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Hyper Parametric Timed CTL
Masaki Waga and Étienne André

Abstract—Hyperproperties enable simultaneous reasoning1

about multiple execution traces of a system and are useful2

to reason about noninterference, opacity, robustness, fairness,3

observational determinism, etc. We introduce hyper parametric4

timed computation tree logic (HyperPTCTL), extending hyper-5

logics with timing reasoning and, notably, parameters to express6

unknown values. We mainly consider its nest-free fragment,7

where the temporal operators cannot be nested. However, we8

allow extensions that enable counting actions and comparing the9

duration since the most recent occurrence of specific actions. We10

show that our nest-free fragment with this extension is sufficiently11

expressive to encode the properties, e.g., opacity, (un)fairness,12

or robust observational (non)determinism. We propose semi-13

algorithms for the model checking and synthesis of parametric14

timed automata (TAs) (an extension of TAs with timing param-15

eters) against this nest-free fragment with the extension via16

reduction to the PTCTL model checking and synthesis. While17

the general model checking (and thus synthesis) problem is18

undecidable, we show that a large part of our extended (yet nest-19

free) fragment is decidable, provided the parameters only appear20

in the property, not in the model. We also exhibit additional21

decidable fragments where the parameters within the model are22

allowed. We implemented our semi-algorithms on the top of23

the IMITATOR model checker and performed experiments. Our24

implementation supports most of the nest-free fragments (beyond25

the decidable classes). The experimental results highlight our26

method’s practical relevance.27

Index Terms—Hyperproperties, model checking, parameter28

synthesis, parametric timed automata, temporal logic.29

I. INTRODUCTION30

PARAMETRIC timed automata (PTAs) [1] is an extension31

of finite-state automata for modeling and verification of32

the real-time systems, where the timing constraints are not33

fixed but parameterized. PTAs extend the concept of timed34

automata (TAs) [2] by introducing the parameters into time35

bounds, allowing for analysing a system across a range of36

timing scenarios.37

Hyperproperties enable reasoning simultaneously about38

multiple execution traces of a system and turn useful to reason39
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Fig. 1. Our reduction: Nest-Free Ext-HyperPTCTL synthesis (resp, model
checking) is reduced to Ext-PTCTL synthesis (resp, model checking) via
self-composition; the extended predicates in Ext-PTCTL are evaluated by an
observer PTA, which is composed with the PTA An.

about noninterference, opacity, fairness, robustness, observa- 40

tional determinism, etc. We introduce hyper parametric timed 41

computation tree logic (HyperPTCTL), extending hyperlogics 42

with not only timing reasoning but also the timing parameters 43

able to express the unknown values. HyperPTCTL can be used 44

typically to reason about multiple traces on PTAs. 45

After defining the syntax and semantics of general 46

HyperPTCTL, we mainly consider the nest-free fragment, 47

where the temporal operators cannot be nested. However, we 48

extend HyperPTCTL with additional predicates that enable 49

counting actions and comparing the duration since the most 50

recent occurrence of specific actions using the diagonal con- 51

straints of the form LAST(σπ1) − LAST(σπ2), where σ is 52

a proposition and π1 π2 represent two paths. Even without 53

the nesting of temporal operators, we demonstrate that this 54

extension enables encoding the classical properties, such as 55

opacity, (un)fairness, or observational (non)determinism–in a 56

timed and parametric setting. For example, we can use a 57

simple HyperPTCTL formula to encode a robust observational 58

nondeterminism: “By giving the same sequence of inputs at 59

the same timing to the system, it is possible to get the same 60

sequence of the outputs but with large time difference.” A 61

timing parameter in the formula is used to leave the time 62

difference unspecified, and for example, the feasible values can 63

be synthesized (by our semi-algorithm). We denote this nest- 64

free but extended fragment by Nest-Free Ext-HyperPTCTL. 65

We consider two problems over parametric formulas and/or 66

models as follows. 67

1) The model checking problem asks whether there exists 68

a valuation for which the model satisfies the formula. 69

2) The synthesis problem asks for the exact valuations set 70

for which the model satisfies the formula. Ideally, this 71

representation should be given symbolically, e.g., in a 72

decidable logical formalism. 73

We show that Nest-Free Ext-HyperPTCTL model check- 74

ing (resp, synthesis) of PTAs is reducible to the PTCTL 75

model checking (resp, synthesis) of PTAs. Fig. 1 out- 76

lines our reduction. We show a more concrete working 77

example later in Section V-C. First, we reduce Nest-Free 78

Ext-HyperPTCTL model checking (resp, synthesis) to the 79
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Nest-Free Ext-PTCTL model checking (resp, synthesis) by80

taking the self-composition An of the system PTA A, where81

n is the number of quantified path variables (i.e., the number82

of simultaneously reasoned execution traces) in the Ext-83

HyperPTCTL formula ψ . Then, we construct an observer84

PTA Oψ ′ [3] to evaluate the extended predicates in the given85

Nest-Free Ext-PTCTL formula ψ ′. We show that the result86

of PTCTL model checking (resp, synthesis) for the product87

PTA An × Oψ ′ is the same as the result of the original88

problem. Thus, the original problem is reduced to the PTCTL89

model checking (resp, synthesis). By integrating this reduction90

with a semi-algorithm for the PTCTL model checking (resp,91

synthesis), we derive a semi-algorithm for the Nest-Free Ext-92

HyperPTCTL model checking (resp, synthesis).93

While the Nest-Free Ext-HyperPTCTL model checking of94

PTAs is trivially undecidable due to the undecidability of95

reachability-emptiness of PTAs [1], we show that they are96

decidable for a large part of Nest-Free Ext-HyperPTCTL,97

provided the parameters only appear in the property, not in the98

model. We also exhibit additional decidable fragments where99

the parameters in the model are allowed.100

We implemented our approach on the top of the existing101

IMITATOR parametric timed model checker [4] and performed102

experiments. Our implementation HyPTCTLchecker supports103

most of the nest-free fragment (beyond the decidable classes104

too, in which case at the risk of nontermination or approxi-105

mated result). The experimental results show that our approach106

can handle various properties if the PTA has a moderate size.107

Our contributions are summarized as follows.108

1) We introduce HyperPTCTL and its extension Ext-109

HyperPTCTL to count the actions and to measure the110

time since their final occurrence (Section IV).111

2) We propose semi-algorithms for the Nest-Free Ext-112

HyperPTCTL model checking (resp, synthesis) of PTAs113

(Section V).114

3) While the Nest-Free Ext-HyperPTCTL model checking115

and synthesis are trivially undecidable, we exhibit sev-116

eral decidable subclasses, with the parameters either in117

the PTA or in the Nest-Free Ext-HyperPTCTL formula118

(Section VI).119

4) We implemented our approach and performed the exper-120

iments. The experimental results suggest the practical121

relevance of our approach (Section VII).122

To the best of our knowledge, our work is not only the first123

one extending TCTL into hyperlogics but also the first one to124

allow for timing parameters in such a TCTL hyper-extension.125

II. RELATED WORK126

A. Model Checking Parametric Timed Formalisms127

First, model checking PTAs against the nonparametric nest-128

free fragment (without nested operators) of PTCTL is already129

undecidable, as reachability-emptiness (also called ∃�-130

emptiness, i.e., the emptiness over the valuations set for which131

a given location can be reached) is undecidable for general132

PTAs over dense or discrete time [1]. Unavoidability(∀�)-133

emptiness is undecidable too [5].134

Reachability-emptiness over discrete time for PTAs with 135

two parametric clocks,1 arbitrarily many nonparametric clocks 136

and one parameter is EXPSPACE-complete [6]. 137

In [7], model checking nonparametric TAs against paramet- 138

ric TCTL (with integer-valued parameters) is considered over 139

both the discrete and dense time. ∃̃PTCTL is defined as the 140

existential fragment (over parameters) of PTCTL.2 Both the 141

discrete time [7, Corollary 7.3] and dense time [7, Th. 7.5] 142

model checking the problems are in 5EXPTIME in the product 143

of the model and the formula, and are in 3EXPTIME for the 144

∃̃PTCTL fragment [7, Propositions 7.4 and 7.6]. 145

Model-checking subclasses of PTAs against TCTL (beyond 146

reachability) is notably considered in [8]: on the one hand, 147

even for the severely restricted class of U-PTAs (a subclass 148

of PTAs in which the parameters can only be compared to 149

a clock as an upper bound [9]), and even without invariants, 150

the emptiness is undecidable for the nested TCTL. On the 151

other hand, it is then shown in [8] that the nest-free TCTL 152

is decidable for L/U-PTAs (a subclass of PTAs in which 153

the parameters are partitioned between the lower-bound and 154

upper-bound parameters [10]) without the invariants. 155

B. Hyperproperties 156

Hyperproperties drew the recent attention, and various 157

hyperlogics have been introduced by extending the conven- 158

tional temporal logics (e.g., [11], [12], [13], and [14]). 159

One of the closest works to our timed hyperlogics (without 160

the parameters) is HyperMITL [12], a timed extension of 161

HyperLTL [11]. In general, the model checking problem is 162

undecidable, even with very restricting timing constraints; it 163

becomes decidable under certain conditions, notably absence 164

of alternation. For decidable subcases, they use a construc- 165

tion based on the self-composition, which we also use in 166

Section V-A. However, their construction is primarily for the 167

untimed models, while our reduction is for PTAs. 168

Another closely related work is HyperMTL [14], another 169

timed extension of HyperLTL. If the time domain is discrete, 170

i.e., the timestamps are integers, HyperMTL model checking 171

is decidable even with quantifier alternation. Although their 172

algorithm covers many interesting properties, it is limited to 173

the discrete-time and nonparametric settings. 174

Both the amplitude and timing parameters are considered 175

in [13] for HyperSTL, but the goal is requirement mining 176

from the traces rather than the model checking. Quantifier 177

alternation is allowed. 178

III. PRELIMINARIES 179

For a set X, we denote its powerset by P(X). For sets X and 180

Y , we denote a partial function f from X to Y by f : X � Y 181

and denote its domain by dom(f ) ⊆ X. 182

We let T be the domain of the time, which will be either 183

non-negative reals R≥0 or naturals N. Let C = {c1, . . . , cH} 184

be a set of clocks, i.e., variables that evolve at the same rate. A 185

1A parametric clock is a clock compared to a parameter in at least one
guard or invariant.

