbol R[x] := R[x1, . . . , xn]
represent the polynomial ring with coefficients in R over the
variable x = [x1, . . . , xn]

T , and R[x]m denote the polynomial
ring vector in m-dimensional. R[x]d is the set consisting of
all real polynomials in x with degree at most d. Sn denotes
the set of n× n symmetric matrices, and the notation B ⪰ 0
means that the matrix B ∈ Sn is positive semidefinite. Let
Σ[x] ⊂ R[x] define the space of SOS polynomials. The
notation Σ[x]d refers to the d-th truncation of Σ[x], defined
as Σ[x]d := Σ[x] ∩ R[x]d.

A continuous dynamical system is modeled by a finite
number of first-order ordinary differential equations

ẋ = f(x), (1)

where ẋ represents the derivative of x with respect to the time
variable t and f(x) = [f1(x), . . . , fn(x)]

T denotes the vector
field defined on the state space Ψ ⊆ Rn. The vector field f
satisfies the local Lipschitz condition, ensuring that for a given
initial state x(0) = x0, there exists a time T > 0 and a unique
function τ : [0, T ) 7→ Rn such that τ(t) = x(t). The trajectory
of (1) from x0 is also denoted as x(t).

Hybrid systems demonstrate a combination of continuous
dynamics and discrete transitions. We adopt the notion of
hybrid automaton [10] to model hybrid systems as follows:

Definition 1 (Hybrid System): A hybrid system is defined
as a tuple H : ⟨L,X, F,Ψ, E,G,R,Θ, ℓ0⟩,where

• L, a finite set of locations;
• X ⊆ Rn is the continuous state space. The hybrid state

space of the system is defined by X = L×X and a state
is defined by (ℓ,x) ∈ X ;

• F : L → (Rn → Rn), assigns to each location ℓ ∈ L a
locally Lipschitz continuous vector field fℓ;

• Ψ assigns to each location ℓ ∈ L a location invariant
Ψ(ℓ) ⊆ Rn;

• E ⊆ L× L is a finite set of discrete transitions;
• G assigns to each transition e ∈ E a switching guard
Ge ⊆ Rn;

• R assigns to each transition e ∈ E a reset function Re :
Rn → Rn;

• Θ ⊆ Rn, an initial continuous state set;
• ℓ0 ∈ L, an initial location. The initial state space is

defined by ℓ0 ×Θ.
The hybrid system undergoes evolution through either a

discrete transition or a continuous flow. During a continuous
flow, the system remains within a location ℓ, and its continuous
state variables x evolve according to the differential equation
ẋ = fℓ(x) while adhering to the location invariant x ∈ Ψ(ℓ).
An allowed transition e = (ℓ, ℓ′) in E enables the system
to transit from one location ℓ to another ℓ′, subject to the
satisfaction of the switching guard Ge by the state variables
x. Furthermore, the reset function Re assigns new values to
the state variables x during this transition.

In this paper, the vector fields corresponding to the hybrid
system are expressed as polynomials. The semi-algebraic sets
Ψ(ℓ),Ge,Θ in H are represented by polynomial equations and
inequalities. For clarity sake, we denote Ψ(ℓ), Ge, and Θ as

Ψ(ℓ) : = {x ∈ Rn |ψℓ,1(x) ≥ 0, . . . , ψℓ,r(x) ≥ 0},
Ge : = {x ∈ Rn | ge,1(x) ≥ 0, . . . , ge,s(x) ≥ 0},
Θ : = {x ∈ Rn | θ1(x) ≥ 0, . . . , θq(x) ≥ 0},

where ℓ ∈ L, e ∈ E and ψℓ,j(x), ge,k(x), θi(x) are vectors
of polynomials, with the inequalities being satisfied entry-
wise. Furthermore, these semi-algebraic sets are assumed to
be compact. Suppose that the location ℓ has an unsafe region
Ξ(ℓ), which is a compact semi-algebraic set:

Ξ(ℓ) := {x ∈ Rn | ξℓ,1(x) ≥ 0, . . . , ξℓ,p(x) ≥ 0},

where ξℓ,v(x) ∈ Rn, 1 ≤ v ≤ p. The safety of hybrid system
H can be defined with respect to the unsafe region Ξ(ℓ).

Definition 2 (Safety): For a hybrid system H :
⟨L,X,F,Ψ, E,G,R,Θ, ℓ0⟩ with a predefined unsafe state set
Ξ(ℓ), the system H is considered safe if every trajectory of
H originating from the initial set ℓ0 ×Θ avoids reaching any
state specified by Ξ(ℓ).

For safety verification of hybrid systems, barrier certificate
plays a crucial role. A barrier certificate maps all reachable
states to nonnegative reals and all unsafe states to negative
reals. In the following theorem, we define an exponential-type
barrier certificate of a hybrid system modified from [11].

Theorem 1: Let H : ⟨L,X,F,Ψ, E,G,R,Θ, ℓ0⟩ be a hybrid
system and Ξ(ℓ) be an unsafe region. Let λℓ(x) be given
polynomials for all ℓ ∈ L, and γe(x) be given nonnegative
polynomials for all e ∈ E. If there exists a polynomial
Bℓ(x) ∈ R[x] for each location ℓ ∈ L, which satisfies the
following conditions:

(i) Bℓ0(x) ≥ 0 ∀x ∈ Θ,
(ii) LfBℓ(x) − λℓ(x)Bℓ(x) > 0 ∀x ∈ Ψ(ℓ), here

LfBℓ(x) denotes the Lie-derivative of Bℓ(x) with
respect to the vector field fℓ(x), i.e., LfBℓ(x) =∑n

i=1
∂Bℓ

∂xi
· fℓ,i(x),
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(iii) Bℓ′(x
′) − γe(x)Bℓ(x) ≥ 0 ∀x′ = Re(x) ∀x ∈

Ge, ∀e = (ℓ, ℓ′) ∈ E,
(iv) Bℓ(x) < 0 ∀x ∈ Ξ(ℓ),

then Bℓ(x) is as a barrier certificate at the location ℓ, thereby
ensuring the safety of the hybrid system H.

Proof 1: Condition (i) ensures the nonnegativity of Bℓ0(x)
on Θ. Condition (ii) implies that LfBℓ(x) > 0 whenever
Bℓ(x) ≥ 0, ensuring that Bℓ(x) remains nonnegative over the
continuous flow. Given the non-negativity of γe(x), condition
(iii) ensures that Bℓ(x) will not reach negative values at any
discrete transition. Additionally, condition (iv) asserts that the
reachable states of H and the unsafe region Ξ(ℓ) do not
intersect. □

III. BMI FOR BARRIER CERTIFICATE GENERATION

The problem of barrier certificate generation is an inher-
ently infinite-dimensional problem. To make it amenable to
polynomial optimization, the barrier certificate Bℓ(x) should
be constrained to a set of priori degree-bound polynomials.
Investigating Theorem 1, verification conditions (i)-(iv) can
be formulated as nonnegativity constraints for polynomials
over the corresponding semi-algebraic sets. Given the degree
bound, one may construct the template of the polynomial
Bℓ(x) with parameterized coefficients. To find real-valued co-
efficients for Bℓ(x) involves solving a typical quantifier elim-
ination problem with polynomial equalities and inequalities
constraints, which involves high computational complexity.

To alleviate the computational challenge, the sum-of-square
(SOS) relaxation-based approach [3] can be utilized to ob-
tain Bℓ(x). This approach starts with sufficient verification
conditions expressed through SOS representations and pro-
ceeds by tackling semidefinite programming (SDP). Putinar’s
Positivstellensatz [12] provides a powerful representation for
polynomial positivity on semi-algebraic sets. According to the
(ii) and (iii) conditions of Theorem 1, where the parameters
of Bℓ(x) appear in the antecedent sides, the relevant SOS rep-
resentation using Putinar’s Positivstellensatz form non-convex
BMI constraints due to the polynomial product between the
barrier certificate and its polynomial multipliers. Subsequently,
we present a detailed review of the procedure for transforming
barrier certificate generation into BMI problem solving.

Initially, SOS relaxation is employed to represent the en-
tailment checking in BC conditions as an SOS program.
Indeed, all the conditions in Theorem 1 can be encoded as
non-negative constraints on polynomials over relevant semi-
algebraic sets, which relies on Putinar’s Positivstellensatz. To
achieve it, given a nonempty basic semi-algebraic set K(g) as:

K(g) = {x ∈ Rn | g1(x) ≥ 0, . . . , gs(x) ≥ 0}, (2)

where gj ∈ R[x], 1 ≤ j ≤ s. The quadratic module with
respect to g is then defined as:

M(g) := Σ[x] + g1Σ[x] + · · ·+ gsΣ[x].

Given a positive integer d, the d−th truncation of M(g) is
M(g)2d := Σ[x]2d+g1Σ[x]2d−deg(g1)+· · ·+gsΣ[x]2d−deg(gs).
M(g) is Archimedean if there exists a polynomial b(x) ∈
M(g) such that the set {x ∈ Rn| b(x) ≥ 0} is compact.

Theorem 2: [Putinar’s Positivstellensatz [12]] Let K(g) ⊂
R[x] be as in (2). Assume that the quadratic module M(g)
is archimedean. If f(x) > 0 on K(g), then we have f(x) ∈
M(g), i.e., f(x) can be represented as

f(x) = σ0(x) +

s∑
i=1

σi(x)gi(x), (3)

where σi ∈ Σ[x], 0 ≤ i ≤ s.
Following Theorem 2, the existence of the representation

(3) provides a sufficient and necessary condition for the strict
positivity of f(x) on the compact set K(g). However, the high
degrees of polynomials in (3) increase computational com-
plexity, presenting more challenge for the SOS representation
generation. To overcome this, we introduce a degree bound
2d and select the polynomial products in (3) accordingly. This
strategy allows the construction of a sufficient condition for
the nonnegativity of the given polynomial f(x) on the semi-
algebraic set K(g), that is, f(x) ∈M(g)2d. Concretely,

f(x) = σ0(x) +

s∑
i=1

σi(x)gi, (4)

where σ0(x) ∈ Σ[x]2d and σi ∈ Σ[x]2d−deg(gi), 1 ≤ i ≤ s.
Thus, the expression in (4) for the non-negative polynomial
f(x) on K(g) can be obtained by solving an SDP problem.

Notably, representation (4) ensures that a polynomial is
nonnegative on a given semi-algebraic set. At this point,
all conditions in Theorem 1 can be deduced as a unified
type, namely, non-negativity of the polynomial over a semi-
algebraic set. It implies the verification criteria can be simpli-
fied into more tractable form by the representation in (4).

Theorem 3: Let us examine the hybrid system H :
⟨L,X,F,Ψ, E,G,R,Θ, ℓ0⟩ with the unsafe set Ξ(ℓ) defined
previously. Consider the polynomials {Bℓ(x)}, and let d be a
positive integer. If there exist λℓ(x) ∈ R[x] and nonnegative
polynomial γe(x) ∈ R[x] with deg(λ) ≤ 2d, positive values
ϵℓ,1, ϵℓ,2 and vectors of sums-of-squares σ(x) ∈ Σ[x]2d,
ϕℓ(x) ∈ Σ2d[x], ηℓ(x) ∈ Σ[x]2d, δℓ(x) ∈ Σ[x]2d, such that
the following conditions are satisfied:

1) Bℓ0(x)− σ(x)θ(x) ∈ Σ[x]2d,
2) LfBℓ(x)− λℓ(x)Bℓ(x)− ϕℓ(x)ψℓ(x)− ϵℓ,1 ∈ Σ[x]2d,
3) Bℓ′(Re(x))− γe(x)Bℓ(x)− ηℓ(x)gℓ(x) ∈ Σ[x]2d,
4) −Bℓ(x)− δℓ(x)ξℓ(x)− ϵℓ,2 ∈ Σ[x]2d,

for each ℓ ∈ L and e = (ℓ, ℓ′) ∈ E. Then {Bℓ(x)} satisfy
the conditions in Theorem 1, thereby serving as the barrier
certificates of H, and the safety of H is ensured.

Proof 2: As stated in equation (3), the sum-of-square
representation demonstrates that the fulfillment of conditions
(1-4) leads correspondingly to the satisfaction of conditions
(i-iv) in Theorem 1. Therefore, the claim is proved. □

Considering the unknown multipliers λℓ(x) and γe(x),
along with the unknown barrier certificates {Bℓ(x)}, the
constraints in Theorems 3 introduce nonlinear terms that
involve products of coefficients from unknown polynomials.
This results in a non-convex BMI problem, which is essentially
NP-hard. To simplify the problem, a common approach is to
pre-specify the multipliers λℓ(x) and γe(x), thereby reducing
the BMI constraint into associated LMI one. Unfortunately, the
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Fig. 1: The framework of SynHbc.

relaxed LMI problem tends to be more conservative than the
original BMI problem. In other words, the overly conservative
verification conditions exclude barrier certificates that satisfy
non-convex conditions but not the stronger convex conditions.

This paper introduces a novel approach to directly tackle
the challenging BMI problem outlined above. Our method
integrates counterexample-guided NN learning and SOS-based
verification to effectively generate barrier certificates. By train-
ing NNs with polynomial expansions, we derive explicit scalar
polynomial barrier functions and their corresponding multipli-
ers. This enables us to utilize known {Bℓ(x)} in Theorem 3,
thereby simplifying the non-trivial BMI solving verification
phase to merely testing the feasibility of LMI problems
for identifying real BCs. Notably, our method ensures that
learned multipliers, as opposed to arbitrary ones, encompass
a broader spectrum of feasible BCs solutions, thus enhancing
effectiveness and practicality of barrier certificate generation
compared to traditional BMI or LMI-based approaches. A
comprehensive overview of our proposed framework is pro-
vided in the subsequent section.

IV. THE COUNTEREXAMPLE-GUIDED FRAMEWORK FOR
NEURAL BARRIER CERTIFICATE SYNTHESIS

In this section, we present an iterative framework named
SynHbc for synthesizing polynomial neural barrier certificates
for hybrid systems. The framework, depicted in Fig. 1, com-
prises three components: Learner, Verifier, and counterexam-
ple generator (short for Cex Generator). The Learner compo-
nent trains neural networks to generate barrier certificate can-
didates, while the Cex Generator computes counterexample
set to refine the spurious candidates identified by the Verifier,
ultimately yielding real ones with formal safety guarantee.