2Of the form ∃̃p1, . . . , pn : ϕ with ϕ without quantifiers over the parameters.
Note that, in this article, we use ∃̃ to distinguish between the existential
quantification over the parameters (∃̃) and over paths (∃).



WAGA AND ANDRÉ: HYPER PARAMETRIC TIMED CTL 3

clock valuation is a function ν : C → T. We write 	0C for the186

clock valuation assigning 0 to all the clocks. Given d ∈ T, ν+d187

denotes the valuation s.t. (ν+ d)(c) = ν(c)+ d, for all c ∈ C.188

Given R ⊆ C, we define the reset of a valuation ν, denoted189

by [ν]R, as follows: [ν]R(c) = 0 if c ∈ R, and [ν]R(c) = ν(c)190

otherwise.191

We assume a set P = {p1, . . . , pM} of parameters, i.e.,192

unknown constants. A parameter valuation v is a function193

v : P → Q≥0.3 We assume �� ∈ {<,≤,=,≥,>}. A (clock)194

guard g is a constraint over C ∪ P defined by a conjunction195

of the inequalities of the form c �� γ with γ ∈ P ∪ N. For196

simplicity, we often use intervals instead of a conjunction of197

the inequalities. Given g, we write ν |= v(g) if the expression198

obtained by replacing each c with ν(c) and each p with v(p)199

in g evaluates to true. For a finite set X = {x1, x2, . . . , xN} of200

the size N ∈ N, a linear term lt (resp, non-negative linear term201

lt≥0) is of the form
∑

1≤i≤N αixi + d, with αi, d ∈ Z (resp,202

αi, d ∈ N).203

PTAs [1] extend TAs [2] with the parameters within guards204

and invariants in the place of the integer constants.205

Definition 1 (PTA): A PTA A is an eight-tuple A =206

(	,L,L0,C,P, I,E,
), where as follows:207

1) 	 is a finite set of atomic propositions;208

2) L is a finite set of locations;209

3) L0 ⊆ L is the set of initial locations,210

4) C is a finite set of clocks;211

5) P is a finite set of parameters;212

6) I is the invariant, assigning to every � ∈ L a clock guard213

I(�);214

7) E is a finite set of edges e = (�, g,R, �′), where �, �′ ∈ L215

are the source and target locations, R ⊆ C is a set of216

clocks to be reset, and g is the transition guard;217

8) 
 : L → P(	) is the labeling function assigning the218

atomic propositions satisfied at each location.219

Given a parameter valuation v, we denote by v(A) the220

nonparametric structure where all the occurrences of a param-221

eter pi have been replaced by v(pi). We refer as a timed222

automaton (TA) to any structure v(A), by assuming a rescaling223

of the constants: by multiplying all the constants in v(A) by224

the least common multiple of their denominators, we obtain225

an equivalent (integer-valued) TA as defined in [2].226

Example 1: The PTA in Fig. 2 contains one clock c and227

one parameter p1. The invariant of �0 is “c ≤ p1” and the228

transition to �1 is guarded by “p1 − 1 < c < p1,” and resets c.229

Atomic propositions H and L are associated with �0 and �1,230

respectively. This PTA models a clock generator with drift: the231

digital signal switches between the high (H) and low (L) states232

in a near periodic manner but with some timing deviation,233

depending on the value of the parameter p1.234

Let us now recall the concrete semantics of TAs.235

Definition 2 (Semantics of a TA): For a PTA A =236

(	,L,L0,C,P, I,E,
) and a parameter valuation v, the237

3We choose Q≥0 by consistency with most of the PTA literature, but also
because, for the classical PTAs, choosing R≥0 leads to undecidability [15].

Fig. 2. Drifted clock generator example: PTA A.

semantics of the TA v(A) is given by the timed transition 238

system (TTS) TA = (S, S0,→) with as follows. 239

1) S = {(�, ν) ∈ L × T
H | ν |= I(�)}. 240

2) S0 = {(�0, 	0C) | �0 ∈ L0}. 241

3) → consists of the discrete and (continuous) delay 242

transition relations. 243

a) Discrete transitions: (�, ν)
e�→ (�′, ν′), if 244

(�, ν), (�′, ν′) ∈ S, and there exists e = 245

(�, g,R, �′) ∈ E, such that ν′ = [ν]R, and ν |= g. 246

b) Delay transitions: (�, ν)
d�→ (�, ν+d), with d ∈ T, 247

if ∀d′ ∈ [0, d], (�, ν + d′) ∈ S. 248

Moreover, we write (�, ν)
(d,e)−→ (�′, ν′) for a combination of 249

the delay and discrete transitions if ∃ν′′ : (�, ν)
d�→ (�, ν′′) e�→ 250

(�′, ν′). We let 
((�, ν)) = 
(�). 251

Given a TA v(A) with concrete semantics (S, S0,→), we 252

refer to the states S as the concrete states of v(A). For s = 253

(�, ν) ∈ S and d ∈ T, we let s + d = (�, ν + d). A path 254

of v(A) from a concrete state s is an alternating infinite 255

sequence of concrete states of v(A) and pairs of the edges 256

and delays starting from s of the form s0(= s), (d0, e0), s1, . . . 257

with
∑∞

i=0 di = +∞, for each i = 0, 1, . . . , di ∈ T, ei ∈ E, 258

and si
(di,ei)−→ si+1. We denote the set of paths of v(A) from s 259

by Paths(v(A), s). We let Paths(v(A)) = ⋃
s∈S Paths(v(A), s). 260

For a path s0, (d0, e0), s1, . . . of v(A), a position is a concrete 261

state s satisfying s = si + d for some i ∈ N and d ≤ di. 262

For a path ρ, we denote its initial position s0 by Init(ρ). For 263

a position s = si + d of a path ρ = s0, (d0, e0), s1, . . ., the 264

duration Durρ(s) is Durρ(s) = d+∑i−1
j=0 dj. If the path is clear 265

from the context, we just write Dur(s). For positions s = si+d 266

and s′ = sj + d′ of a path s0, (d0, e0), s1, . . ., we let s < s′, if 267

we have i < j or Dur(s) < Dur(s′). We let s ≤ s′, if we have 268

s < s′ or s = s′. For paths ρ, ρ′, we write ρ � ρ′, if ρ′ is 269

a suffix of ρ, i.e., for ρ = s0, (d0, e0), s1, . . ., ρ′ is such that 270

si + d, (di − d, ei), si+1, . . . for some i ∈ N and d ∈ [0, di]. 271

We let Dρ

ρ′ be such i. We let ρ � ρ′ if we have ρ � ρ′ and 272

ρ �= ρ′. For paths ρ, ρ′ satisfying ρ � ρ′, we let Dur(ρ− ρ′) 273

be the duration of the initial position of ρ′ in ρ. 274

For PTAs A1 and A2, we define both the parallel composi- 275

tion A1 ||A2 and synchronized product A1 ×A2. Intuitively, 276

the parallel composition is to juxtapose two PTAs with- 277

out synchronization, whereas the synchronized product is 278

to compose two PTAs synchronizing the edges with the 279

propositions. The parallel composition will be used when 280

taking the self-composition of the systems to handle multiple 281

paths simultaneously, while the synchronized product will be 282

used when composing the systems with observers encoding 283

the extended predicates. 284

For PTAs A1 = (	1,L1,L1
0,C

1,P1, I1,E1,
1) and A2 = 285

(	2,L2,L2
0,C

2,P2, I2,E2,
2), their parallel composition is 286

A1||A2 = (	1�	2,L1×L2,L1
0×L2

0,C
1�C2,P1∪P2, I,E,
), 287
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with � denoting disjoint union, I((�1, �2)) = I1(�1) ∧ I2(�2),288