Completely, the Learner initially trains NNs in a data-
driven approach to generate polynomial-type BC candidates
that satisfy the verification conditions within finite sampled
datasets (more details are in Section IV-A). To ensure the
learned candidates correctness over entire dense state do-
mains, the Verifier adopts a formal method of establishing
Linear Matrix Inequalities (LMIs) constraints based on SOS
relaxation and identifies real BCs by solving LMI feasibility

testing problems (outlined in Section IV-B). In the case where
the verification process fails, the Cex Generator constructs
a counterexample set derived from computing a minimum-
volume ellipsoid through polynomial optimization (refer to
Section IV-C) and feeds it back to the Learner for refining
the spurious BC candidates. The BC synthesis process outlined
above adheres to an inductive procedure under counterexample
guidance (illustrated by the red lines in Fig. 1), ultimately
yielding real barrier certificates {Bℓ(x)} (followed the blue
lines in Fig. 1) for the hybrid system H.

A. The Learner

For a hybrid system H : ⟨L,X, F,Ψ, E,G,R,Θ, ℓ0⟩, the
first component, Learner, seeks to generate candidate barrier
certificate Bℓ(x) for each location ℓ. This involves structuring
a neural network, with reference to polynomial NN [9], for
forming a polynomial-type Bℓ(x) and concurrently training it
alongside the learnable parameters of the multipliers λℓ(x) and
γe(x). The training procedure incorporates datasets sampled
in batches from various regions within H, resulting in ℓ scalar
functions, {Bℓ(x)}, that closely approximate the conditions in
Theorem 1 and serve as barrier certificate candidates.

1) NN Architecture: Polynomial neural networks (e.g. Π-
Nets [13]) have been demonstrated to possess strong expres-
sive power, even yielding favorable outcomes across a plethora
of tasks and signals (such as images, graphs, and differential
equations [14], [15]) without employing nonlinear activation
functions (which may lead to challenging neural network
verification problems). Inspired by the polynomial NNs, we
aim to train polynomial BCs that can be directly applied to
effective SOS-based verification, thereby avoiding the non-
trivial verification of the nonlinear neural BCs (e.g. ReLU
NN forms). In the following, we propose a neural BC network
based on polynomial expansions to approximate polynomial-
type barrier functions.

Given a neural network associated with a location ℓ ∈ L
within the hybrid system H, which comprises input layer with
n neurons (where n denotes the dimension of fℓ), h hidden
layers, and a single-neuron output layer (for scalar output).
More precisely, our objective is to learn a polynomial function
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Fig. 2: A diagram of polynomial expansion modes from
different architectures. The yellow box means an affine func-
tion, ⊕ and ⊗ denote the addition and Hadamard product
(element-wise) operations, respectively. Subfigure 2a denotes
the fundamental first-order polynomial. Subfigure 2b describes
for the d-degree BC. Subfigure 2c and Subfigure 2d show
the 2d-degree BC composed of polynomial expansion and
traditional Square polynomial activation function.

approximator, where each element of the output is represented
as a polynomial with variables x = [x1, . . . , xn]

T in the input
layer. Let p(x) ∈ R[x] be a parametric polynomial with total
degree d, which can be expressed as

p(x) =
∑
α

bαx
α,

where xα = xα1
1 · · ·xαn

n is a monomial with |α| =
∑n

i=1 αi ≤
d, and bα is the unknown coefficient corresponding to xα.

[Polynomial Expansion]. Below, polynomials express a
relationship between input variables and (learnable) coeffi-
cients; this relationship only involves the two core operations
of addition and multiplication. Then the polynomial captures
the relationships between the different elements of the input
vector. The polynomial can either capture the interactions
across every element of the matrix with every other element.

Let us express the output p(x) as a polynomial expansion
with degree d and a n-dimensional input x ∈ Rn, that is,

p(x) = b+
∑
|α|=1

w[1]
α xα +

∑
|α|=2

w[2]
α xα + · · ·+

∑
|α|=d

w[d]
α xα,

where b ∈ R is the constant term, and wi
α is the coefficient cor-

responding to the monomial xα with degree i, 1 ≤ i ≤ d. We
adopt various modes as shown in Fig. 2 to consider the product
of low-degree polynomials as final result, aiming to efficiently
derive polynomial function p(x) serves as BC candidate with
improved expressive power and ease of verification.

As shown in Fig. 2, training a first-order polynomial
referenced as Fig. 2a yields a straightforward linear-type
BC. Fig. 2b provides a polynomial expression to form d-
dimensional BC by multiplying arbitrary network layer output
with first-order polynomial of input. Comparing Fig. 2c with
the Square activation function in Fig. 2d, the former polyno-
mial expansion mode enables the discovery of more expres-
sive 2d-degree BCs. That is attributed to Square activation

function [13] performs a single sum-of-square operation with
the same input parameters, whereas Fig. 2c introduces more
learnable parameters, mitigating network divergence from poor
initialization and enhancing the likelihood of successful BC
network training.

[Empirical loss function]. The BC learning process in-
volves adjusting the NN parameters by minimizing a loss
function that acts as a proxy for the conditions outlined
in Theorem 1, thereby progressively satisfying the Bℓ(x)
requirements. To avoid potential challenges posed by con-
ventional Lie-derivative condition on measure-zero set where
Bℓm(x) = 0 [16], we introduce auxiliary multipliers λm(x).
Additionally, we incorporate similarly learneable nonnegative
polynomial multipliers γe(x) to effectively manage transitions
e = (ℓm, ℓ

′
m). These considerations lead to a customized

empirical loss function, Lhyb = LI +LU +LD+LG, namely:

LI =
∑
x∈Θ

LI(x) =
∑

x∈SI

max{τ,−Bℓ0(x)},

LU=
∑

x∈Ξ(ℓ)

LU(ℓ)
(x) =

|ℓ|∑
m=1

∑
x∈SUm

max{τ,Bm(x)},

LD=
∑

x∈Ψ(ℓ)

LD(ℓ)
(x)

=
|ℓ|∑

m=1

∑
x∈SDm

max{τ,−(LfBm(x)− λm(x) ·Bm(x))},

LG=
∑

x∈Ge

LGe(x)

=
∑

e=(ℓ,ℓ′)

∑
x∈SGe

max{τ,−(Bℓ′(x
′)− γe(x) ·Bℓ(x))}

+
∑

e=(ℓ,ℓ′)

∑
x∈SGe

max{τ,−γe(x)},

where terms LI , LU , LD, and LG denote sub-loss functions
associated with the constraints of the initial, unsafe, Lie-
derivative, and guard conditions in Theorem 1, respectively.
SI , SU , SD, and SG are initial training datasets sampled
from regions Θ, Ξ, Ψ, G, which are iteratively enhanced by
incorporating counterexamples fed back from the inductive
loops. To minimize Lhyb, we employ the max{τ, ∗} function
to impose the penalties on each portion, where τ is a small
positive tolerances to ensure strict positive or negative of
the inequalities. We compute the above loss function in a
parallel fashion, and similarly, the generated counterexamples
are added to the relevant batch for further NN refinement.

2) Initial dataset sampling: The initial dataset plays a
crucial role in NN training, directly influencing the quality of
barrier certificate candidates generated in the first iteration and
potentially impacting the overall efficiency of the procedure.
To strike a balance between uniform samples in the inner space
and high-value boundary samples (which poses challenges
for continuous functions with predetermined properties), we
implement an innovative initial dataset sampling technique for
the following two typical state-space shapes:

(i) Box state-space: Considering a box sampling state-space
B, which is represented as B = {x ∈ Rn| |xi − ci| ≤ bi},
where xc = [c1, · · · , cn]T is the center of the box, and bi ∈
R>0, i.e.

B = {x ∈ Rn|x = xc +Du, ||u||∞ ≤ 1},

where D = diag(b1, · · · , bn).
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(a) Box (b) Ellipsoid

Fig. 3: Initial near-boundary samples (the red points) and inner
samples (the blue points) from box and ellipsoid state-spaces.

(ii) Ellipsoid state-space: Considering an ellipsoid sam-
pling state-space E , which is expressed as:

E = {x ∈ Rn|x = xc +Au, ∥u∥2 ≤ 1},

where xc is the center of the ellipsoid, and A is nonsingular.
Then, the near-boundary and inner sampling areas of the

box and ellipsoid state-spaces can be divided into:{
Bb = {x ∈ Rn|x = xc +D u, 1− ϵ ≤ ||u||∞ ≤ 1},
Bi = {x ∈ Rn|x = xc +D u, ||u||∞ < 1− ϵ},

{
Eb = {x ∈ Rn|x = xc +Au, 1− ϵ ≤ ||u||2 ≤ 1},
Ei = {x ∈ Rn|x = xc +Au, ∥u∥2 < 1− ϵ},

respectively, where ϵ is a small positive parameter used to
adjust the internal-external proportion, and the initial dataset
sampling results are illustrated in Fig. 3.

B. The Verifier

In the previous section, we demonstrated how the Learner
generates Bℓ(x) candidates for each location ℓ within a given
hybrid system H and unsafe region Ξ(ℓ). However, it is worth
mentioning that these candidates may not strictly satisfy the
conditions in Theorem 1 across the entire state space. Thus,
our focus shifts to identifying real barrier certificates that fulfill
all BC requirements. Concretely, given that the BC terms in
the BMI problem from Theorems 3 are now determined, the
verification process can be reformulated as the following LMI
feasibility testing problems:

find σ(x), δℓ(x), ϕℓ(x), ηℓ(x), λℓ(x), γe(x)
s.t. Bℓ0(x)− σ(x)θ(x) ∈ Σ[x]2d,
LfBℓ(x)− λℓ(x)Bℓ(x)

−ϕℓ(x)ψℓ(x)− ϵℓ,1 ∈ Σ[x]2d,
Bℓ′(x

′)− γe(x)Bℓ(x)− ηℓ(x)gℓ(x) ∈ Σ[x]2d,
−Bℓ(x)− δℓ(x)ξℓ(x)− ϵℓ,2 ∈ Σ[x]2d,

(5)

where ϵℓ,1, ϵℓ,2 ∈ R>0 are prespecified small positive numbers,
parameters σ(x) ∈ Σ[x]2d, δ(x) ∈ Σ[x]2d, ηℓ(x) ∈ Σ[x]2d,
ϕℓ(x) ∈ Σ[x]2d, and λℓ(x) is an arbitrary polynomial with
degree deg(λ) ≤ 2d whereas γe(x) is a positive one.

Furthermore, the large SOS programming (5) is equivalent
to several SOS programming sub-problems with fewer multi-
pliers, which can be tackled sequentially. More precisely, (5)
corresponds to the following (6-9) problems:{

find σ(x)
s.t. Bℓ0(x)− σ(x)θ(x) ∈ Σ2d[x]2d,

(6)

 find ϕℓ(x), λℓ(x)
s.t. LfBℓ(x)− λℓ(x)Bℓ(x)− ϕℓ(x)ψℓ(x)

−ϵℓ,1 ∈ Σ[x]2d,
(7)

{
find ηℓ(x), γe(x)
s.t. Bℓ′(x

′)− γe(x)Bℓ(x)− ηℓ(x)gℓ(x) ∈ Σ[x]2d,
(8)

{
find δℓ(x)
s.t. −Bℓ(x)− δℓ(x)ξℓ(x)− ϵℓ,2 ∈ Σ[x]2d.

(9)

Due to the equivalence between (5) and (6-9), solving the
sub-problems (6-9) allows us to determine the validity of
the BC candidates {Bℓ(x)} more efficiently. In case all sub-
problems are feasible, {Bℓ(x)} serve as real BCs. Otherwise,
{Bℓ(x)} may be considered spurious. Many SDP solvers,
such as MOSEK [17], SOSTOOLS [18] and YALMIP [19], are
available to solve the aforementioned SDP problems.

C. The Counterexample Generator

Expanding on the previous section, the failure of any
problems in (6-9) to find a feasible solution may indicate
the existence of counterexample (Cex) that renders the BC
candidates spurious. Therefore, if candidates {Bℓ(x)} do not
pass the verification, we will capture Cexs fed to the Learner
for retraining new BC candidates. Furthermore, recognizing
that a single Cex may not always offer insightful information
to NN updating, we aim to construct a Cex set for guidance.

We present an effective technique for computing a Cex set
based on polynomial optimization. This approach increases the
likelihood of finding more potential Cexs and improves their
overall quality. As a result, it is possible to reduce the number
of iterations in the inductive framework, ultimately enhancing
the efficiency of synthesizing neural barrier certificates. Infor-
mally, the construction of Cex set proceeds in two stages:

• [Computing the Cex center xc]: solve optimal solution
of polynomial optimization problem that most violates the
BC verification conditions as the worst Cex x̂. Then, the
midpoint xc (depicted in Fig. 4a) of the shortest distance
between x̂ and the candidate Bℓ(x) quadratic function is
computed as the Cex center.

• [Computing a minimum-volume ellipsoid E]: randomly
sample points from a δ-ball centered at xc, and then com-
pute a minimum-volume ellipsoid E (shown in Fig. 4c)
that encloses all filtered real Cexs (red points depicted in
Fig. 4b). Consequently, we can construct a high-accuracy
Cex set C from region E with an elevated probability of
encountering more real Cexs.
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(a) (b) (c)

Fig. 4: Schematic diagram of Cex set construction. The gray shadow shields part of the unsafe region separated by quadratic
function Bℓ(x), while the uncovered area is the Cex region. Subfigure 4a involves the Cex center xc between the computed
worst Cex x̂ and the point x̃ at Bℓ(x) nearest to x̂. Subfigure 4b shows random samples from a ball with center xc and
radius δ, filtering into real Cexs (the red points) and spurious ones (the blue points). Subfigure 4c illustrates the computed
minimum-volume ellipsoid E , covering larger Cex region with more real Cexs.

1) Computing the Cex center xc: Given the impracticality
of exploring all potential Cexs, our goal is first to identify
a worst Cex, denoted as x̂, which notably violates the BC
condition. For instance, consider the unsafe condition (iv) in
Theorem 1. If points exist in Ξ(ℓ) where Bℓ(x) ≥ 0, then it
may be assumed there are Cexs. We compute the worst Cex
x̂Ξ(ℓ) by solving the following optimization problem:{

maximize
x

Bℓ(x)

s.t. x ∈ Ξ(ℓ).
(10)

If the yielded Bℓ(x) optimal value P ∗ < 0, then there is no
Cex; otherwise, the variable value x at P ∗ is exactly the worst
Cex x̂Ξ(ℓ) we need.