E = {((�1, �2), g,R, (�1′, �2)) | (�1, g,R, �1′) ∈ E1, �2 ∈289

L2} ∪ {((�1, �2), g,R, (�2, �2′)) | (�2, g,R, �2′) ∈ E2, �1 ∈290

L1}∪{((�1, �2), g1∧g2,R1∪R2, (�1′, �2′)) | (�1, g1,R1, �1′) ∈291

E1, (�2, g2,R2, �2′) ∈ E2}, and 
((�1, �2)) = 
1(�1)�
2(�2).292

For TAs v1(A1) and v2(A2) satisfying v1(p) = v2(p) for any293

p ∈ P1 ∩ P2, and paths ρ1 and ρ2 of v1(A1) and v2(A2),294

respectively, we let ρ1 || ρ2 be the path of (v1 ∪ v2)(A1 ||A2)295

obtained by parallel composition of ρ1 and ρ2, where v1 ∪ v2296

is the parameter valuation, such that (v1 ∪ v2)(p) = v1(p) if297

p ∈ v1 and otherwise (v1 ∪ v2)(p) = v2(p). Conversely, for298

a path ρ of (v1 ∪ v2)(A1 || A2) and i ∈ {1, 2}, we let ρ|i be299

the path of vi(Ai) obtained by removing the locations, clock300

valuations, and edges from A3−i.301

For PTAs A1 = (	1,L1,L1
0,C

1,P1, I1,E1,
1) and A2 =302

(	2,L2,L2
0,C

2,P2, I2,E2,
2), their synchronized product is303

A1 ×A2 = (	1 ∪	2,L1 × L2,L0,C
1 �C

2,P1 ∪P
2, I,E,
),304

with L0 = {(�1
0, �

2
0) ∈ L1

0 × L2
0 | 
1(�1

0)∩	2 = 
2(�2
0)∩	1},305

I((�1, �2)) = I1(�1) ∧ I2(�2), E = {((�1, �2), g,R, (�1′, �2)) |306

(�1, g,R, �1′) ∈ E1, �2 ∈ L2,
1(�1′) ∩ 	2 = 
2(�2) ∩307

	1} ∪ {((�1, �2), g,R, (�1, �2′)) | (�2, g,R, �2′) ∈ E2, �1 ∈308

L1,
1(�1) ∩ 	2 = 
2(�2′) ∩ 	1} ∪ {((�1, �2), g1 ∧ g2,R1 �309

R2, (�1′, �2′)) | (�1, g1,R1, �1′) ∈ E1, (�2, g2,R2, �2′) ∈310

E2,
1(�1′)∩	2 = 
2(�2′)∩	1}, and 
((�1, �2)) = 
1(�1)∪311


2(�2). For a finite set I = {1, 2, . . . , n} of indices, we let312

×i∈IAi = A1 ×A2 × · · · ×An, where each Ai is a PTA.313

IV. HYPER PARAMETRIC TIMED CTL314

Here, we introduce HyperPTCTL. HyperPTCTL is a gener-315

alization of PTCTL [7] with quantifiers over paths to represent316

hyperproperties.317

A. Syntax of (Ext-)HyperPTCTL318

Definition 3 (Syntax of HyperPTCTL): For atomic propo-319

sitions 	 and parameters P, the syntax of HyperPTCTL320

formulas of the temporal level ϕ and the top level ψ are321

defined as follows, where σ ∈ 	, V is the set of path variables,322

π, π1, π2, . . . , πn ∈ V , γ ∈ P ∪ N, p ∈ P, �� ∈ {<,≤,=,323

≥,>}, and lt≥0 is a non-negative linear term over P324

ϕ ::= � | σπ | ¬ϕ | ϕ ∨ ϕ | ∃π1, π2, . . . , πn. ϕ U��γ ϕ325

| ∀π1, π2, . . . , πn. ϕ U��γ ϕ326

ψ ::= ϕ | p �� lt≥0 | ¬ψ | ψ ∨ ψ | ∃̃p ψ.327

As the syntax sugar, we utilize the following formulas:328

⊥ ≡ ¬� ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2329

ϕ1 = ϕ2 ≡ (ϕ1 ∧ ϕ2) ∨ ((¬ϕ1) ∧ (¬ϕ2)) ϕ1 �= ϕ2 ≡ ¬(ϕ1 = ϕ2)330

∃π1, π2, . . . , πn. ϕ1 R��γ ϕ2 ≡ ¬∀π1, π2, . . . , πn.¬ϕ1 U��γ ¬ϕ2331

∀π1, π2, . . . , πn. ϕ1 R��γ ϕ2 ≡ ¬∃π1, π2, . . . , πn.¬ϕ1 U��γ ¬ϕ2332

∃π1, π2, . . . , πn.���γ ϕ ≡ ∃π1, π2, . . . , πn.� U��γ ϕ333

334

∃̃HyperPTCTL is a subclass of HyperPTCTL such that the335

(top-level) formulas are of the form ∃̃p1∃̃p2 . . . ∃̃pn ψ , where ψ336

has no quantifiers over the parameters. PTCTL [7] is a subclass337

of HyperPTCTL with only one path variable π .∃̃PTCTL [7] 338

is defined analogously. 339

We extend HyperPTCTL with counters and clocks to 340

constrain the number of occurrences of atomic propositions 341

and to compare the time difference between the occurrences 342

of two atomic propositions, respectively. Intuitively, for each 343

atomic proposition σ and path π , LAST(σπ ) indicates the time 344

elapsed since the final switching of σ from false to true in π , 345

and COUNT(σπ ) indicates the total number of switches of σ 346

from false to true in π . To ensure decidability, we only allow 347

specific forms of constraints. We denote the extended logic as 348

Ext-HyperPTCTL. 349

Definition 4 (Syntax of Ext-HyperPTCTL): We extend the 350

syntax of HyperPTCTL formulas of the temporal level as 351

follows, where σ ∈ 	, V is the set of path variables, 352

π ∈ V , �� ∈ {<,≤,=,≥,>}, d,N ∈ N, lt is a linear 353

term over P, 	COUNT = {COUNT(σπ ) | σ ∈ 	,π ∈ 354

V}, cnt≥0 is a non-negative linear term over 	COUNT (i.e., 355

cnt≥0 = ∑
σ∈	,π∈V ασ,πCOUNT(σπ ) for some ασ,π ∈ 356

N),4 and cnt is a linear term over 	COUNT (i.e., cnt = 357∑
σ∈	,π∈V ασ,πCOUNT(σπ ) for some ασ,π ∈ Z) 358

ϕ ::= � | σπ | LAST(σπ )− LAST(σπ ) �� lt 359

| cnt≥0 �� d | (cnt mod N) �� d | · · · . 360

We call LAST(σπ ) − LAST(σπ ) �� lt, cnt≥0 �� d, 361

and (cnt mod N) �� d as LASTEXPR, COUNTEXPR≥0, 362

and COUNTEXPRmod, respectively. We let Ext-PTCTL be the 363

subclass of Ext-HyperPTCTL with only one path variable π . 364

Example 2 (Drift of Clock): Let H be the proposition 365

showing the “high” value of a digital clock. For p ∈ 366

P, AtMostOneDiff ≡ (COUNT(Hπ1) − COUNT(Hπ2)) mod 367

4 ∈ {0, 1, 3} denotes that the deviation of COUNT(Hπ1) 368

and COUNT(Hπ2) is at most by one, if we keep having 369

AtMostOneDiff in the past, SameCount ≡ (COUNT(Hπ1) − 370

COUNT(Hπ2)) mod 4 = 0 denotes that the number of times 371

the clock became high is identical (mod 4) over the two 372

paths; and LargeDeviation ≡ LAST(Hπ1) − LAST(Hπ2) �∈ 373

[−p, p] denotes that the final time the clock became high 374

differs by at least p time units over two paths, i.e., consists 375

in a “large deviation.” Then, the following Ext-HyperPTCTL 376

formula shows the drift of near periodic clocks of duration at 377

least p time units, globally assuming AtMostOneDiff: ∃π1, π2. 378

(AtMostOneDiff) U≥0 (SameCount ∧ LargeDeviation). 379

Example 3 (Execution-Time Opacity): Let Private be the 380

proposition showing the private locations of a (P)TA and Goal 381

be the proposition showing the goal locations. The following 382

Ext-HyperPTCTL formula shows a formulation of opacity 383

focusing on the execution time [16], i.e., there are executions 384

of duration p with and without visiting any private loca- 385

tions: ∃π1, π2. (¬Goalπ1 ∧ ¬Goalπ2) U=p (Goalπ1 ∧ Goalπ2∧ 386

COUNT(Privateπ1) = 0 ∧ COUNT(Privateπ2) > 0). That is, 387

the goal is not reached until, after exactly p time units (which 388

encodes the unknown execution time), the goal is reached 389

for both the paths, and one of them did not visit any private 390

4The restriction of cnt≥0 is to construct finite observers in Section V-B.
Our implementation accepts any linear term, which is encoded by variables
in IMITATOR [4].
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location (“COUNT(Privateπ1) = 0”) while the other one did.391

Note that, this differs from another style of opacity for TAs392

in [17].393

Example 4 (Side-Channel Timing Attack [14]): Let Inv and394

Idle be the propositions denoting the invocation of a process395

and the idle state. For i ∈ {1, 2}, we let SyncInv ≡ Invπ1 =396

Invπ2 , ImmediateExeci ≡ Invπi =⇒ ¬Idleπi , ExecBoundi ≡397

Idleπi =⇒ (LAST(Idleπi) − LAST(Invπi) < p1), and398

NearFinish ≡ (Idleπ1 = Idleπ2) =⇒ (LAST(Idleπ1) −399

LAST(Idleπ2) ∈ (−p2, p2)). The following Ext-HyperPTCTL400

formula shows that the execution time of each process401

must be similar, which is necessary to prevent side-channel402

timing attacks: ∀π1, π2. (¬SyncInv) R≥0 (ImmediateExec1 ∧403

ImmediateExec2 ∧ ExecBound1 ∧ ExecBound2 ∧ NearFinish).404

More precisely, for any paths corresponding to two different405

sequences of process executions, while each pair of the406

processes has been invoked simultaneously, their execution407

must be within p1, and the execution time of each pair of408

processes must not differ more than p2 time units.409

Example 5 (Unfairness of Schedulers): Let Subi and Runi
410

be the proposition showing the submission and execution411

of the job i ∈ {1, 2}. For SyncSub ≡ Sub1
π1

= Sub2
π2

,412

SameCount ≡ (COUNT(Run1
π1
)−COUNT(Run2

π2
)) mod 4 =413

0, and LargeDeviation ≡ LAST(Run1
π1
) − LAST(Run2

π2
) �∈414

(−5, 5), the following Ext-HyperPTCTL formula shows unfair415

scheduling of the jobs 1 and 2: ∃π1, π2. (SyncSub) U≥0416

(SameCount ∧ LargeDeviation). That is, given two paths cor-417

responding to two different jobs, if they submit the job at the418

same time and eventually run, but with a time difference of419

≥ 5 time units, then the scheduler is unfair.420

Example 6 (Robust Observational Nondeterminism): Let421

{Ini | i ∈ {1, 2, . . . ,m}} and {Outi | i ∈ {1, 2, . . . , n}}422

be the set of input and output propositions, respectively.423

SyncIn ≡ ∧
i∈{1,2,...,m}(Ini

π1
= Ini

π2
) denotes that the inputs424

in two runs π1 and π2 are synchronized, AtMostOneDiff425

≡ ∧
i∈{1,2,...,n}(COUNT(Outiπ1

) − COUNT(Outiπ2
)) mod 4 ∈426

{0, 1, 3} denotes that the deviation of the COUNT(Outiπ1
)427

and COUNT(Outiπ2
) is at most one, if we keep hav-428

ing AtMostOneDiff in the past, and LargeDeviation ≡429 ∨
i∈{1,2,...,n}((COUNT(Outiπ1

) − COUNT(Outiπ2
)) mod 4 = 0430

∧LAST(Outiπ1
)−LAST(Outiπ2

) �∈ [−p, p]) denotes that there431

is an output proposition that the number of times of the propo-432

sition became true is identical (mod 4) over the two paths but433

the timing differs at least p time units over the two paths. The434

following Ext-HyperPTCTL formula shows the robust obser-435

vational nondeterminism assuming AtMostOneDiff, i.e., even436

if the inputs are given at the same timing, the output timing437

may deviate more than p: ∃π1, π2. (SyncIn ∧ AtMostOneDiff)438

U≥0 (LargeDeviation).439

B. Semantics of (Ext-)HyperPTCTL440

Before defining the semantics of HyperPTCTL, we formal-441

ize the assignments of the paths. In addition to the partial442

function assigning the paths, we use a total preorder to fix the443

order of the discrete transitions at the same time-point.444

Definition 5 (Path Assignments): For the path variables V 445

and a TA v(A), a path assignment (
,�
) is a pair of a 446

partial function 
 : V � Paths(v(A)) from path variables V 447

to the paths Paths(v(A)) of v(A) and a total preorder �
 448

on dom(
) × N, such that for any π, π ′ ∈ dom(
) and 449

i, j ∈ N, i < j implies (π, i) �
 (π, j) and (π, j) �
 450

(π, i), (π, i) �
 (π ′, j) implies
∑i

k=0 dπk ≤ ∑j
k=0 dπ

′
k , and 451

∑i
k=0 dπk <

∑j
k=0 dπ

′
k implies (π, i) �
 (π ′, j), where dπk and 452

dπ
′

k are the kth delay in 
(π) and 
(π ′), respectively. 453

We let (
∅,�
∅) be the empty path assignment, i.e., 454

the path assignment satisfying dom(
∅) = ∅. For the path 455

assignments (
,�
) and (
′,�
′), (
′,�
′) is an extension 456

of (
,�
) if we have dom(
) ⊆ dom(
′) and for any 457

π, π ′ ∈ dom(
) and i, j ∈ N, we have (π, i) �
 (π ′, j) ⇐⇒ 458

(π, i) �
′ (π ′, j) and 
(π) = 
′(π). For the path assign- 459

ments (
,�
) and (
′,�
′), we let (
,�
) � (
′,�
′) 460

(resp, (
,�
) � (
′,�
′)) if dom(
) = dom(
′) and 461

there is d ∈ R≥0, such that for any π ∈ dom(
), we have 462


(π) � 
′(π) (resp, 
(π) � 
′(π)) and Dur(
(π) − 463


′(π)) = d, and for any π, π ′ ∈ dom(
) and i, j ∈ N, we 464

have (π, i) �
′ (π ′, j) ⇐⇒ (π, i + D
′(π)

(π) ) �
 (π ′, j + 465

D
′(π ′)

(π ′) ), and if D
′(π)


(π) ≥ 1 holds, (π,D
′(π)

(π) − 1) �
 466

(π ′,D
′(π ′)

(π ′) ) and (π ′,D
′(π ′)


(π ′) )�
 (π,D
′(π)

(π) − 1) also hold. 467

We let Dur(
−
′) = d for such 
, 
′, and d. 468

Definition 6 (Semantics of HyperPTCTL): Let A be a PTA 469

over parameters P1; given a HyperPTCTL formula over 470

the parameters P2, let P = P1 ∪P2. For a parameter valuation 471

v ∈ (Q≥0)
P, a path assignment (
,�
), and a concrete 472

state s of v(A), the satisfaction relation of the temporal level 473

HyperPTCTL formulas is defined as follows. 474

1) (
,�
), s |=v,A σπ if π ∈ dom(
) and σ ∈ 475


(Init(
(π))). 476

2) (
,�
), s |=v,A ¬ϕ if we have (
,�
), s �|=v,A ϕ. 477

3) (
,�
), s |=v,A ϕ1 ∨ ϕ2 if (
,�
), s |=v,A ϕ1 or 478

(
,�
), s |=v,A ϕ2 holds. 479

4) (
,�
), s |=v,A ∃π1, π2, . . . , πn. ϕ1U��γ ϕ2 if for some 480

extension (
1,�
1) of (
,�
) satisfying dom(
1) = 481

dom(
)�{π1, π2, . . . , πn} and 
1(πi) ∈ Paths(v(A), s) 482

for each i ∈ {1, 2, . . . , n}, there is (
2,�
2) sat- 483

isfying (
1,�
1) � (
2,�
2), Dur(
1 − 
2) �� 484

v(γ ), (
2,�
2), Init(
2(πn)) |=v,A ϕ2, and for any 485

(
3,�
3) satisfying (
1,�
1) � (
3,�
3) � 486

(
2,�
2), (
3,�
3), Init(
3(πn)) |=v,A ϕ1 holds. 487

5) (
,�
), s |=v,A ∀π1, π2, . . . , πn. ϕ1 U��γ ϕ2 if for any 488

extension (
1,�
1) of (
,�
) satisfying dom(
1) = 489

dom(
)�{π1, π2, . . . , πn} and 
1(πi) ∈ Paths(v(A), s) 490

for each i ∈ {1, 2, . . . , n}, there is (
2,�
2) sat- 491

isfying (
1,�
1) � (
2,�
2), Dur(
1 − 
2) �� 492

v(γ ), (
2,�
2), Init(
2(πn)) |=v,A ϕ2, and for any 493

(
3,�
3) satisfying (
1,�
1) � (
3,�
3) � 494

(
2,�
2), (
3,�
3), Init(
3(πn)) |=v,A ϕ1 holds. 495

For a PTA A, a parameter valuation v ∈ (Q≥0)
P, and a 496

temporal-level HyperPTCTL formula ϕ, we write A |=v ϕ if 497

we have (
∅,�
∅), s0 |=v,A ϕ, where s0 is an initial state of 498

v(A). 499
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For a PTA A and a parameter valuation v ∈ (Q≥0)
P, the500