To collect more accurate additional Cexs than those ran-
domly sampled outward from the worst Cex x̂ [8], and to
cover the largest possible real Cex region for constructing a
Cex set, we search for a point x̃ at Bℓ(x) = 0 nearest to x̂.
It can be achieved by solving optimization problem{

minimize
x

∥x− x̂∥2
s.t. Bℓ(x) = 0.

(11)

Then, we find the optimizer of (11), denoted by x̃, and
define the Cex center xc = x̂+x̃

2 and sample within a δ-ball
neighborhood as shown in Fig. 4b.

After filtering out spurious Cexs, it can be observed that
more random samples are falling into the Cex region and
those are the real Cexs (red points in Fig. 4c). Therefore, our
objective is to utilize this portion of samples to compute a
minimum-volume ellipsoid E , which covers more Cex region
than a simple ball with radius of ∥x̃−x̂∥2

2 . This facilitates
rapid sampling from within E to obtain more real Cexs for
constructing a high-quality Cex set.

2) Computing a minimum-volume ellipsoid E: Without loss
of generality, we denote the filtered real Cexs as a finite set

S = {x1, . . . ,xm} ⊆ Rn, then we consider the problem of
finding a minimum-volume ellipsoid E = {x ∈ Rn|∥Ax −
b∥2 ≤ 1}:

 minimize log detA−1

s.t. ∥Axi − bi∥2 ≤ 1, i = 1, . . . ,m,
A ≻ 0,

(12)

with variables A ∈ Sn and b ∈ Rn. Since the objective and
constraints are both convex, the optimization problem (12) is
convex, making it efficiently tractable. Once we compute Ã
and b̃ from (12) and determine minimum-volume ellipse as

E = {x ∈ Rn| ∥Ãx− b̃∥2 ≤ 1}.

For ease of sampling, the parameterized representation of E is
given as

E = {x ∈ Rn|x = (Ã)−1b̃+ (Ã)−1u, ∥u∥2 ≤ 1}.

Then we construct a high-quality Cex set C = {x1, . . . ,xk} ⊆
Rn, where the sampling points x1, . . . ,xk are chosen from E
randomly by setting ∥u∥2 ≤ 1, making them more likely to
be real Cexs. Thus the Cex set C may more effectively guide
the barrier certificate refinement.

D. Algorithm

In this section, we present Algorithm 1 to summarize
the procedure called SynHbc of synthesizing polynomial
neural barrier certificates for hybrid systems. In Line 6,
Learner(NN , λℓ(x), γe(x),S) denotes the training process
of BC candidates which is elaborated in Subsection IV-A;
In Line 8, Verifier(Bℓ(x),H,Ξ(ℓ)) shows the verification
process for checking validity of the learned candidates by solv-
ing SOS-based LMIs feasibility testing problems described
in Subsection IV-B; Line 11 to line 14 means the Cex set
construction by Cex Generator provided in Subsection IV-C.
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Theorem 4 (Soundness): If Bℓ(x) is the function produced
by Algorithm 1 for each ℓ ∈ L and e ∈ E, then {Bℓ(x)}
satisfies all conditions of barrier certificates of hybrid system
H in Theorem 1, and the safety of H is guaranteed.

Algorithm 1: SynHbc: Synthesizing hybrid system
barrier certificates.

Input: hybrid system H : ⟨L,X,F,Ψ, E,G,R,Θ, ℓ0⟩;
unsafe set Ξ(ℓ)

Output: {Bℓ(x)}: the real barrier certificates set
1 for each location ℓ ∈ L and transition e ∈ E do
2 bFeasible← FALSE
3 Initialize NN architecture of polynomial Bℓ(x)
4 Initialize learnable multipliers λℓ(x) and γe(x)
5 Encode initial dataset S ← SI , SU , SD, SG

6 Bℓ(x)← Learner(NN , λℓ(x), γe(x),S)
7 // Training BC candidates
8 bFeasible← Verifier(Bℓ(x),H,Ξ(ℓ))
9 // Identifying real BC

10 while bFeasible = FALSE and not timeout do
11 Compute point xc ← Cex Generator(Bℓ(x),H)
12 Compute ellipsoid E ← Cex Generator(xc)
13 Construct cex set C ← Sampling from E
14 // Generating counterexamples
15 S ← S ∪ C
16 Bℓ(x)← Learner(Bℓ(x), λℓ(x), γe(x),S)
17 bFeasible← Verifier(Bℓ(x),H,Ξ(ℓ))
18 end
19 return real barrier certificate Bℓ(x) of location ℓ
20 end
21 return {Bℓ(x)} of L locations in H

Proof 3: Consider a hybrid system H with locations ℓ, ℓ′

and transitions e=(ℓ, ℓ′), e′=(ℓ′, ℓ). The non-trivial quantifier
elimination problem for BCs generation under conditions (i)-
(iv) in Theorem 1 can be converted into an SDP problem by
SOS relaxation method [3] with degree bounded polynomial
products as (4) yield from Theorem 2. To tackle the resulting
non-convex BMI problem in Theorem 3, in Line 6, we form
Bℓ(x) and Bℓ′(x) as two polynomials by NN and trained
their candidates with the polynomial multipliers λℓ(x), λℓ′(x)
for condition (ii) and γe(x), γe′(x) over reset functions Re(x)
for condition (iii). Thus, the BMI problem is transformed as
an LMI problem in (5) with the known {Bℓ(x)} terms. In
Line 8, we just need to solve the LMI feasibility of (6-9) to
identify real BCs over the entire state-space and if the indicator
bFeasible is TRUE, then it is achieved. Otherwise, Lines
10 to 18 will repeat the counterexample-guided NN training
with the Cex set constructed by (10-12), until the Line 17 is
satisfied, and the Algorithm 1 will finally return real barrier
certificates {Bℓ(x)} = {Bℓ(x), Bℓ′(x)} for location ℓ and ℓ′.
Bℓ(x) means that H is safe at initial location ℓ, and Bℓ′(x)
means after discrete transformations between ℓ and ℓ′, H is
still safe at location ℓ′. Therefore, it is established from Lines
8 and 17 that the algorithm is sound. □

V. EXPERIMENTS

We have developed an automated tool named SynHbc for
synthesizing polynomial neural barrier certificates based on
Algorithm 1. In this section, we first demonstrate the appli-
cation of SynHbc in cases of continous and hybrid systems,
followed by ablation studies to evaluate our techniques. After
that, we compare SynHbc with state-of-the-art neural BC
synthesis tools and SOS-based BC generation tools. All exper-
iments were conducted on a Windows 11 machine equipped
with 32 GB RAM and an AMD Ryzen 9 7945HX CPU
running at 2.5GHz. The source code and more experimental
details (e.g. parameter settings, benchmarks) are available at
https://github.com/blliu6/SynHbc.

A. Case studies

Example 1. Consider the following continuous system [20]:ẋ1ẋ2
ẋ3

 =

 −x1 + x2 − x3
−x1(x3 + 1)− x2

0.76524x1 − 4.7037x3


with the state space Ψ = {x ∈ R3| − 2 ≤ x1, x2, x3 ≤ 2}.
Our goal is to confirm that all trajectories starting from the
initial set Θ = {x ∈ R3 |x21 + x22 + x23 ≤ 1}, will never enter
the unsafe region Ξ = {x ∈ R3|∥x − xc∥2 ≤ 0.5}, where
xc = [1.5, 1.5, 1.5]T .