satisfaction relation of the top-level HyperPTCTL formulas is501

defined as follows.502

1) A |=v p �� lt≥0 if we have v(p) �� v(lt≥0), where v(lt≥0)503

denotes the expression obtained by replacing each p504

with v(p) in lt≥0.505

2) A |=v ¬ψ if we have A �|=v ψ .506

3) A |=v ψ1 ∨ ψ2 if we have A |=v ψ1 or A |=v ψ2.507

4) A |=v ∃̃pψ if there is v′ ∈ (Q≥0)
P satisfying v(p′) =508

v′(p′) for any p′ ∈ P \ {p} and A |=v′ ψ .509

Example 7: Consider the formula ϕ : ∃̃p2(p2 > p1 ∧510

∃π1, π2. (Lπ1 =⇒ Hπ2) U=p2 (Hπ1 ∧ Hπ2)). Fix v(p1) = 1.8.511

For the PTA A in Fig. 2, we have A |=v ϕ with v(p2) = 2.0,512

and 
1(π1) and 
1(π2) are as follows: in π1, we jump from513

�0 to �1 at 1.5 and jump from �1 to �0 at 2.0; in π2, we jump514

from �0 to �1 at 0.5 and jump from �1 to �0 at 1.0.515

To define the semantics of Ext-HyperPTCTL, we intro-516

duce the valuations of COUNT(σπ ) and LAST(σπ ). A517

counter valuation is a function η : 	 × V → N. A518

recording valuation is a function θ : 	 × V → R≥0.519

We write 	0cnt and 	0rec for the counter and recording520

valuations assigning 0 to all (σ, π) ∈ 	 × V , respec-521

tively. For a linear term cnt over {COUNT(σπ ) | σ ∈522

	,π ∈ V}, we let η(cnt) be the inequality obtained523

by replacing COUNT(σπ ) with η(σ, π) and Vars(cnt) =524

{π ∈ V | ∃σ ∈ 	,ασ,π �= 0]}, with cnt =525 ∑
σ∈	,π∈V ασ,πCOUNT(σπ ).526

For the paths ρ, ρ′ satisfying ρ � ρ′, we let Rising(σ, ρ −527

ρ′) be the set of positions s in ρ satisfying Init(ρ) < s ≤528

Init(ρ′), σ ∈ 
(s), and there is δ ∈ T such that for any529

s′ < s, Dur(s) − Dur(s′) < δ implies σ �∈ 
(s). Notice530

that Rising(σ, ρ − ρ′) is finite because Dur(ρ − ρ′) is finite531

and we have no Zeno behavior. For a counter valuation η532

and the path assignments 
,
′ satisfying 
 � 
′, [η]
−
′533

is the counter valuation such that for any (σ, π) ∈ 	 ×534

V , [η]
−
′(σ, π) = η(σ, π) + |Rising(σ,
(π) − 
′(π))|535

if π ∈ dom(
) and [η]
−
′(σ, π) = η(σ, π) otherwise.536

For a recording valuation θ and path assignments 
,
′
537

satisfying 
 � 
′, [θ ]
−
′ is the recording valuation such538

that for any (σ, π) ∈ 	 × V , [θ ]
−
′(σ, π) = Dur(
 −539


′) if π �∈ dom(
) or Rising(σ,
(π) − 
′(π)) = ∅540

and otherwise, [θ ]
−
′(σ, π) is the duration of Init(
′(π))541

in the suffix of 
(π) starting from the final position in542

Rising(σ,
(π)−
′(π)).543

Definition 7 (Semantics of Ext-HyperPTCTL): Let A be a544

PTA over parameters P1; given an Ext-HyperPTCTL formula545

over parameters P2, let P = P1∪P2. For a parameter valuation546

v ∈ (Q≥0)
P, a path assignment (
,�
), a concrete state s547

of v(A), and counter and recording valuations η and θ , the548

satisfaction relation of the temporal level Ext-HyperPTCTL549

formulas is defined as follows.550

1) (
,�
), s, η, θ |=v,A σπ if π ∈ dom(
) and σ ∈551


(Init(
(π))).552

2) (
,�
), s, η, θ |=v,A LAST(σπ ) − LAST(σ ′
π ′) �� lt if553

we have π, π ′ ∈ dom(
) and θ(σ, π) − θ(σ ′, π ′) ��554

v(lt).555

3) (
,�
), s, η, θ |=v,A cnt≥0 �� d if we have556

Vars(cnt≥0) ⊆ dom(
) and η(cnt≥0) �� d.557

4) (
,�
), s, η, θ |=v,A (cnt mod N) �� d if we have 558

Vars(cnt) ⊆ dom(
) and (η(cnt) mod N) �� d. 559

5) (
,�
), s, η, θ |=v,A ¬ϕ if we have 560

(
,�
), s, η, θ �|=v,A ϕ; 561

6) (
,�
), s, η, θ |=v,A ϕ1 ∨ ϕ2 if we have 562

(
,�
), s, η, θ |=v,A ϕ1 or (
,�
), s, η, θ |=v,A ϕ2. 563

7) (
,�
), s, η, θ |=v,A ∃π1, π2, . . . , πn. ϕ1 U��γ 564

ϕ2 if for some extension (
1,�
1) of (
,�
) 565

satisfying dom(
1) = dom(
) � {π1, π2, . . . , πn} 566

and 
1(πi) ∈ Paths(v(A), s) for each i ∈ 567

{1, 2, . . . , n}, there is (
2,�
2) satisfying 568

(
1,�
1) � (
2,�
2), Dur(
1 − 
2) �� v(γ ), 569

(
2,�
2), Init(
2(πn)), [η]
1−
2 , [θ ]
1−
2 |=v,A 570

ϕ2, and for any (
3,�
3) satisfying 571

(
1,�
1) � (
3,�
3) � (
2,�
2), we have 572

(
3,�
3), Init(
3(πn)), [η]
1−
3 , [θ ]
1−
3 |=v,A ϕ1. 573

8) (
,�
), s, η, θ |=v,A ∀π1, π2, . . . , πn. ϕ1 U��γ 574

ϕ2 if for any extension (
1,�
1) of (
,�
) 575

satisfying dom(
1) = dom(
) � {π1, π2, . . . , πn} 576

and 
1(πi) ∈ Paths(v(A), s) for each i ∈ 577

{1, 2, . . . , n}, there is (
2,�
2) satisfying 578

(
1,�
1) � (
2,�
2), Dur(
1 − 
2) �� v(γ ), 579

(
2,�
2), Init(
2(πn)), [η]
1−
2 , [θ ]
1−
2 |=v,A 580

ϕ2, and for any (
3,�
3) satisfying 581

(
1,�
1) � (
3,�
3) � (
2,�
2), we have 582

(
3,�
3), Init(
3(πn)), [η]
1−
3 , [θ ]
1−
3 |=v,A ϕ1. 583

For a PTA A, a parameter valuation v ∈ (Q≥0)
P, and a 584

temporal-level HyperPTCTL formula ϕ, we write A |=v ϕ if 585

we have (
∅,�
∅), s0, 	0cnt, 	0rec |=v,A ϕ, where s0 is an initial 586

state of v(A). The satisfaction relation of the top-level Ext- 587

HyperPTCTL formulas is the same as that of HyperPTCTL. 588

C. Problems 589

Here, we formalize the problems we consider in this article. 590

We consider each problem under both continuous-time and 591

discrete-time semantics, i.e., T is either R≥0 or N. We let 592

P be the set of parameters shared between the PTA and the 593

(Ext-)HyperPTCTL formula. 594

(Ext-)HyperPTCTL model checking problem:
INPUT: PTA A and a top-level (Ext-)HyperPTCTL formula ψ
PROBLEM: Decide if there is v ∈ (Q≥0)

P satisfying A |=v ψ
595

596

(Ext-)HyperPTCTL parameter synthesis problem:
INPUT: PTA A and a top-level (Ext-)HyperPTCTL formula ψ
PROBLEM: Return the set {v ∈ (Q≥0)

P | A |=v ψ}
597

598

The solution to the latter problem can be effectively com- 599

puted whenever its representation is symbolic, and can be 600

represented by decidable formalisms, typically a finite union 601

of polyhedra. 602

Let ψ be a top-level HyperPTCTL formula with no quan- 603

tifiers over the parameters. The emptiness of the parameter 604

valuations to have A |=v ψ can be checked by model 605

checking of ψ . The universality of the parameter valuations 606

to have A |=v ψ can be checked by model checking of 607

¬(∃̃p1∃̃p2 . . . ∃̃pn ¬ψ), where P = {p1, p2, . . . , pn}. 608
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In the remainder of this article, we focus on the609

nest-free fragment of HyperPTCTL (e.g., “Nest-Free610

HyperPTCTL,” “Nest-Free Ext-HyperPTCTL,” and “Nest-611

Free ∃̃HyperPTCTL” . . .), i.e., fragments with no nesting of612

the temporal operators. Observe that all our Example 3, 2,613

5, and 6 fit into this nest-free fragment. The following is the614

definition of Nest-Free HyperPTCTL. The other fragments615

are defined similarly.616

Definition 8 (Syntax of Nest-Free HyperPTCTL): For the617

atomic propositions 	 and the parameters P, the syntax of618

Nest-Free HyperPTCTL formulas of the Boolean level B, the619

temporal level ϕ, and the top level ψ are defined as follows,620

where σ ∈ 	, π, π1, π2, . . . , πn ∈ V , γ ∈ P ∪ N, p ∈ P,621

�� ∈ {<,≤,=,≥,>}, and lt≥0 is a non-negative linear term622

over P623

B ::= � | σπ | ¬B | B ∨ B624

ϕ ::= ∃π1, π2, . . . , πn.B U��γ B | ∀π1, π2, . . . , πn.B U��γ B625

ψ ::= ϕ | p �� lt≥0 | ¬ψ | ψ ∨ ψ | ∃̃pψ.626

V. REDUCTION OF NEST-FREE EXT-HYPERPTCTL627

SYNTHESIS TO PTCTL SYNTHESIS628

A. Reduction of Path Variables via Self-Composition of PTAs629

We show that the model checking and parameter syn-630

thesis of nest-free (Ext-)HyperPTCTL is reducible to ones631

of (Ext-)PTCTL by self-composition of PTAs. For a PTA632

A = (	,L,L0,C,P, I,E,
) and n ∈ N>0, we let An =633

A ||A || . . . ||A
︸ ︷︷ ︸

n times

, and for each i ∈ {1, 2, . . . , n} and σ ∈ 	634

(resp, c ∈ C), we denote the corresponding atomic proposition635

in 	n (resp, clock in C
n) of the ith component as σ i (resp,636

ci), where 	n and C
n are the sets of atomic propositions and637

clocks in An. We generalize the projection of paths to such638

n-compositions, i.e., for a path ρ of An, we let ρ|i be the639

projection of ρ to the ith component.640

We define an auxiliary function reducen to “compose” the641

atomic propositions in (Ext-)HyperPTCTL formulas.642

Definition 9 (reducen): For n ∈ N>0, the function reducen
643

from nest-free temporal-level Ext-HyperPTCTL formulas with644

atomic propositions 	 to nest-free temporal-level Ext-PTCTL645

formulas with atomic propositions 	n is inductively defined as646

follows with reducen(
∑
σ∈	,i∈{1,2,...,n} ασ,πiCOUNT(σπi)) =647

∑
σ i∈	n ασ i,πCOUNT(σ i

π ):648

1) reducen(�) = �;649

2) reducen(σπi) = σ i
π ;650

3) reducen(LAST(σπi)− LAST(σπj) �� lt) = LAST(σ i
π )−651

LAST(σ j
π ) �� lt;652

4) reducen(cnt≥0 �� d) = reducen(cnt≥0) �� d;653

5) reducen((cnt mod N) �� d) = (reducen(cnt) mod654

N) �� d;655

6) reducen(¬ϕ) = ¬reducen(ϕ);656

7) reducen(ϕ1 ∨ ϕ2) = reducen(ϕ1) ∨ reducen(ϕ2);657

8) reducen(∃π1, π2, . . . , πn. ϕ1 U��γ ϕ2) = ∃π. reducen(ϕ1)658

U��γ reducen(ϕ2);659

9) reducen(∀π1, π2, . . . , πn. ϕ1 U��γ ϕ2) =660

∀π. reducen(ϕ1) U��γ reducen(ϕ2).661

Algorithm 1: Outline of Our Reduction of Nest-Free
Ext-HyperPTCTL Synthesis to Nest-Free Ext-PTCTL
Synthesis

Input: A PTA A and a Nest-Free Ext-HyperPTCTL formula ψ
Output: The set {v ∈ (Q≥0)

P | A |=v ψ}
1 def reduceSynth(A, ψ):
2 switch ψ do
3 case � do return (Q≥0)

P

4 case σπi or LAST(σπi)− LAST(σπj) or cnt≥0 �� d or
(cnt mod N) �� d do
// ψ does not hold for empty path

assignments
5 return ∅
6 case ¬ψ do
7 return (Q≥0)

P \ reduceSynth(A, ψ)
8 case ψ1 ∨ ψ2 do
9 return

reduceSynth(A, ψ1)∪reduceSynth(A, ψ2)
10 case ∃π1, π2, . . . , πn. ϕ1 U��γ ϕ2 or

∀π1, π2, . . . , πn. ϕ1 U��γ ϕ2 do
// Use nest-free Ext-PTCTL

synthesis
11 return synthesisExtPTCTL(An, reducen(ψ))
12 case p �� lt≥0 do
13 return {v ∈ (Q≥0)

P | v(p) �� v(lt≥0)}
14 case ∃̃pψ do
15 pre ← reduceSynth(A, ψ)
16 return {v ∈ (Q≥0)

P | ∃v′ ∈ pre.∀p′ ∈
P \ {p}. v(p′) = v′(p′)}

We naturally extend reducen to top-level Nest-Free Ext- 662

HyperPTCTL formulas. 663

Algorithm 1 outlines our reduction of the synthesis 664

problem. The reduction of model checking is similar. Our 665

reduction is inductive on the structure of the Ext-HyperPTCTL 666

formula ψ . Since the path assignment (
,�
) is empty, for 667

atomic formulas, ψ is satisfied (line 3) or violated (line 4) 668

independent of A and v. For Boolean cases, we obtain the 669

result from the result of the reduction of the immediate 670

subformula(s) (lines 7 and 9). For the temporal operators, we 671

use the result of the synthesis for the composed PTA An and 672

the reduced formula reducen(ψ) (line 11). For the remaining 673

cases, the result is independent of A (line 13) or obtained by 674

un-constraining the result for p (line 16). 675

The correctness of Algorithm 1 is immediate from the 676

following theorem. 677

Theorem 1: For a PTA A, a temporal-level Nest-Free Ext- 678

HyperPTCTL formulas ϕ∃ = ∃π1, π2, . . . , πn. ϕ1 U��γ ϕ2 and 679

ϕ∀ = ∀π1, π2, . . . , πn. ϕ1 U��γ ϕ2, and a parameter valuation 680

v, we have A |=v ϕ∃ (resp, A |=v ϕ∀) if and only if we have 681

An |=v reducen(ϕ∃) (resp, An |=v reducen(ϕ∀)). 682

Proof (Sketch): Since the other cases are similar, we 683

only outline the proof of A |=v ϕ∃ =⇒ An |=v 684

reducen(ϕ∃). Suppose A |=v ϕ∃ holds. By the seman- 685

tics of Ext-HyperPTCTL, for some extension (
1,�
1) 686

of (
∅,�
∅) satisfying dom(
) = {π1, π2, . . . , πn} and 687


1(πi) ∈ Paths(v(A)) for each i ∈ {1, 2, . . . , n}, there is a 688

suffix (
2,�
2) of (
1,�
1) such that we have Dur(
1 − 689


2) �� v(γ ), ϕ2 holds at (
2,�



2), and for any (
3,�
3) 690
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between (
1,�
1) and (
2,�
2), ϕ1 holds at (
3,�
3).691

Since there are paths ρ and ρ′ of v(An) such that 1) ρ′ is692

a suffix of ρ and 2) for each i ∈ {1, 2, . . . , n}, we have693


1(πi) = ρ|i and 
2(πi) = ρ′|i, we can construct path694

assignments (

1
,�



1) and (


2
,�



2) mapping π to them.695

Notice that reducen(ϕ2) holds at such (

2
,�



2). Moreover,696

for any path assignment (

3
,�



3) between (


1
,�



1) and697

(

2
,�



2), since there is a corresponding path assignment698

(
3,�
3) between (
1,�
1) and (
2,�
2), reducen(ϕ1)699

holds at (

3
,�



3) Therefore, we have An |=v reducen(ϕ∃).700

701

B. Observers for Extended Predicates702

We show that the satisfaction of the additional predicates703

LAST(σ 1
π )−LAST(σ 2

π ) �� lt, cnt≥0 �� d, and (cnt mod N) ��704

d in Ext-PTCTL are observable by a PTA, and thus, Ext-705

PTCTL model checking and synthesis are reducible to the706

PTCTL model checking and synthesis, respectively. Since707

we consider the Ext-PTCTL formulas, we assume V = {π}708

without loss of generality.709

For LASTEXPR LAST(σ 1
π ) − LAST(σ 2

π ) �� lt, since the710

truth value of LAST(σ 1
π ) − LAST(σ 2

π ) �� lt changes only711

when the truth value of σ 1
π or σ 2

π changes from ⊥ to �,712

we can construct an observer by “re-evaluating” LAST(σ 1
π )−713

LAST(σ 2
π ) �� lt when σ 1 or σ 2 changes from false to true.714

Additionally, we use invariants so that the initial states depend715

on the parameter valuations.716

For COUNTEXPR≥0 cnt≥0 �� d, since COUNT(σπ ) is717

monotonically increasing, we can abstract the precise value718

once its value is sufficiently large. Therefore, we can encode719

the counted value by finite locations.720

For COUNTEXPRmod (cnt mod N) �� d, since the value of721

COUNT(σπ ) is cycling back at N ∈ N, we can also encode the722

counted value modulo N by finite locations. Observers were723

studied in [3], and we define them as follows.724

Definition 10 (Observers for LASTEXPR): Let σ 1, σ 2 ∈725

	, �� ∈ {<,≤,=,≥,>}, and lt be a linear term over P. The726

observer for ϕ = LAST(σ 1
π )−LAST(σ 2

π ) �� lt is a PTA Oϕ =727

(L,L,L0, {cσ 1 , cσ 2},P, I,E,
), where L = P({σ 1, σ 2, ϕ}) ×728

{�,⊥}, L0 is L0 = {(pr, b) ∈ L | b = ⊥}, I is such that729

I(�) = � for any � �∈ L0, and for � = (pr,⊥) ∈ L0, I(�) is730

0 �� lt if ϕ ∈ pr and otherwise, I(�) is ¬(0 �� lt), 
 is the731

identity function, and E = {
((pr, b),�,∅, (pr′,�)) | pr′ �732

pr, ϕ ∈ pr ∩ pr′ or ϕ �∈ pr ∪ pr′
} ∪ {

((pr, b), (cσ 1 − cσ 2 ��733

lt)[C	rise := 0],C	rise , (pr′ ∪{ϕ},�)) | pr′ ⊆ {σ 1, σ 2}, 	rise =734

pr′ \ pr, 	rise �= ∅} ∪ {
((pr, b),¬(cσ 1 − cσ 2 �� lt)[C	rise :=735

0],C	rise , (pr′,�)) | pr′ ⊆ {σ 1, σ 2}, 	rise = pr′ \ pr, 	rise �=736

∅}
, where C	rise = {cσ i | σ i ∈ 	rise} and (cσ 1 − cσ 2 ��737

lt)[C	rise := 0] is −cσ 2 �� lt if C	rise = {cσ 1}, cσ 1 �� lt if738

C	rise = {cσ 2}, and 0 �� lt if C	rise = {cσ 1 , cσ 2}.739

Definition 11 (Observers for COUNTEXPR≥0): Let cnt≥0 =740 ∑
σ∈	 ασ,πCOUNT(σπ ) be a non-negative linear term, i.e.,741

ασ,π ∈ N. The observer for ϕ = cnt≥0 �� d is a PTA Oϕ =742

(P(	 ∪ {ϕ}),P(	)× {0, 1, . . . , d, d + 1}	,L0,∅,∅, I,E,
),743

where L0 = P(	) × {0}	 , I(�) = � for any � ∈ L, 
744

is such that 
((pr, η̃)) = pr ∪ {ϕ} if
∑
σ∈	 ασ,π η̃(σ ) ��745

d holds and 
((pr, η̃)) = pr otherwise, and E = 746

{((pr, η̃),�,∅, (pr′, η̃[pr′ \ pr += 1])) | pr, pr′ ⊆ 	, η̃ ∈ 747

{0, 1, . . . , d, d + 1}	}, where η̃[pr′ \ pr += 1] is such that 748

v[pr′ \ pr += 1](σ ) = v(σ ) for σ �∈ pr′ \ pr, η̃[pr′ \ pr += 749

1](σ ) = η̃(σ ) + 1 if σ ∈ pr′ \ pr and η̃(σ ) < d, and η̃[pr′ \ 750

pr += 1](σ ) = d + 1, otherwise. 751

We omit the definition of the observers for ϕ = (cnt mod 752

N) �� d since it is similar to Definition 11. The main 753

difference is to reset the “counter” η̃ to 0 when the value 754

becomes N. 755

The observers semantically capture the original expressions 756

intuitively because cσ 1 and cσ 2 correspond to LAST(σ 1
π ) and 757

LAST(σ 2
π ), and η̃ is a sound abstraction of [	0cnt]
−
′ . 758

Lemma 1 (Correctness of the Observers): For each σ ∈ 759

	, we let ασ ∈ N and α′σ ∈ Z. Let N ∈ N, 760

σ 1, σ 2 ∈ 	, �� ∈ {<,≤,=,≥,>}, d ∈ N, and lt be 761

a linear term over P. Let ϕ be one of the following: 762

LAST(σ 1
π ) − LAST(σ 2

π ) �� lt,
∑
σ∈	 ασCOUNT(σπ ) �� 763

d, or (
∑
σ∈	 α′σCOUNT(σπ ) mod N) �� d. Let v be 764

a valuation over P, (
,�
) be a path assignment sat- 765

isfying dom(
) = {π} and 
(π) ∈ Paths(v(Oϕ)). For 766

any (
′,�
′) satisfying (
,�
) � (
′,�
′), we have 767


′, Init(
′(π)), [	0cnt]
−
′ , [	0rec]
−
′ |=v,Oϕ
ϕ if and only if 768

we have ϕ ∈ 
(Init(
′(π))). 769

For an Ext-PTCTL formula ψ , we let Oψ be the PTA Oψ = 770

×ext∈Ext(ψ)Oext, where Ext(ψ) is the set of LASTEXPR, 771

COUNTEXPR≥0, and COUNTEXPRmod in ψ . For an Ext- 772

PTCTL formula ψ , we let ψnoext be the PTCTL formula 773

with the same syntax but having Ext(ψ) as additional atomic 774

propositions. The following shows that the model checking 775

and synthesis for Ext-PTCTL formulas are reducible to those 776

for the PTCTL formulas. 777

Theorem 2 (Correctness of the Reduction With Oψ ): For 778

a PTA A, a parameter valuation v ∈ (Q≥0)
P, and a top-level 779

Ext-PTCTL formula ψ , we have A |=v ψ if and only if A× 780

Oψ |=v ψnoext. 781

Proof (Sketch): Since the other cases are similar, we only 782

outline the proof of A |=v ϕ∃ =⇒ A × Oψ |=v ϕ∃noext, 783

where ϕ∃ = ∃π. ϕ1 U��γ ϕ2. Moreover, since we have V = 784

{π}, we discuss it based on the paths rather than the path 785

assignments for simplicity. Suppose A |=v ϕ∃ holds. By the 786

semantics of ExtPTCTL, there is a path ρ1 of v(A) and a 787

suffix ρ2 of ρ1 such that Dur(ρ1 − ρ2) �� v(γ ), ϕ2 holds at 788

ρ2, and ϕ1 holds at any position between ρ1 and ρ2. Since the 789

observer Oψ is complete, there is a path ρ′1 of v(A × Oψ) 790

satisfying ρ1|v(A) = ρ′1. Moreover, by taking a suitable suffix 791

of ρ′1, there is a path ρ′2 of v(A×Oψ) satisfying ρ′2|v(A) = ρ2. 792

By Lemma 1, ϕ2noext holds at ρ′2. For any position between 793

ρ′1 and ρ′2, since there is a corresponding position between 794

ρ1 and ρ2, ϕ1noext holds at that position. Therefore, we have 795

A×Oψ |=v ϕ∃noext. 796

C. Worked Example 797

Here, we present an illustrative example of our Ext- 798

HyperPTCTL synthesis semi-algorithm. Consider again the 799

PTA A in Fig. 2. Let ψ be the Nest-Free Ext-HyperPTCTL 800

formula in Example 2. 801
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Fig. 3. Self-composition A ||A of A in Fig. 2.