SynHbc forms a degree-2 polynomial BC by a 3-10-1
structure NN with polynomial expansion mode in Fig. 2c,
where the neurons of each layer is separated by “-”. The initial
training datasets SI , SU and SD are constructed each with 500
samples to converge the loss function (τ = 0.01) by random
gradient descent. After first iteration, the learned BC candidate
shown in Fig. 5 is as follows:

B′(x) =− 3.526x2
1 − 3.746x2x1 − 2.392x1x3 + 1.959x1 − 4.565x2

2

− 2.797x2x3 + 0.310x2 − 3.912x2
3 + 0.551x3 + 6.977.

(a) (b)

Fig. 5: Synthesis process of BC candidate for Example 1.

As shown in Fig. 5a, the zero level set of B′(x) (the green
spine surface) does not separate Θ (the yellow ball) from Ξ
(the red ball), indicating the current candidate B′(x) is not a
real BC. Thus, we compute a minimum-volume ellipsoid E as
shown in Fig. 5b to capture the Cexs of B′(x). Specifically,
we first locate the worst Cex P3 : (−0.628,−0.613,−0.480),
the point P1 : (−0.555,−0.544,−0.426) on B′(x) nearest to

https://github.com/blliu6/SynHbc
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P3, and the Cex center P2 : (−0.591,−0.578,−0.453), then
we sample points around a δ-ball centered at P2 with radius
δ = γ · ∥P1−P3∥2

2 (scaling factor γ = 6) and filter real Cexs.
Finally, we compute a minimum-volume ellipsoid E illustrated
in Fig. 5 as E =

{
x ∈ R3| ∥Ax− b∥2 ≤ 1

}
, where

A =

 6.580 3.723 2.769
3.723 6.528 2.693
2.769 2.693 4.956

 , b =

 −7.038−6.991
−5.267

 ,
x = [x1, x2, x3]

T . Next, we construct a Cex set C with 100
data points sampled from E to guide the further BC candidates
retraining, ultimately obtaining a real BC after two iterations
as shown in Fig. 6b, where

B(x) =− 3.309x2
1 − 1.737x1x2 + 0.012x1x3 + 1.616x1 − 2.670x2

2

− 2.055x2x3 − 0.861x2 − 3.114x2
3 − 0.676x3 + 6.786.

(a) (b)

Fig. 6: Phase portrait of the system in Example 1. Subfigure 6a
describes the spurious BC candidate B′(x) with the minimum-
volume ellipsoid E . Subfigure 6b describes the real BC B(x).

Example 2. Consider following hybrid system [20] illus-
trated in Fig. 7, where

f1 =

[
−x1 + x1x2
−x2

]
, f2 =

[
−x1 + 2x21x2
−x2

]
.

The hybrid system is initiated at ℓ1 with Θ = {x ∈ R2|(x1 +
2)2+(x2−2)2 ≤ 0.25}. Our goal is to verify the system will
never enter the unsafe set Ξ(ℓ2) = {x ∈ R2|(x1−2)2+(x2−
2)2 ≤ 0.25} in location ℓ2.

21
1x=f (x)

2x=f (x)
1

2

5 0,

5 5

  
  

x

x
1

2

0 5,

5 5

 
  

x

x

2 2
1 2( 2) ( 2) 0.25   x x

2 2 2
1 2 0.75 x x

2 2 2
1 2 0.5 x x

1 1

2 2

,  
 

x x

x x

1 1

2 2

2,

1

  
  

x x

x x

Fig. 7: The hybrid automata of the system in Example 2.

Let the polynomial Bℓ1(x) and Bℓ2(x) configured as two
2-10-1 NN s with polynomial expansion mode in Fig. 2c.
Applying SynHbc, we derive two polynomial neural BCs, both

of degree 2, for the hybrid case after completing 3 iterations.
The BCs results visually represented in Fig. 8 are as follows:

Bℓ1(x) = 2.072x21 − 5.567x1x2 − 1.401x1 + 8.004x22

− 5.241x2 + 1.086,

Bℓ2(x) = −0.647x21 + 3.110x1x2 − 10.664x1 − 7.298x22

− 4.144x2 + 13.916.

(a) 2D (b) 3D

Fig. 8: Phase portrait of the hybrid system in Example 2.

B. Performance Evaluation of SynHbc

We conduct a series of ablation studies on representative
examples with our tool SynHbc, to evaluate the performance
of polynomial neural BC construction and the Cex generation.

1) Evaluation for the polynomial neural BC construction:
We compare our method with non-polynomial ReLU neural
BC synthesis based on SMT post-verification and the con-
ventional polynomial Square NN learning with SOS-based
verification. The experimental results are shown in Table I.

TABLE I: Performance Evaluation of NN Architecture

Ex. nxdf
Ours ReLU+SMT Square+SOS

I Tl Tv I Tl Tv I Tl Tv

H9 [21] 3 3 3 13.709 3.335 × × × × × ×
C3 [16] 2 2 2 2.287 0.306 1 0.631 0.003 × × ×
C8 [22] 3 2 2 1.293 0.566 2 0.066 0.232 2 3.146 1.366
C14 [16] 6 1 4 3.570 9.408 2 0.044 0.177 7 16.246 41.872
C15 [23] 6 2 3 4.226 8.420 5 1.883 6.097 3 16.818 20.231
C16 [24] 6 3 4 10.764 11.150 - - OT 3 18.827 17.866
C18 [16] 8 1 7 4.952 54.066 - - OT × × ×
C21 [25] 13 3 2 2.882 34.328 - - OT 2 5.237 68.179

In Table I, the number of the system variables is represented
by nx; the maximal degree of the polynomials in the vector
fields is denoted by df ; Tl denotes the time cost of NN training,
Tv denotes the verification time; “OT” indicates out of time
in 3600 seconds; × means 10 iterations failure.

As shown in Table I, while ReLU NN allows for faster
convergence and SMT-based verification is quick for low-
dimensional examples, the computational complexity of the
SMT solver leads to timeout failures as the dimension in-
creases. In contrast, the learned polynomial neural BCs, veri-
fied using the efficient SOS method, offer better scalability
for high-dimensional examples. Additionally, our approach,
leveraging various polynomial expansion modes, successfully
handled more examples than the neural network using a single
Square function activation.
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2) Evaluation for the counterexamples generation method:
We compare the performance of our minimize-volume ellip-
soid E based Cex cet construction method with randomly
sampling Cexs from a ball around worst Cex x̂. We also
consider the influence of the Cexs number in the Cex set.
The experimental results are shown in Table II.

TABLE II: Performance Evaluation of Cex Set Construction

Ex. nxdf

Ours Random
1 cex 100 cex 100 cex

I Tc Te I Tc Te I Tc Te

H9 3 3 10 0.746 56.019 3 0.371 17.415 4 0.113 21.140
C3 2 2 8 0.220 10.977 2 0.165 2.758 4 0.022 5.755
C8 3 2 2 0.041 1.897 2 0.125 1.984 2 0.015 1.896
C14 6 1 7 0.607 23.862 4 0.760 13.738 5 0.161 14.634
C15 6 2 6 8.367 27.402 3 10.014 22.660 6 5.630 35.789
C16 6 3 5 4.424 29.959 4 5.723 13.738 4 2.711 23.284
C18 8 1 13 1.567 111.512 7 1.852 54.066 10 0.657 85.596
C21 13 3 4 0.514 79.787 2 0.288 37.498 5 0.723 148.946

Table II shows that while our method may consume more
time in finding Cexs compared to the random way due to some
extra computation steps, it produces a higher-quality Cex set,
as reflected in fewer iterations and a shorter overall synthesis
time for the BC. Additionally, using a Cex set with multiple
Cexs proves to be more efficient than relying solely on the
worst-case Cex, which is consistent with our previous analysis
that individual Cexs may offer limited information.