Fig. 4. Part of the observer of ϕ′2 = (COUNT(H1
π )− COUNT(H2

π ) mod
4) = 0.

First, we reduce Nest-Free Ext-HyperPTCTL model check-802

ing to Nest-Free Ext-PTCTL model checking via the803

self-composition (Section V-A). Since ψ contains two path804

variables π1 and π2, we take the self-composition A ||805

A of A (Fig. 3). The corresponding Nest-Free Ext-PTCTL806

formula is reduce2(ψ) = ∃π. ϕ′1 U≥0 (ϕ
′
2 ∧ ϕ′3), where ϕ′1 =807

reduce2(AtMostOneDiff), ϕ′2 = reduce2(SameCount), and808

ϕ′3 = reduce2(LargeDeviation). Then, we construct the809

observers Oϕ′1 , Oϕ′2 , and Oϕ′3 . Figs. 4 and 5 show a part of810

Oϕ′2 and Oϕ′3 . Finally, we apply the PTCTL synthesis to (A ||811

A) × Oϕ′1 × Oϕ′2 × Oϕ′3 with reduce2(ψ). In this case, the812

synthesized parameter constraint is as follows, where 2 ×813

p1 > p2 ∧ 3 × p1 + 3 > 2 × p2 ∧ p1 + 3 > p2 ∧ p1.814

We remark that our implementation supports more general815

formulas, e.g., ∃π1, π2.�≥0(SameCount′ ∧ LargeDeviation),816

with SameCount′ ≡ COUNT(Hπ1) = COUNT(Hπ2).817

VI. DECIDABLE SUBCLASSES818

The model checking problem (and the synthesis counterpart)819

against the general PTAs is trivially undecidable, even for the820

nest-free existential fragment.821

Proposition 1: Model checking PTAs against a Nest-Free822

∃̃HyperPTCTL formula is undecidable.823

Proof: The Nest-Free ∃̃HyperPTCTL formula “∃π.�≥0σ”824

is equivalent to the TCTL formula ∃�σ denoting reachabil-825

ity. Reachability-emptiness is known to be undecidable for826

PTAs [1], which gives the result.827

This negative result leads us to exhibit subclasses of either 828

the model or the formula for which decidability can be 829

achieved, which we do in the following. 830

A. Nonparametric Model Against Parametric Formula 831

We consider here nonparametric TAs against a restriction of 832

Nest-Free Ext-HyperPTCTL defined as follows: 1) Parameters 833

cannot be used in LAST; 2) Parameters are integer-valued. 834

Put it differently, parameters cannot be used in the extended 835

syntax (the constructs that are turned into observers during 836

our transformation in Section V-B); we insist that parameters 837

can be used anywhere else in the formula. Let Nest-Free 838

RPExt-HyperPTCTL denote this class (with “RP” denoting 839

a restricted use of parameters). For instance, the opacity in 840

Example 3 is in this class. 841

Theorem 3 (Complexity of the Model Checking Problem): 842

Model checking TAs against a Nest-Free RPExt-HyperPTCTL 843

formula is in 6EXPTIME. 844

Proof: We reduce to model checking a nonparametric 845

TA against PTCTL [7]. Recall that our general construction 846

(Section V) reduces model checking a PTA against a Nest-Free 847

Ext-HyperPTCTL formula to the model checking a network 848

of PTAs and a set of observers against a PTCTL formula. 849

Since the observers are created for the extended syntax, and 850

since they do not contain parameters in Nest-Free RPExt- 851

HyperPTCTL, the synchronized product of the multiple TAs 852

and the observers does not contain the parameters. 853

Now, model checking a nonparametric TA against PTCTL 854

can be done in 5EXPTIME in the synchronized product of 855

the size of A and ψ from [7, Th. 7.5]. Therefore, since 856

|An| ≤ |A||ψ | and due to the fact that the observers are in 857

constant size, and come in number at most linear in |ψ |, 858

model checking a TA against a Nest-Free RPExt-HyperPTCTL 859

formula is in 6EXPTIME. 860

Observe that this is only an upper bound because; 1) we 861

only provide an one-way reduction; 2) the complexity in 862

[7, Th. 7.5] only gives an upper bound anyway. 863

Remark 1: Following the same reasoning, the model 864

checking a TA against a formula expressed in Nest-Free 865

∃̃RPExt-HyperPTCTL is in 4EXPTIME, reusing the fact that 866

the model checking a nonparametric TA against ∃̃PTCTL can 867

be done in 3EXPTIME [7, Proposition 7.6]. 868

Theorem 4 (Effective Parameter Synthesis): The solution to 869

the parameter synthesis problem for the TAs against a Nest- 870

Free Ext-HyperPTCTL formula can be effectively computed. 871

Proof: As in the proof of Theorem 3, we reduce to the 872

model checking a nonparametric TA against PTCTL [7]. From 873

[7], the solution of the parameter synthesis of a nonparametric 874

TA against PTCTL can be effectively computed. 875

B. L/U-PTAs Against Nest-Free Ext-HyperPTCTL 876

Definition 12 (L/U-PTA [10]): An L/U-PTA (lower- 877

bound/upper-bound PTA) is a PTA where the set of parameters 878

is partitioned into the lower-bound and upper-bound 879

parameters, where each upper-bound (resp, lower-bound) 880

parameter pi must be such that, for every guard or invariant 881

constraint c �� pi, we have �� ∈ {≤,<} (resp, �� ∈ {≥,>}). 882
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Fig. 5. Part of the observer of ϕ′3 = LAST(H1
π ) − LAST(H2

π ) �∈ [−p2, p2]. Most of the edges from the initial locations are omitted for simplicity. The
initial satisfaction of ϕ′3 is conditioned with the invariant.

Example 8: The PTA in Fig. 2 is an L/U-PTA with an883

upper-bound parameter p1. The PTA in Fig. 5 is not L/U.884

This is because the mere ∀�-emptiness (emptiness of the885

valuations set for which a location is always eventually reach-886

able) is undecidable for L/U-PTAs [5], we restrict ourselves887

to the reachability fragment of Nest-Free Ext-HyperPTCTL,888

where the temporal operators are only ∃�. Let Nest-Free ∃̃-889

∃�Ext-HyperPTCTL denote this fragment.890

Theorem 5 (Decidability of Nonparametric Nest-Free891

∃̃-∃�Ext-HyperPTCTL for L/U-PTAs): Model checking892

L/U-PTAs against a nonparametric Nest-Free ∃̃-∃�Ext-893

HyperPTCTL formula is PSPACE-complete. The synthesis is,894

however, intractable.895

Proof: We reduce to reachability for L/U-PTAs. Our general896

construction (Section V) reduces the model checking a PTA897

against a Nest-Free Ext-HyperPTCTL formula to the model898

checking a network of (L/U-)PTAs and a set of nonparametric899

observers against a TCTL formula. Here, we consider the900

reachability fragment only, leading to a reachability property.901

Reachability-emptiness is PSPACE-complete for the L/U-902

PTAs [10], and therefore the model checking L/U-PTAs903

against a nonparametric Nest-Free ∃̃-∃�Ext-HyperPTCTL904

formula is PSPACE-complete (the hardness following imme-905

diately).906

The nonparametric Nest-Free ∃̃-∃�Ext-HyperPTCTL for-907

mula “∃π.�σ” is equivalent to the (T)CTL formula ∃�σ908

denoting reachability. Reachability-synthesis is known to be909

intractable for L/U-PTAs [5], and therefore the synthesis for910

the L/U-PTAs against a nonparametric Nest-Free ∃̃-∃�Ext-911

HyperPTCTL is intractable.912

By using as proof argument a result from [8] showing that913

nest-free TCTL emptiness is decidable for the L/U-PTAs with914

integer-valued parameters and without invariants, we can show915

as follows.916

Theorem 6 (Decidability of Nonparametric Nest-Free Ext-917

HyperPTCTL for L/U-PTAs): Model checking L/U-PTAs918

with integer-valued parameters without invariants against919

a nonparametric Nest-Free Ext-HyperPTCTL formula is 920

PSPACE-complete. The synthesis is however intractable. 921

C. (1, ∗, 1)-PTAs Against Nonparametric Formula 922

We use here a common notation (n, ∗,m) to denote the n 923

parametric clocks, arbitrarily many nonparametric clocks and 924

m parameters. We finally show decidability in a restrictive 925

setting, by reduction to the decidable setting of [6]. 926

Theorem 7 (Decidability With One Discrete Clock): Model 927

checking a (1, ∗, 1)-PTA is decidable over discrete time 928

against a nonparametric Nest-Free ∃̃-∃�Ext-HyperPTCTL 929

with (at most) two path quantifiers for each temporal level 930

formula. 931

Proof: We reduce to reachability for (2, ∗, 1)-PTAs. Model 932

checking nonparametric Nest-Free ∃̃-∃�Ext-HyperPTCTL 933

reduces to model checking a network of PTAs (including the 934

observers necessary to encode the extended syntax of the 935

formula) against a reachability property. Further, the model 936

contains a single parametric clock, and the formula contains 937

two paths quantifiers for each temporal level formula, leading 938

the self-composed model to contain two parametric clocks. 939

Since the (unique) parameter is shared between both the 940

copies, then the resulting composition is a (2, ∗, 1)-PTA. 941

Reachability-emptiness is EXPSPACE-complete for (2, ∗, 1)- 942

PTAs for T = N [6]. 943

It remains open whether the synthesis problem is tractable 944

in this latter case. 945

This result is not tight in the number of clocks, in the sense 946

that it remains open whether the model checking a (2, ∗, 1)- 947

PTA against Nest-Free ∃̃-∃�Ext-HyperPTCTL with two path 948

quantifiers per temporal level formula is decidable or not. 949

However, by allowing ∃U instead of ∃� in the formula, we can 950

show undecidability. The proof encodes a (4, 0, 1)-PTA (for 951

which ∃�-emptiness is undecidable [18]) into two (2, 0, 1)- 952

PTAs, the synchronization of which is enforced thanks to an 953

∃U -based Nest-Free ∃̃HyperPTCTL. 954
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Theorem 8 (Undecidability Over Discrete Time With955