C. Comparison with Existing Approaches

Our SynHbc tool, implemented in Python, was subjected
to a comparative evaluation with state-of-the-art CEGIS-based
neural BC synthesis Python tools FOSSIL [5], [16] and
SynNBC [8], which relies on the verification of δ-complete
dReal solver (where δ=0.0001) and SOS-based Verifier, re-
spectively. Additionally, to assess the performance of SOS
relaxation method incorporated into our tool, we compared
SynHbc against conventional SOS-based BMI problem solving
(by tool PENBMI [26]) and SOS-based LMI problem solving
(by tools SOSTOOLS [18] and YALMIP [19]) methods for
BC generation. Among the experiment benchmarks, examples
H1 ∼ H10 are all hybrid systems, while C1 ∼ C26 represent
continuous systems. The performance is reported in Table III.

In Table III, the number of system variables is denoted by
nx; the maximal degree of the polynomials in vector fields
is denoted by df , and the degree of BC is denoted by dB .
The time spent on BC learning and verification is recorded
by Tl and Tv , respectively. And Tc(S) in the SynHbc column
means the time cost of Cex generation in Algorithm 1. For
ease of comparison, we form the BC network architecture
for FOSSIL and SynNBC as a unified one hidden layer NN
with input neurons equal to nx and output layer with a single
neuron, and ϕ records the optimal NN activation function in
FOSSIL. The total amount of time spent of each approach
is denoted as Te(S), Te(F ), Te(N), Te(P ), or Te(L), where
Te(S) = Tl(S)+Tc(S)+Tv(S) and Te(F ) = Tl(F )+Tv(F ).
Moreover, Is, If and In are the numbers of iterations. “OT”
signifies a timeout after 3600 seconds. The symbol “×” indi-
cates the case cannot be handled, or that tools like PENBMI,

SOSTOOLS, and YALMIP fail to provide a feasible solution
within an empirical deg(B) ≤ 6.

Table III shows that for the 36 examples, our SynHbc
successfully handle 34 of them including all 10 hybrid sys-
tems, while the number of successful examples for FOSSIL,
SynNBC, BMI and LMI are 17, 13, 16 and 17, respectively.
This effectiveness highlights SynHbc as a valuable comple-
ment to existing tools. In Table III, although BMI-based
and LMI-based methods can cover 22 examples, SynHbc is
necessary to solve the remaining 14 ones. We use PENBMI di-
rectly tackles non-convex BMI problems to produce BCs, and
evaluate SOSTOOLS&YALMIP with polynomial multipliers of
deg(B) ≤ 2 in 10 tests for adopting a more conservative LMI
approach, where the best results are recorded under the “LMI”
column. Within our SynHbc tool, the verification of learned
BC candidates involves solving feasibility testing problems for
the LMIs established by SOS relaxation. Remarkably, SynHbc
effectively addresses 20 examples beyond the scope of BMI
and 17 ones where LMI struggles. The aforementioned analysis
serves as evidence that our tool significantly enhances the
effectiveness of BC generation compared to existing numerical
computation methodologies.

We assess the efficiency of SynHbc compared to a pair
of approaches by examining the time required for neural
barrier certificate synthesis. Among the 16 examples handled
by both SynHbc and FOSSIL, SynHbc takes an average of
12.94 seconds to synthesize barrier certificates, whereas the
best performance between the two FOSSIL versions FOSSIL
1.0 [16]&FOSSIL 2.0 [5] requires 93.18 seconds, making it
approximately 7.20 times slower than SynHbc. For the 13
examples managed by both SynHbc and SynNBC, SynHbc
requires an average of 56.01 seconds to synthesize barrier
certificates, compared to 183.15 seconds for SynNBC, making
SynHbc over three times faster. These empirical findings estab-
lish that SynHbc performs notably well in terms of efficiency.

VI. RELATED WORK

Theoretically, the generation of barrier certificates presents
a similarity to other problems involving the elimination of
quantifiers. Approaches based on the SOS relaxation have
gained traction due to their reasonably reduced computational
complexity. They convert quantified constraints into non-
convex bilinear matrix inequalities solved by SDP solvers
such as PENBMI [26] instead of directly handling them. For
semi-algebraic hybrid systems, Prajna et al. created barrier
certificates [1], [3]. Using semi-definite programming, which is
described by exponential conditions, Kong et al. [11] proposed
a method to generate barrier certificates for semi-algebraic
hybrid systems. To address its computational intractability, a
convex surrogate has been proposed that performs effectively.
Specifically, once the multipliers are fixed, the BMI problem
is transformed into an LMI problem, which can be quickly
solved using convex optimization techniques. This approach
was first introduced by S. Prajna et al., and there are many
toolboxes capable of solving such problems by formed SOS
representations, like SOSTOOLS [18] and YALMIP [19].

In addition, combining NN learning and verification to syn-
thesize barrier certificates is an emerging research direction.
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TABLE III: Performance Evaluation on Benchmark Examples (time in seconds)

Ex. nx df
SynHbc FOSSIL 1.0 [16]&FOSSIL 2.0 [5] SynNBC [8] BMI LMI

dB Is Tl(S) Tc(S) Tv(S) Te(S) ϕ If Tl(F ) Tv(F ) Te(F ) In Te(N) dB Te(P ) dB Te(L)

H1 [27] 2 1 2 2 5.777 0.020 0.892 6.689 × × × × × × × 2 0.953 2 3.025
H2 [28] 2 2 2 2 7.506 0.020 1.088 8.614 × × × × × × × × × × ×
H3 [29] 2 2 2 2 1.636 0.021 1.049 2.706 × × × × × × × 2 0.571 2 0.249
H4 [29] 2 2 2 2 7.905 0.019 1.504 8.978 × × × × × × × × × × ×
H5 [30] 2 2 2 2 1.798 0 2.399 4.197 × × × × × × × 2 0.592 × ×
H6 [16] 2 3 2 1 0.620 0 0.422 1.042 Square 1 2.731 0.074 2.805 × × × × × ×
H7 [20] 2 3 2 3 14.729 0.062 1.100 15.891 × × × × × × × 4 1.216 × ×
H8 [20] 2 3 2 1 1.151 0 0.481 1.632 × × × × × × × × × × ×
H9 [21] 3 3 2 3 13.709 0.371 3.335 17.415 × × × × × × × 2 1.365 × ×
H10 [31] 3 5 2 3 35.146 0.135 8.419 43.700 – – – – OT × × × × × ×
C1 [32] 2 1 3 1 0.284 0 0.194 0.478 Poly 2 1 0.018 0.002 0.020 × × × × 2 0.050
C2 [33] 2 2 1 1 0.236 0 0.147 0.383 ReLU 1 0.027 0.005 0.032 × × 2 1.252 2 0.057
C3 [16] 2 2 2 2 2.287 0.165 0.306 2.758 Sigmoid 3 3.067 1.329 4.396 2 2.277 2 0.372 2 0.061
C4 [34] 2 3 3 1 0.694 0 0.242 0.936 Square 4 0.918 0.007 0.925 1 0.897 × × 2 0.056
C5 [16] 2 3 2 1 0.520 0 0.122 0.642 Tanh 1 0.606 0.003 0.609 1 0.670 4 0.875 2 0.059
C6 [35] 2 5 2 1 0.343 0 0.352 0.695 ReLU 1 0.036 0.004 0.040 × × 4 0.458 2 0.055
C7 [36] 3 2 2 3 0.643 0.314 0.931 1.888 Poly 2 1 0.033 0.041 0.074 × × × × 2 0.121
C8 [22] 3 2 2 2 1.293 0.125 0.566 1.984 ReLU 2 0.066 0.232 0.298 × × 2 0.409 2 0.069
C9 [37] 3 2 – – – – – OT – – – – OT × × 2 1.891 × ×
C10 [24] 3 3 2 1 0.496 0 0.335 0.831 Sigmoid 3 0.855 0.132 0.987 × × 4 1.598 2 0.075
C11 [16] 4 1 2 1 0.556 0 0.411 0.967 Square 3 0.057 1.387 1.444 3 8.790 2 1.258 2 0.197
C12 [38] 4 2 2 1 1.272 0 0.959 2.231 Tanh 2 0.052 0.476 0.528 2 20.908 × × × ×
C13 [38] 4 2 – – – – – OT Poly 2 2 0.028 0.251 0.279 × × 2 5.102 × ×
C14 [16] 6 1 2 4 3.570 0.760 9.408 13.738 Linear 4 9.233 32.574 41.807 4 13.544 2 8.139 2 0.679
C15 [23] 6 2 2 3 4.226 10.014 8.420 22.660 – – – – OT 3 10.578 × × × ×
C16 [24] 6 3 2 4 10.764 5.273 11.150 27.187 – – – – OT 4 18.845 × × 2 1.205
C17 [39] 7 2 2 1 1.029 0 2.900 3.929 – – – – OT × × × × × ×
C18 [16] 8 1 2 7 4.952 1.852 54.066 60.870 Linear 4 3.380 27.021 30.401 4 49.638 2 82.807 2 3.857
C19 [39] 9 2 2 6 6.659 110.588 35.975 153.222 – – – – OT × × – OT × ×
C20 [40] 12 1 2 12 83.527 1845.418 240.087 2169.032 – – – – OT × × – OT × ×
C21 [25] 13 3 2 2 2.882 0.288 34.328 37.498 Linear 16 0.208 149.097 149.306 2 83.038 – OT 2 11.924
C22 [25] 15 3 2 2 6.503 0.567 73.078 80.148 Linear 20 0.282 1256.956 1257.238 6 355.969 – OT 2 27.530
C23 [25] 17 3 2 2 4.221 0.373 159.616 164.210 – – – – OT 7 649.260 – OT × ×
C24 [25] 19 3 2 2 5.093 1.108 307.966 314.167 – – – – OT 6 1166.529 – OT × ×
C25 [25] 21 3 2 5 4.930 3.994 1600.066 1608.990 – – – – OT – OT – OT × ×
C26 [25] 23 3 2 3 9.033 5.562 1980.354 1994.949 – – – – OT – OT – OT × ×

Zhao et al. first proposed pioneering work to synthesize barrier
certificates using neural networks for continuous dynamical
systems [4]. Peruffo et al. utilized a Counterexample-Guided
Inductive Synthesis (CEGIS) [6] program with dReal [7]
SMT solver to generate neural barrier certificates by the
developed FOSSIL tool [5], [16]. Although the aforementioned
methods utilizing conventional networks (e.g. ReLU NN) can
fit BC candidates with good expressiveness, they rely on
SMT solvers for post-verification, which significantly limits
the scale of verifiable systems. To improve the scalability of
neural BC synthesis, Zhao et al. proposed a novel CEGIS-
based method that trains BC directly applied for more efficient
SOS verification [8], which greatly increases the dimension of
synthesizable neural BC, but only handle continuous systems.

For the neural BC synthesis of hybrid system, the FOSSIL
tool is the first to attempt synthesizing neural BC for hybrid
system based on CEGIS framework, but only works with
simple state-dependent hybrid systems defined by continuous
variable ranges and lacking complex discrete event logic, pro-
ducing a single unified barrier certificate. Inspired by the work,
we propose a novel approach for synthesizing polynomial
neural BC for each location of more general hybrid systems
defined by hybrid automata with guard conditions and reset
functions. We preserved the efficiency derived from coun-
terexample guidance and introduced polynomial expansions

from polynomial NNs to augment the expressive capabilities
of learned neural polynomial BCs, which can be directly
applied to effective SOS-based verification, thereby avoiding
the non-trivial verification of the non-polynomial neural BCs.
Furthermore, we substitute the dReal-based Verifier with an
SOS-based LMIs feasibility testing verification approach and
construct a minimum-volume ellipsoid based counterexample
set by solving polynomial optimization problem for capturing
more real counterexamples to equip our method for addressing
instances with high dimensions.

VII. CONCLUSION

In this paper, we have proposed a novel counterexample-
guided approach to synthesize polynomial neural BCs for the
general hybrid systems consist of continuous systems and
discrete transitions with reset function and guard conditions.
We built an iterative framework using inductive loop made
up of Learner, Verifier, and Cex Generator. The Learner
generated potential polynomial-form BC candidates by nu-
merically training NNs with the introduced polynomial ex-
pansion modes. The Verifier then assessed the validity of
these learned candidates through LMI feasibility testing for
the sub-programming LMIs formed through SOS relaxation
and identified real BCs. When formal verification failed, the
Learner retrained and updated the candidates guided by the
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Cex set constructed from a minimum-volume ellipsoid, which
was computed via polynomial optimization in the Cex Gen-
erator. The experimental results have demonstrated that our
approach is more effective and practical compared to existing
state-of-the-art CEGIS-based neural BC synthesis methods and
SOS-based BC generation techniques.

Considering the limitations of polynomial form, in future
work, we will also explore integrating our approach with non-
polynomial dynamical systems and improve our method to
achieve a balance between time efficiency and problem scale.
Meanwhile, to improve the accuracy of SOS verification, we
will consider incorporating moment-SOS hierarchy [41] and
more rigorous theorem provers such as Coq [42], [43] into the
BC generation process for the safety verification.
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[43] É. Martin-Dorel, G. Melquiond, and P. Roux, “Enabling floating-point
arithmetic in the coq proof assistant,” Journal of Automated Reasoning,
vol. 67, no. 4, p. 33, 2023.


	Introduction
	Preliminaries
	BMI for Barrier Certificate Generation
	The Counterexample-Guided Framework for Neural Barrier Certificate Synthesis
	The Learner
	NN Architecture
	Initial dataset sampling

	The Verifier
	The Counterexample Generator
	Computing the Cex center xc
	Computing a minimum-volume ellipsoid E

	Algorithm

	Experiments
	Case studies
	Performance Evaluation of SynHbc
	Evaluation for the polynomial neural BC construction
	Evaluation for the counterexamples generation method

	Comparison with Existing Approaches

	Related Work
	Conclusion
	References