Two Clocks): Model checking a (2, 0, 1)-PTA is undecid-956

able over discrete time against a nonparametric Nest-Free957

∃̃HyperPTCTL formula using only ∃U and two path quanti-958

fiers.959

Proof (Sketch): We reduce from the reachability for960

(3, 0, 1)-PTAs [18]. Let A be a (4, 0, 1)-PTA with the clocks961

t, x, y, and z. Let us “split” it into two (2, 0, 1)-PTAs with962

the same structure (same locations and edges), such that963

the first (resp, second) PTA only contains clock constraints964

containing t and x (resp, y and z). Add to each location of965

the first PTA an unique location label with the same name966

as the location, i.e., 
(�i) = {�i}, and to the second a967

primed label, i.e., 
(�i) = {�′i}. Fix � a target location. Then,968

let A′ be the PTA union of these two PTAs, i.e., starting969

with an initial nondeterministic choice in 0-time, and then970

“choosing” between either components (we assume that y971

and z are renamed into t and x). Reaching � in A is equivalent972

to checking the following Nest-Free ∃̃HyperPTCTL formula973

in A′: ∃π1, π2. (
∧

i(�i)π1 = (�′i)π2) U≥0 (�π1 ∧ �′π2
).974

Since ∃�-emptiness is undecidable for (3, 0, 1)-PTAs [18],975

then model checking this formula against A′ is undecidable.976

A′ contains only two clocks, and the formula is made of a977

single ∃U , with only two path quantifiers.978

VII. EXPERIMENT979

We experimentally evaluated the efficiency of our980

model checking semi-algorithm using our prototype981

tool HyPTCTLchecker.5 Given a PTA and a Nest-Free Ext-982

HyperPTCTL formula, HyPTCTLchecker translates them983

into a PTA and a PTCTL formula via the reduction presented984

in Section V, and outputs them as the format supported by985

IMITATOR [4], a verification tool for PTAs. Then, we execute986

IMITATOR to solve the synthesis problem. HyPTCTLchecker987

supports all the Nest-Free Ext-HyperPTCTL formulas except988

for the following operator only because IMITATOR does not989

support its nonhyper versions: ∃π1, π2, . . . , πn. ϕ1 R��γ ϕ2.990

We pose the following research questions.991

RQ1: Is HyPTCTLchecker efficient for practical properties?992

RQ2: How many path variables can HyPTCTLchecker handle993

at most?994

We conducted all the experiments on an AWS995

EC2 m7i.4xlarge instance (with 16vCPU and 64 GiB RAM)996

that runs Ubuntu 22.04 LTS. We set 6 h as the timeout.997

A. Benchmarks998

Table I summarizes the benchmarks we used and the999

experimental results. The translation time is negligible1000

(typically < 0.05 s) and is not integrated in Table I.1001

We used five classes of properties: 1) Deviation; 2)1002

Opacity; 3) Unfair; 4) RobOND; and 5) EFi. Deviation,1003

Opacity, Unfair, and RobOND are the properties shown in1004

Examples 2, 3, 5, and 6, respectively. EFi is an artificial1005

5HyPTCTLchecker is publicly available at https://github.com/MasWag/
HyPTCTLChecker in an open-source manner with all the data to reproduce
the experiments.

TABLE I
SUMMARY OF THE BENCHMARKS AND THE RUNTIME OF IMITATOR.

COLUMNS |L| AND |C| SHOW THE NUMBER OF LOCATIONS AND CLOCKS

IN THE PTAS. COLUMNS |P|ψ AND |P|A SHOW THE NUMBER OF

PARAMETERS USED IN THE PROPERTIES AND THE PTAS. COLUMN |V|
SHOWS THE NUMBER OF THE QUANTIFIED PATH VARIABLES IN ψ .

“T.O.” DENOTES NO TERMINATION WITHIN 6 H

property to evaluate the scalability of our semi-algorithm 1006

with respect to the number of path variables. Concretely, 1007

EFi is ∃π1, π2, . . . , πi.�[p,p]
∧

j∈{1,2,...,i−1} COUNT(aπj) − 1008

COUNT(aπj+1) = 1. 1009

ClkGen is the PTA in Fig. 2. Coffee (a toy coffee machine), 1010

STAC1:n and STAC4:n (two Java programs without timing 1011

leaks, translated to PTAs) are based on the PTAs in [19]. 1012

FIFO, Priority, and R.R. are our original PTAs modeling 1013

FIFO, Fixed-Priority, and Round-Robin schedulers, respec- 1014

tively. WFASi is a wireless fire alarm system taken from [18], 1015

where i shows the number of parameters. WFAS1
0 and WFAS2

0 1016

are instances of WFAS with different parameter valuations. 1017

ATM is a simple PTA model of an ATM from [20, Fig. 1], 1018

and ATM′ is its variant without the branch “check.” The 1019

PTAs taken from the literature are modified to align with our 1020

encoding and evaluation, e.g., by adding the locations and 1021

the edges to encode the input and output propositions with 1022

labels on the locations and by instantiating some parameters 1023

to evaluate the scalability. 1024

B. RQ1: Performance on Practical Properties 1025

In Table I, we observe that for most of the benchmarks, the 1026

runtime of IMITATOR is less than a few minutes. Particularly, 1027

the runtime for Opacity is always less than 1 s. This aligns 1028

with the efficiency of opacity verification with a similar 1029

reduction in [19]. For Unfair and RobOND, the runtime 1030

largely depends on the complexity of the PTA. For instance, 1031

R.R. has more locations and clocks than FIFO and Priority 1032

for preemptive scheduling, which blows up the result of the 1033

self-composition in Section V-A and increases the runtime of 1034

IMITATOR. Similarly, having more parameters (in WFASi) 1035

or locations (in ATM) increases the runtime. Nevertheless, 1036

HyPTCTLchecker can still handle the benchmarks with the 1037
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parameters in properties or PTAs if the PTAs are of mild1038

complexity. Thus, we answer RQ1 as follows.1039

Answer to RQ1: HyPTCTLchecker can efficiently handle
practical properties for mild size of PTAs, i.e., with
roughly up to 4 clocks, and against formulas with up to 3
path variables.

1040

We failed to verify ATM within 6 h although it has smaller1041

|L|, |C|, and |P|A than WFAS2. It is difficult to discuss its1042

detail, but this can be partly due to the structure of the PTAs.1043

ATM has two loops whereas ATM′ has only one of them.1044

After the self-composition, they have four and two loops,1045

respectively. It is possible that this caused a combinatorial1046

explosion of the search space.1047

C. RQ2: Scalability to the Number of Path Variables1048

In Table I, we observe that HyPTCTLchecker can handle1049

EF3 but not EF4. This is because the self-composition in1050

Section V-A exponentially blows up the PTAs with respect to1051

the number of path variables. Given the simplicity of Coffee1052

and EF3, we answer RQ2 as follows.1053

Answer to RQ2: HyPTCTLchecker can handle at most
three path variables in a reasonable time.

1054

Although the above answer might seem quite restrictive,1055

we remark that the three path variables are likely enough to1056

capture most of the interesting properties. For example, all1057

the HyperLTL or HyperCTL* formulas in the case studies1058

in [21] and [22] are with at most two path variables (poten-1059

tially with the nested temporal operators, which is out of the1060

scope of our semi-algorithm).1061

VIII. CONCLUSION1062

We introduced HyperPTCTL as the first extension to1063

hyperlogics of parametric timed CTL, enabling reasoning1064

simultaneously on different execution traces. After giving a1065

syntax and semantics for the general logics, we restricted1066

ourselves to a nest-free fragment, extended with COUNT and1067

LAST constructs, allowing for reasoning about the number1068

of actions and the duration from their final occurrence,1069

respectively. To our knowledge, this logic is the first of its1070

kind to reason about parametric timed hyperproperties. Model1071

checking this logic Nest-Free Ext-HyperPTCTL reduces to1072

the model checking PTCTL. While this is, in general, unde-1073

cidable, we exhibited decidable subclasses. In addition, our1074

implementation within HyPTCTLchecker (built on the top of1075

IMITATOR) goes beyond the decidable fragment, and showed1076

good results, both for the nonparametric and parametric case.1077

Future works include exhibiting further decidable sub-1078

classes, perhaps forbidding equality (“= p”) in the formula,1079

as in [23], or with restrictions in the formula, such as1080

in [9]. Some undecidability results are not tight, i.e., the1081

exact border between decidability and undecidability remains1082

blurred. Devising and implementing a semi-algorithm for the1083

full HyperPTCTL, beyond the nest-free fragment, is also on1084

our agenda. A comparison of the expressive power between1085

Ext-HyperPTCTL and the other hyperlogics is also a possible1086

future direction.1087

Finally, optimizing IMITATOR in order to address 1088

HyperPTCTL will be an interesting challenge. The blowup 1089

due to the self-composition may be addressed using the partial 1090

order (e.g., [24]) or symmetry reductions. 1091
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